
On Compositional Reasoning in the Spi-calculus�

Michele Boreale and Daniele Gorla

Dipartimento di Sistemi e Informatica, Università di Firenze
boreale@dsi.unifi.it, gorla@gdn.dsi.unifi.it

Abstract. Observational equivalences can be used to reason about the
correctness of security protocols described in the spi-calculus. Unlike
in CCS or in π-calculus, these equivalences do not enjoy a simple
formulation in spi-calculus. The present paper aims at enriching the
set of tools for reasoning on processes by providing a few equational
laws for a sensible notion of spi-bisimilarity. We discuss the difficulties
underlying compositional reasoning in spi-calculus and show that, in
some cases and with some care, the proposed laws can be used to build
compositional proofs. A selection of these laws forms the basis of a proof
system that we show to be sound and complete for the strong version of
bisimilarity.

Keywords: process calculi, axiomatization, reasoning on security

1 Introduction

Observational equivalences can be used to reason about the correctness of secu-
rity protocols described in the spi-calculus [2]. Unlike in CCS or in π-calculus,
these equivalences do not enjoy a simple formulation in spi-calculus. One rea-
son is the interplay between cryptography and handling of private names, which
somehow forces a distinction between the knowledge of the observer and the in-
terface of the observed process (i.e. the set of its free names). On the contrary, in
the simpler non-cryptographic setting, these two notions coincide. To illustrate
this point, let us consider two processes that send different, encrypted messages
along a public channel c: P

�
= (ν k ) c{a}k.0 and Q

�
= (ν k ) c{b}k.0. According

to π-like bisimulation, P and Q are not equivalent, because they give rise to
syntactically different transitions (names a and b are different). On the other
hand, messages {a}k and {b}k have the same effect upon an external observer:
in both cases, he/she simply cannot open the message because has no access to
the private key k. Thus, it would be reasonable to regard P and Q as equivalent.

In [6], these considerations have led to the introduction of environment sen-
sitive (e.s.) bisimulation, written ∼ below, where each process comes equipped
with an explicit representation of what its environment knows. The latter is
used to tell if two messages can be distinguished or not. Continuing with the
� Research partially supported by the Italian MURST Project NAPOLI and by the
European FET project MIKADO (IST-2001-32222).

M. Nielsen and U. Engberg (Eds.): Fossacs 2002, LNCS 2303, pp. 67–81, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



68 Michele Boreale and Daniele Gorla

example above, P and Q are e.s. bisimilar under the environment ε(a,b,c) that
accounts for the knowledge of the free names a, b and c: this is written as
( ε(a,b,c) , ε(a,b,c) ) � P ∼ Q. Environmental knowledge grows after an output
action is observed and two processes being compared may end up being placed
in two different, though in some sense ‘equivalent’, environments. For instance,
this is the case for P and Q above after the firing of the output actions. In [6],
∼ is shown to capture precisely barbed equivalence [12] in spi-calculus, which
adds to the evidence that it is a sensible semantical notion.

The interplay between cryptography and private names makes compositional
reasoning in spi-calculus difficult, when not impossible at all. A private name
k can be extruded and hence become free, without this implying that k is
learnt by the observer. Thus, we are sometimes confronted with equivalences
like: ( σ1 , σ2 ) � c{a}k.P1 ∼ c{b}k.P2 where both σ1 and σ2 know a, b, c, but
neither knows k. In general, this kind of equivalences are not preserved by parallel
composition. For instance, when putting ck.0 in parallel to both sides of the pre-
vious relation, the equivalence breaks down. The reason is that ck.0 may provide
the observer with the key k to open {a}k and {b}k, thus enabling a distinction
between these two messages. Similar problems arise from the non-deterministic
choice and output prefix operators. (On the contrary, the congruence rules for
restriction and input prefix appear to be somehow more liberal in spi-calculus
than in π-calculus; this is further discussed in the paper).

In fact, one can devise congruence rules that work in some special cases and
that are often sufficient to analyze concrete examples. In the paper, we show how
to reason compositionally on a small security protocol like Wide Mouthed Frog
[2]. However, special-case congruence rules appear to be not powerful enough
to achieve completeness results in the same fashion as for CCS and π-calculus
(see, e.g., [10,13]). Indeed, proving any process equivalent to, say, a head normal
formal (hnf) requires a congruence law for parallel composition that, as seen
above, is not sound in general for ∼. We get round this difficulty by noting that
the set of equations needed to re-write every spi-process to a hnf are preserved
by parallel composition. Starting from this consideration, we design a two-level
proof system. The first level only contains these general, hnf-related equations.
The second level contains those identities that are specific to spi-calculus, plus
a law for importing equalities from the first level. The resulting proof system
is perhaps not as elegant as a one-level proof system might be, but provides a
reasonably informative axiomatization of ∼ over finite processes.

For the sake of presentation, in this paper we confine ourselves to shared-key
cryptography, as presented e.g. in [6]. We believe that, with obvious modifi-
cations, the same arguments apply when the language is extended with other
crypto-primitives, like public-key encryption (see [2,1]).

The rest of this paper is organized as follows. Sect. 2 provides a summary of
the spi-calculus as presented in [6]. A set of equational laws that are meant to be
useful in practice is presented in Sect. 3, together with some examples of their
application. A more extensive example is in Sect. 4. Sect. 5 presents the proof
system, and discuss its completeness. A few concluding remarks are in Sect. 6.



On Compositional Reasoning in the Spi-calculus 69

2 The Calculus and Its Semantics

In this section we only define the basics of the calculus. We refer to [6] for a com-
prehensive presentation. The syntax of the calculus is summarized in Table 1.1

Table 1. Syntax of the calculus

a, b . . . , h, k, . . . , x, y, z . . . names N

M, N ::= a | {M}k | 〈M1,M2〉 messagesM

η, ζ ::= a | {η}ζ | decη(ζ) expressions Z
| 〈η, ζ〉 | π1(ζ) | π2(ζ)

φ, ψ ::= tt | name(ζ) | [ζ = η] formulae Φ
| let z = ζ in φ | φ ∧ ψ | ¬φ

P, Q ::= 0 | η(x).P | ηζ.P | P + Q | P |Q processes P
| !P | (ν a )P | φP | let z = ζ in P

It is assumed that dec·(·) and πi(·) do not occur in name(ζ), [ζ=η], η(x) and ηζ.
Operators a(x).·, (ν a ) · and let z = ζ in · are binders, with the obvious scope,
for names x, a and z, respectively. In let z = ζ in ·, it is assumed that z 
∈ n(ζ).

As usual, we use ·̃ to denote tuples of objects. Notions of alpha-equivalence,
free names (f n(P )), bound names (bn(P )) and names (n(P )) of a process P arise
as expected; in particular, we identify alpha-equivalent processes and formulae.
We use two evaluation functions. The first one ( ·̂ : Z →M∪ {⊥} ) transforms
an expression into a message by properly evaluating decryptions and projections
(e.g. ̂deck({M}k) = M while ̂dech({M}k) = ⊥ if h �= k). The second function
( [[ · ]] : Φ→ {tt, ff}) takes a formula and gives its boolean value as expected.

Informally, an environment represents the knowledge of names and keys that
an external observer has acquired about a certain process. We represent and use
an environment as a substitution σ of names with messages. The domain and
proper co-domain of σ are written as dom(σ) and range(σ), respectively; we

let n(σ)
�
= dom(σ)∪ (∪

M∈range(σ)n(M)). With εT we denote the substitution
that acts like the identity on the set of names T . The extension of environment
σ with the binding [M/x], written σ[M/x], and application σ to a term t, written
tσ, are defined as usual.

A configuration is a pair σ � P formed by an environment σ and a process

P . Transitions between configurations take the form σ � P
µ
|−−→
δ

σ′ � P ′ and

represent atomic interactions between P and σ. Here, µ is the process action
1 Compared to the spi-calculus in [2], we have the traditional process operators (i.e.
input and output prefixes, non-deterministic choice, parallel composition, replication
and restriction) plus a more general form of boolean guard and an operator for
decryption and pair splitting.



70 Michele Boreale and Daniele Gorla

(i.e. input, output or τ) and δ is the complementary, under σ, environment
action (respectively output, input and ‘no action’). The inference rules in Table 2
mention in the premises early-style transitions of the form P

µ−−→ P ′: the latter
just account for actions that processes are willing to do, regardless of whether
an external observer can react or not to them. Its definition is standard and can
be found in [6].

Table 2. Rules for the environment-sensitive calculus

It is assumed that n(η) ⊆ dom(σ) and that names in b̃ are fresh for σ and P .

(E-Out)
P

(ν̃b)a 〈M〉−−−−−−−→ P ′ η̂σ = a

σ $ P
(ν̃b)a 〈M〉
|−−−−−−−→

η(x)
σ[M/x] $ P ′

(E-Tau)

P τ−−→ P ′

σ $ P
τ

|−−→
−
σ $ P ′

(E-Inp)
P aM−−−−→ P ′ η̂σ = a M = ζ̂σ b̃

�
= (n(ζ)− dom(σ))

σ $ P
aM

|−−−−−−→
(ν̃b)η 〈ζ〉

σ[̃b/̃b] $ P ′

2.1 Environment-Sensitive Strong Bisimulation

Definition 1 (Equivalence on environments). Two environments σ1 and
σ2 are equivalent (written σ1 ∼ σ2) if dom(σ1) = dom(σ2) and ∀ φ s.t. f n(φ) ⊆
dom(σ1) it holds [[ φσ1 ]] = [[ φσ2 ]].

For example, σ1
�
= [a/x , b/y , {a}k/z] and σ2

�
= [a/x , b/y , {b}k/z] are equiva-

lent. On the contrary, σ′1
�
= σ1[k/v] and σ′2

�
= σ2[k/v] are not (consider the formula

let w = decv(z) in [x = w]). A metatheory to reason on environment equiva-
lence ∼ is presented in [6]; in particular, an equivalent definition is given there
that leaves out universal quantifiers on φ and only works on the structure of the
environments. However, the present definition suffices for our purposes.

If � is a binary relation over configurations, we write (σ1 � P, σ2 � Q) ∈ �
as ( σ1 , σ2 ) � P � Q; if σ1 ∼ σ2 whenever ( σ1 , σ2 ) � P � Q, we call �
compatible. We now give the strong version of e.s. bisimilarity from [6].

Definition 2 (Environment-sensitive strong bisimilarity). Let � be a bi-
nary and symmetric compatible relation of configurations. We say that � is an
environment-sensitive strong bisimulation if whenever ( σ1 , σ2 ) � P � Q and

σ1 � P
µ

|−−→
δ

σ′1 � P ′ then there are µ′, σ′2 and Q′ such that σ2 � Q
µ′

|−−→
δ

σ′2 � Q′

and ( σ′1 , σ
′
2 ) � P ′ � Q′. Environment-sensitive bisimilarity, written ∼, is the

largest environment-sensitive strong bisimulation.



On Compositional Reasoning in the Spi-calculus 71

3 Laws for Compositional Reasoning

In this section we list and explain some laws that, in many cases, can be useful to
prove bisimilarity of two processes in a simple and compositional way. As we shall
see in Sect. 5, with some modifications, these laws form the basis of a complete
proof system for ∼. In what follows, we discuss a little about significance of
each law and provide explicative examples and countrexamples. Each law is a
judgement of the form ( σ1 , σ2 ) � P ∼ Q, where σ1 ∼ σ2.

Basic laws : The following laws are easily derived from the definition.

(Refl) ( σ , σ ) � P ∼ P (Sym)
( σ1 , σ2 ) � P ∼ Q
( σ2 , σ1 ) � Q ∼ P

(Trans)
( σ1 , σ2 ) � P ∼ Q ∧ ( σ2 , σ3 ) � Q ∼ R

( σ1 , σ3 ) � P ∼ R

We then have a form of ‘weakening’ which states that discarding some entries
from the environments does preserve equivalence.

(Weak)
( σ1[M̃1/̃x] , σ2[M̃2/̃x] ) � P ∼ Q

( σ1 , σ2 ) � P ∼ Q

The following law provides a basic step in compositional reasoning. Note that
the more general formulation “ ( σ1 , σ2 ) � P ∼ P if σ1 ∼ σ2 ” does not hold.

(Nil) ( σ1 , σ2 ) � 0 ∼ 0 if σ1 ∼ σ2

Example 1. In fact, let us consider P
�
= p(x).let y = deck(x) in [y = a]py.0

and the equivalent environments σ1
�
= [p/p , {a}k/y] and σ2

�
= [p/p , {b}k/y]. A

transition from σ1 � P with δ = py leads to a process that is capable of a pa-
action, while the corresponding transition from σ2 � P leads to a process that
is stuck, because the matching [b = a] is not satisfied. Thus ( σ1 , σ2 ) � P �∼ P .

��
The standard scope extrusion law can also be useful:

(Extr) ( σ1 , σ2 ) � (ν k ) (P |Q) ∼ ((ν k )P ) |Q if k 
∈ f n(Q)

The last basic law can be used to replace a decryption underneath a let with
an equality test, under some conditions. Here and in the rest of this paper, we
will use the abbreviation “a({y}k).P” for “a(x).let y = deck(x) in P”, where
x �∈ f n(P, k). In the following law we also use the notion of context that is a
generic process with a ‘hole’ that can be filled by any process.



72 Michele Boreale and Daniele Gorla

(Let1) ( σ , σ ) � (ν h̃, k ) ( C[ p{M}k.P ] | D[ p({y}k).Q ]) ∼
(ν h̃, k ) ( C[ p{M}k.P ] | D[ p(x).[x = {M}k]Q[M/y] ])

k 
∈ n(P,C,D), contexts C and D do not bind names in p{M}k and x is fresh

Example 2. In order to better understand the above law, consider the process
P
�
= (ν k ) (A |B) where A �

= p{M}k.R , B
�
= p({y}k).Q and k �∈ n(R). Intu-

itively, since k is initially not known by the environment, the only message
B can read and then decrypt using k is the one written by A, i.e. {M}k.
In fact, the condition k �∈ n(R) prevents the environment from learning k,
or anything encrypted with it, before Q evolves. Thus P is equivalent to
(ν k ) (A | p(x).[x = {M}k]Q[M/y]), where x is a fresh variable. ��
Output congruence :

(Out)
( σ1[M1/x] , σ2[M2/x] ) � P ∼ Q

( σ1[M1/x] , σ2[M2/x] ) � a1M1.P ∼ a2M2.Q

where ai = η̂σi for i = 1, 2 and for some η s.t. n(η) ⊆ dom(σ1)

Notice that the two channels a1 and a2 may be different but are related via the
two environments (e.g. a1 and a2 may be stored in the same entry of the two
environments). Similarly, the messages M1 and M2 may well be different, but
they must correspond to the same environment entry x. The use of (Out) is
tipically joined with the use of (Weak), as shown below.

Example 3. We want to prove ( σ , σ ) � P ∼ Q, where σ
�
= [p/p] , P

�
=

p{a}k.0 and Q
�
= p{b}k.0. Notice that σ[{a}k/x] ∼ σ[{b}k/x], since neither of

{a}k and {b}k can be opened using the knowledge in σ. So, by (Nil), we get
( σ[{a}k/x] , σ[{b}k/x] ) � 0 ∼ 0. Then, by (Out) and (Weak) (discarding the
x entry), we conclude. ��
Input congruence : In the rest of the paper we shall use the following predicate:

Γ ( ζ, b̃, σ1, σ2, P, Q )
�⇔ ζ̂σ1 
= ⊥ ∧ b̃ = n(ζ)− dom(σ1) ∧

b̃ ∩ n(σ1, σ2, P,Q) = ∅

(notice that Γ ( ζ, b̃, σ1, σ2, P, Q )⇔ Γ ( ζ, b̃, σ2, σ1, P, Q ), if σ1 ∼ σ2).

(In)
∀ ζ, b̃ s.t. Γ ( ζ, b̃, σ1, σ2, P, Q ) :

( σ1 [̃b/̃b] , σ2 [̃b/̃b] ) � P [ζ̂σ1/x] ∼ Q[ζ̂σ2/x]

( σ1 , σ2 ) � a1(x).P ∼ a2(x).Q

where ai = η̂σi for i = 1, 2 and for some η s.t. n(η) ⊆ dom(σ1)



On Compositional Reasoning in the Spi-calculus 73

The above formulation of the input rule is somehow more generous than the
π-calculus style one. In fact, the premise does not require instantiating x to all
possible messages, but only to those that can be built out of σ1, σ2 and some
new names b̃, as specified by all ζ’s that satisfies the predicate Γ . This is made
clearer in the following example.

Example 4. Using (In), we can prove an equivalence quite similar to (Let1) (in
the sense that a “let” is replaced with a test), that is

( σ , σ ) � a(x).let x′ = deck(x) in P ∼ a(x).[x = {b}k]P [b/x′]
where σ

�
= [a/a , {b}k/w]. Indeed, it is easy to check that, whenever

Γ ( ζ, c̃, σ, σ, let . . . , [x = . . . ) and ζ̂σ = {M}k, then M = b. This is a
consequence of the fact that the environment does not know k and k �∈ c̃. On
the contrary, if the environment knew k, it could have created the message {a}k,
which, upon reception, would have stopped the second process and not the first
one. Of course, the above two processes are not equivalent according to tradi-
tional bisimilarity. ��
The formulation of the input rule given above fails to capture some equivalences:
in fact, in the proof system, it will be replaced by a more general rule.

Example 5. Let us consider the following σ
�
= [a/a], P

�
= a(x).a{x}k.0 and

Q
�
= a(x).[x �= b]a{x}k.0 + a(x).a{b}k.0. It is easy to see that ( σ , σ ) � P ∼ Q

but this equivalence is not an instance of (In). ��

Parallel composition :

(Par)
( σ1 , σ2 ) � P ∼ Q

( σ1 , σ2 ) � P |Rσ1 ∼ Q |Rσ2

f n(R) ⊆ dom(σ1)

As pointed out in the introduction, congruence under parallel composition is a
major problem in spi-calculus. In fact, a naive formulation like

( σ1 , σ2 ) � P ∼ Q ∧ ( σ1 , σ2 ) � R ∼ S
( σ1 , σ2 ) � P |R ∼ Q |S

is not valid.

Example 6. To see this, let us consider P
�
= p{a}k.0, Q �

= p{b}k.0, R �
= pk.0

and σ
�
= [p/p , a/a , b/b]. Following Example 3, we can prove ( σ , σ ) � P ∼ Q.

However, ( σ , σ ) � P |R �∼ Q |R. In fact the output of the key k enables an
external observer to distinguish {a}k from {b}k, hence P |R from Q |R. ��
The side condition of (Par) reduces the set of processes that can be composed
with P and Q, by requiring that the composed processes are consistent with
the knowledge available to the environment. In spite of this limitation, the rule
allows for non trivial forms of compositional reasoning, as shown in Sect. 4.



74 Michele Boreale and Daniele Gorla

Other Congruences :

(Sum)
( σ1 , σ2 ) � P1 ∼ P2 ∧ ( σ1 , σ2 ) � Q1 ∼ Q2

( σ1 , σ2 ) � P1 + Q1 ∼ P2 + Q2

(Res)
( σ1 , σ2 ) � P ∼ Q

( σ1 , σ2 ) � (ν h̃1 )P ∼ (ν h̃2 )Q
h̃i ∩ n(σi) = ∅ for i = 1, 2

(Guard)
( σ1 , σ2 ) � P ∼ Q

( σ1 , σ2 ) � φP ∼ φQ

(Let2)
ζ̂ 
= ⊥ ∧ ( σ1 , σ2 ) � P [ζ̂/z] ∼ Q[ζ̂/z]

( σ1 , σ2 ) � let z = ζ in P ∼ let z = ζ in Q

The only surprising aspect of these laws is in (Res): the tuples of restricted
names h̃1 and h̃2 can be different even in length.

Example 7. Using (Res) one can prove ( σ , σ ) � P ∼ (ν k )P , provided that
k �∈ n(σ). ��

4 A Compositional Secrecy Proof for WMF

In this section we verify a property of the Wide Mouthed Frog (WMF) protocol.
Differently from [2,6], our proof is entirely compositional and syntactical, based
on the simple equational laws introduced in the previous section.

Consider a system where two agents A and B share two secret keys, kAS and
kBS respectively, with a server S. The purpose of the protocol is to establish a
new secret key k between A and B, which A may use to pass some confidential
information d to B. We suppose that the protocol is always started by A and that
all communications occur on a public channel, say p. Informally, the protocol
can be described as follows:

Message 1 A→ S : {k}kAS
Message 2 S → B : {k}kBS
Message 3 A→ B : {d}k .

Our intent here is to verify a secrecy property for one run of the protocol. In our
language, the above notation translates to a process P (d) defined, like in [2], as
follows (we use the notation t(w) to emphasize that name w may occur free in
t and, for any M , t(M) abbreviates t[M/w]; bound names are all distinct):

A(d)
�
= p{k}kAS .p{d}k.G

S
�
= p({x}kAS ).p{x}kBS .0

B
�
= p({y}kBS ).p({z}y).F (z)

P (d)
�
= (ν kAS , kBS ) (((ν k )A(d)) |S |B) .



On Compositional Reasoning in the Spi-calculus 75

The processes G and F (z) represent behaviuor of A and B respectively upon
completion of the protocol. Below, we make the following assumptions:

1. the key k does not occur in G and F (that is, k is one-time);
2. kAS and kBS are used only to establish the new session key (in particular

kAS , kBS �∈ n(F (z), G));
3. for each M1, M2 ∈M and for each σ1(w) and σ2(w) s.t. σ1(M1) ∼ σ2(M2),
it holds ( σ1(M1) , σ2(M2) ) � F (M1) ∼ F (M2).

Assumption 1 is necessary in order to apply (Par), while assumtion 2 is nec-
essary to apply (Let1). At the moment we do not know how to discard these
assumptions while preserving the compositionality of the proof. Assumption 3
seems reasonable because F should not leak the received datum itself. Following
[2], the desired secrecy property is

“P (d) does not leak d” : ∀ M,M ′ ∈M ( εV , εV ) � P (M) ∼ P (M ′)
where V

�
= f n(P (M), P (M ′))

The proof of the above assertion takes these four steps (by alpha-equivalence,
we assume kAS , kBS , k �∈ n(M,M ′)):

(i) By (Extr), ( εV , εV ) � P (M) ∼ (ν kAS , kBS , k ) (A(M) |S |B). Then,
by (Let1) (applied to A and S) and (Trans), ( εV , εV ) � P (M) ∼
(ν kAS , kBS , k ) (A(M) |S′ |B) where S′

�
= p(u).[u = {k}kAS ]p{k}kBS .0.

Again by (Let1) (applied to S′ and B) and (Trans), we obtain

( εV , εV ) � P (M) ∼ (ν kAS , kBS , k ) (A(M) |S′ |B′) (1)

where B′
�
= p(v).[v = {k}kBS ]p(w).let z = deck(w) in F (z).

(ii) Similarly, replacing M with M ′, we obtain

( εV , εV ) � P (M ′) ∼ (ν kAS , kBS , k ) (A(M ′) |S′ |B′) . (2)

(iii) Let us define the environments σ
�
= εV [{k}kAS/x1 , {k}kBS/x2 , {M}k/x3] and

σ′
�
= εV [{k}kAS/x1 , {k}kBS/x2 , {M ′}k/x3], that are equivalent. Now suppose

that we can prove
( σ , σ′ ) � B′ ∼ B′ . (3)

We let S′′
�
= p(u).[u = x1]px2.0 and A′′

�
= px1.px3.G. We trivially

have S′ = S′′σ = S′′σ′, A(M) = A′′σ and A(M ′) = A′′σ′. Thus, by
(Par) and (3), we have ( σ , σ′ ) � (A′′ |S′′)σ |B′ ∼ (A′′ |S′′)σ′ |B′
which is the same as ( σ , σ′ ) � A(M) |S′ |B′ ∼ A(M ′) |S′ |B′.
By (Weak), we obtain ( εV , εV ) � A(M) |S′ |B′ ∼ A(M ′) |S′ |B′
and by (Res) we have ( εV , εV ) � (ν kAS , kBS , k ) (A(M) |S′ |B′) ∼
(ν kAS , kBS , k ) (A(M ′) |S′ |B′). This equation, together with (Trans), (1)
and (2), allows us to conclude the desired ( εV , εV ) � P (M) ∼ P (M ′).

(iv) We are now left with proving (3). The following steps prove our claim.



76 Michele Boreale and Daniele Gorla

1. ( σ , σ′ ) � F (M) ∼ F (M ′)
2. ( σ , σ′ ) � let z = deck({M}k) in F (z) ∼

let z = deck({M ′}k) in F (z)
3. ( σ , σ′ ) � p(w).let z = deck(w) in F (z) ∼

p(w).let z = deck(w) in F (z)
4. ( σ , σ′ ) � [v = {k}kBS ]p(w).let z = deck(w) in F (z) ∼

[v = {k}kBS ]p(w).let z = deck(w) in F (z)
5. ( σ , σ′ ) � p(v).[v = {k}kBS ]p(w).let z = deck(w) in F (z) ∼

p(v).[v = {k}kBS ]p(w).let z = deck(w) in F (z)
6. ( σ , σ′ ) � B′ ∼ B′

where: step 1 follows by assumption, step 2 by (Let2), step 3 by (In),2 step
4 by (Guard), step 5 by (In) (with considerations similar to 3) and finally
step 6 by definition of B′.

Before leaving this example, we would like to stress that, in a similar way, we
can prove other properties of the protocol, like integrity (“if B accepts a mes-
sage {N}k then N = d”) and key authentication (“B accepts only the key k
generated by A”). Moreover, following [7], we have also applied the same steps
to a simplified Kerberos protocol, obtaining similar results; the work was only
complicated by the presence of tuples of messages. We have presented WMF for
its readability.

5 A Proof System

In this section we present a sound and complete proof system for ∼ over finite
processes; we leave out from our language the replication operator (‘! ’) which
would lead to an undecidable theory (as shown in [11] for the π-calculus). The
proof system has two levels. The first level is a proof system sound for ordinary
strong bisimilarity (in the same vein as, e.g., the classical ones of the π-calculus
[13]). The second level is tailored to the environment-sensitive semantics. Since
ordinary bisimulation is finer than e.s. bisimulation, equivalences proven within
the first proof system can be imported into the second one.

5.1 The Proof System S1

Definition 3. A strong bisimulation is a symmetric relation between processes
� s.t. whenever P � Q and P

µ−−→ P ′ then there is Q′ s.t. Q
µ−−→ Q′ and

P ′ � Q′. We call bisimilarity (written ·∼) the largest strong bisimulation.

2 It is easy to check that for each ζ and b̃ s.t. Γ ( ζ, b̃, σ, σ′, let . . . , let . . . ),
if ζ̂σ = {N}k and ζ̂σ′ = {N ′}k, then N = M and N ′ = M ′. In other words, the
only readable message of the form {·}k is that contained in x3 and by assumption
( σ , σ′ ) � F (M) ∼ F (M ′). If ζ̂σ is not of the form {·}k, then both processes are
stuck, thus trivially equivalent to 0.



On Compositional Reasoning in the Spi-calculus 77

Table 3. The proof system S1

Axioms :

Monoid axioms for + and 0

Monoid axioms for | and 0

(Abs) P + P
·= P

(Exp)
∑

i∈I αi.Pi |
∑

j∈J βj .Qj
·=
∑

i∈I αi.(Pi |
∑

j∈J βj .Qj) +∑
j∈J βj .(

∑
i∈I αi.Pi |Qj) +∑αi = ai(x)

βj = (ν b̃j ) aiMj
τ.(ν b̃j ) (Pi[Mj/x] |Qj) +∑βj = aj(x)

αi = (ν c̃i ) ajNi
τ.(ν c̃i ) (Pi |Qj [Ni/x])

(Res1) (ν n )P ·= P if n 
∈ f n(P )

(Res2) (ν n )
∑

i∈I αi.Pi
·=

∑i∈I
n�∈n(αi) αi.(ν n )Pi +∑i∈I
αi = (ν b̃ ) aM : n �=a ∧ n∈n(M)((ν n )αi).Pi

(Phi) φP
·=

{
0 if [[ φ ]] = ff
P otherwise

(Let3) let z = ζ in P
·=

{
0 if ζ̂ = ⊥
P [ζ̂/z] otherwise

Congruence laws :

Congruence laws for + , | and ν

(Phi0)
P

·= Q

φP
·= φQ

(Let0)
P [ζ̂/z] ·= Q[ζ̂/z]

let z = ζ in P
·= let z = ζ in Q

ζ̂ 
= ⊥

Table 3 displays the axioms for ·= . Essentially these are the axioms for
bisimilarity in the π-calculus (see for example [13]) with some additional laws
specific to the spi-calculus. Note that (Let0) can be derived from (Let3); we
keep both for the sake of uniformity.

Proposition 1. If P ·= Q then P
·∼ Q.



78 Michele Boreale and Daniele Gorla

In what follows, we use the notion of bound output prefix, that is an output
prefix with some restrictions of the form (ν b̃ ) aM , where a �∈ b̃ and b̃ ⊆ n(M).

Definition 4. A process P is in head normal form (written hnf) if it is of the
form

∑
i∈I αi.Pi where αi is a generic input-, (bound) output- or τ -prefix.

Let us denote by |P | the depth of a process P , inductively defined by

|P | �=


0 if P = 0
1 + |Q | if P = α.Q
max{|Q |, |R |} if P = Q + R
|Q |+ |R | if P = Q |R
|Q | if P = (ν n )Q , P = φQ or P = (let z = ζ in Q) .

Lemma 1. For each process P there is a hnf P ′ s.t. |P ′ | ≤ |P | and P
·= P ′.

The proof is by a standard induction over the number of operators in P . The
inductive case for P = P1 |P2 relies on π-like congruence of

·∼ for ‘ | ’.

5.2 The Proof System S2

The proof system is presented in Table 4. It consists of a selection (and modifi-
cation) of laws presented in Sect. 3, plus the rule (Import). The latter can be
used to import equalities proved within S1 into S2. Also notice the more general
form of the input congruence, akin to those found in [9,5].

Theorem 1 (Soundness). If ( σ1 , σ2 ) � P = Q then ( σ1 , σ2 ) � P ∼ Q.

The main step of the completeness proof is that S2 is complete for finite hnf
(then, using (Import), the proof for general finite processes is immediate). In
order to obtain this first result we need a simple lemma:

Lemma 2. For each a ∈ N let a−1σ1

�
= {η ∈ Z : n(η) ⊆ dom(σ1) ∧ η̂σ1 = a}.

If σ1 ∼ σ2, then there is a unique name b s.t. η̂σ2 = b for each η ∈ a−1σ1
.

Proposition 2 (Completeness for hnf). Let P and Q be finite hnf. If
( σ1 , σ2 ) � P ∼ Q then ( σ1 , σ2 ) � P = Q.

Proof. By induction on |P |+ |Q |. The base case is trivial using (Nil). For the
inductive step, we group the summands by the kind of their prefixes, obtaining
P
�
=
∑
I αi.Pi = Pτ + Pout + Pin and Q

�
=
∑
J βj .Qj = Qτ + Qout + Qin. It is

sufficient to prove that ( σ1 , σ2 ) � Ps = Qs for s ∈ { τ , out , in }.
s = τ . We will prove that each summand of Pτ is provably equal to a sum-

mand of Qτ . Consider σ1 � P
τ

|−−→
−

σ1 � Pi. By hypothesis, there is j ∈ J s.t.
σ2 � Q

τ
|−−→
−

σ2 � Qj and ( σ1 , σ2 ) � Pi ∼ Qj . We cannot apply induction be-

cause Pi and Qj are in general not hnf. However, by Lemma 1 and (Import), we



On Compositional Reasoning in the Spi-calculus 79

Table 4. The proof system S2

Axioms :

(Nil) ( σ1 , σ2 ) � 0 = 0 if σ1 ∼ σ2 (Refl) ( σ1 , σ1 ) � P = P

(Import)
P

·= Q

( σ , σ ) � P = Q
(Sym)

( σ1 , σ2 ) � P = Q

( σ2 , σ1 ) � Q = P

(Weak)
( σ1[M̃1/̃x] , σ2[M̃2/̃x] ) � P = Q

( σ1 , σ2 ) � P = Q
(Trans)

( σ1 , σ2 ) � P = Q ∧
( σ2 , σ3 ) � Q = R

( σ1 , σ3 ) � P = R

Congruence laws :

(Tau)
( σ1 , σ2 ) � P = Q

( σ1 , σ2 ) � τ.P = τ.Q

(Out)
( σ1[M1/x] , σ2[M2/x] ) � P = Q

( σ1[M1/x] , σ2[M2/x] ) � a1M1.P = a2M2.Q

where ai = η̂σi for i = 1, 2 and for some η s.t. n(η) ⊆ dom(σ1)

(Inp)

∀ ζ, b̃ s.t. Γ ( ζ, b̃, σ1, σ2,
∑

i∈I Pi,
∑

j∈J Qj ) :

( σ1 [̃b/̃b] , σ2 [̃b/̃b] ) �
∑

i∈I τ.Pi[ζ̂σ1/x] =
∑

j∈J τ.Qj [ζ̂σ2/x]

( σ1 , σ2 ) �∑
i∈I a1(x).Pi =

∑
j∈J a2(x).Qj

where ai = η̂σi for i = 1, 2 and for some η s.t. n(η) ⊆ dom(σ1)

(Sum)
( σ1 , σ2 ) � P1 = P2 ∧ ( σ1 , σ2 ) � Q1 = Q2

( σ1 , σ2 ) � P1 + Q1 = P2 + Q2

(Res)
( σ1 , σ2 ) � P = Q

( σ1 , σ2 ) � (ν h̃1 )P ∼ (ν h̃2 )Q
h̃i ∩ n(σi) = ∅ for i = 1, 2

can find a hnf P ′ such that ( σ1 , σ1 ) � Pi = P ′ and |P ′ | ≤ |Pi | (and similarly
for Qj and Q′). By Theorem 1 and (Trans), we obtain ( σ1 , σ2 ) � P ′ ∼ Q′.
By induction and (Trans), we obtain ( σ1 , σ2 ) � Pi = Qj and thus, by (Tau),



80 Michele Boreale and Daniele Gorla

( σ1 , σ2 ) � τ.Pi = τ.Qj . Repeating this for each summand of Pτ , then for each
summand of Qτ and finally summing up (using (Abs) if necessary), we have the
desired ( σ1 , σ2 ) � Pτ = Qτ .

s = out. Similar to the previous case.
s = in. Let us partition the summands of Pin andQin according to their input

channels, that is, let us write Pin = Pa1 + . . .+Pam and Qin = Qb1 + . . .+Qbm .
Let us consider now Pa1 and let us pick up any η s.t. η̂σ1 = a1. By Lemma 2 we
know that, indipendently from our choice of η, there is a unique h ∈ {1, . . . ,m}
s.t. η̂σ2 = bh. We want to prove that ( σ1 , σ2 ) � Pa1 = Qbh . We define the sets

I ′
�
= {i ∈ I : αi = a1(x)} and J ′

�
= {j ∈ J : βj = bh(x)} and consider a generic

ζ and c̃ such that Γ ( ζ, c̃, σ1, σ2,
∑
I′ Pi,

∑
J′ Qj ); moreover, let Mi

�
= ζ̂σi,

for i = 1, 2. By bisimilarity hypotesis and Lemma 2, for any i ∈ I ′, there is a
ji ∈ J ′ s.t. ( σ1[c̃/̃c] , σ2[c̃/̃c] ) � Pi[M1/x] ∼ Qji [M2/x]. Similarly to τ -case, we
can prove that ( σ1[c̃/̃c] , σ2[c̃/̃c] ) � τ.Pi[M1/x] = τ.Qji [M2/x]. Repeating this for
each i ∈ I ′ and finally summing up these equalities (using (Abs) if necessary)
we have

( σ1[c̃/̃c] , σ2[c̃/̃c] ) �
∑
i∈I′

τ.Pi[M1/x] =
∑
i∈I′

τ.Qji [M2/x] . (4)

Similarly, for each j ∈ J ′, we can find ij ∈ I ′ s.t.
( σ1[c̃/̃c] , σ2[c̃/̃c] ) �

∑
j∈J′

τ.Pij [M1/x] =
∑
j∈J′

τ.Qj [M2/x] . (5)

Now, notice that the left hand side of (5) is a sub-summatory of the left hand
side of (4), and symmetrically for the right hand sides. Thus, by (Sum) and
(Abs), we obtain ( σ1[c̃/̃c] , σ2[c̃/̃c] ) �

∑
i∈I′ τ.Pi[M1/x] =

∑
j∈J′ τ.Qj [M2/x]. We

can apply (Inp) and obtain ( σ1 , σ2 ) �
∑
i∈I′ a1(x).Pi =

∑
j∈J′ bh(x).Qj , that

is, ( σ1 , σ2 ) � Pa1 = Qbh . Repeating this for each summand of Pin, then for
each summand of Qin and finally summing up (using (Abs) if necessary), we
obtain ( σ1 , σ2 ) � Pin = Qin. ��

Theorem 2 (Completeness). Let P and Q be finite processes. If ( σ1 , σ2 ) �
P ∼ Q then ( σ1 , σ2 ) � P = Q.

6 Conclusions and Related Work

We have presented a set of equational laws for the spi-calculus that is useful to
reason on concrete examples and forms the basis for a complete two-level proof
system.

Our work can be extended in several directions. For example, one might
consider the weak version of e.s. bisimilarity and/or a language extended with
different crypto-primitives (in both cases, we do not foresee serious conceptual
obstacles, though). Another direction is related to finding equational rules for
the replication operator, which could be useful when, e.g., reasoning on pro-
tocols with an unbounded number of participants. A problem left open by our



On Compositional Reasoning in the Spi-calculus 81

presentation is how to reduce to a finitary form the input congruence rule, which
contains an infinitary premise. We think that, at least in the case of finite pro-
cesses, bounds on the size of the ζ’s can be statically determined. Symbolic
techniques, in the same vein as [9,5,4], could be helpful (see also [8]).

The spi-calculus was introduced by Abadi and Gordon in [2]. Early work on
spi-bisimilarity was presented in [3], where framed bisimulation was presented as
a proof technique, though incomplete, for reasoning on contextual equivalences.
In [6], e.s. bisimilarity was introduced and proved to be a (purely coinductive)
characterization of barbed equivalence [12] in spi-calculus. Some of the congru-
ence rules used in this paper were introduced there, but no proof system was
defined.

References

1. M. Abadi, C. Fournet. Mobile Values, New Names and Secure Communication.
POPL’01, Proceedings, 104-115.

2. M. Abadi, A.D. Gordon. A calculus for cryptographic protocols: The spi calculus.
Information and Computation, 148(1):1-70, Academic Press, 1999.

3. M. Abadi, A.D. Gordon. A Bisimulation Method for Cryptographic Protocols.
Nordic Journal of Computing, 5(4):267-303, 1998.

4. M. Boreale. Symbolic trace analysis of cryptographic protocols. ICALP’01, LNCS
2076, pp.667-681, Springer-Verlag, 2001.

5. M. Boreale, R. De Nicola. A Symbolic Semantics for the π-calculus. Information
and Computation, vol.126, pp.34-52, 1996.

6. M. Boreale, R. De Nicola, R. Pugliese. Proof Techniques for Cryptographic Pro-
cesses. LICS’99, Proceedings, IEEE Computer Society Press, pp.157-166, 1999.
Full version to appear in SIAM Journal on Computing.

7. M. Boreale, R. De Nicola, R. Pugliese. Process Algebraic Analysis of Cryptographic
Protocols. Proc. of 13th FORTE / 20th PSV, Kluiver, 2000.

8. A.S. Elkjaer, M. Höhle, H. Hüttel, K.O. Nielsen. Towards Automatic Bisimilarity
Checking in the Spi Calculus, Proc. of DMTCS’99+CATS’99, 1999.

9. M. Hennessy, H. Lin. Symbolic Bisimulations. Theoretical Computers Science,
138, pp. 353-389, 1995.

10. R. Milner. Communication and Concurrency. Prentice Hall International, 1989.
11. R. Milner. The poliadic π-calculus: a tutorial. Logic and Algebra of Specification,

ed. F.L.Bauer, W.Bauer and H.Schwichtenberg Springer-Verlag, 1993.
12. R. Milner, D. Sangiorgi. Barbed Bisimulation. ICALP’92, Proceedings (W. Kuich,

Ed.), LNCS 623, pp.685-695, Springer-Verlag, 1992.
13. J. Parrow, D. Sangiorgi. Algebraic theories for name-passing calculi. Information

and Computation, 120, pp.174-197, 1995.


	On Compositional Reasoning in the Spi-calculus
	1 Introduction
	2 The Calculus and Its Semantics 
	2.1 Environment-Sensitive Strong Bisimulation

	3 Laws for Compositional Reasoning 
	4 A Compositional Secrecy Proof for WMF 
	5 A Proof System
	5.1 The Proof System S1
	5.2 The Proof System S2

	6 Conclusions and Related Work
	References


