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Abstract. The paper builds on recent results regarding the expressive-
ness of modal logics for coalgebras in order to introduce a specification
framework for coalgebraic structures which offers support for modular
specification. An equational specification framework for algebraic struc-
tures is obtained in a similar way. The two frameworks are then inte-
grated in order to account for structures comprising both a coalgebraic
(observational) component and an algebraic (computational) component.
The integration results in logics whose sentences are either coalgebraic
(modal) or algebraic (equational) in nature, but whose associated notions
of satisfaction take into account both the coalgebraic and the algebraic
features of the structures being specified. Each of the logics thus obtained
also supports modular specification.

1 Introduction

In studying structures that involve construction (e.g. data types), one typically
uses algebras and their underlying equational logic for specification and reason-
ing. Such use is supported by the existence of characterisability results for classes
of algebras, both in the concrete setting of many-sorted algebras [3] and in a
more abstract, categorical setting [2,1], whereby equationally-specifiable classes
of algebras coincide with varieties (that is, classes of algebras closed under sub-
algebras, homomorphic images and products1). In recent years, coalgebras (the
categorical duals of algebras) have been used to study structures that involve
observation (e.g. systems with state) [14,16], and various modal logics have been
used to specify and reason about such structures [13,15,10,7]. Moreover, the re-
sults in [2] have been dualised in [9], where it was shown that modally-definable
classes of coalgebras coincide with covarieties (the duals of varieties).

A framework which integrates algebraic and coalgebraic specification meth-
ods in order to specify structures comprising both computational and observa-
tional features was described in [5]. The approach taken there was to clearly
� Research supported by St. John’s College, Oxford.
1 In an abstract setting, the notions of subalgebra and homomorphic image are defined
relatively to a factorisation system for the category of algebras in question.
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separate the two categories of features, and to use algebra and respectively coal-
gebra for specifying them. Such an approach yielded an algebraically-defined
notion of reachability under computations, as well as a coalgebraically-defined
notion of indistinguishability by observations. Equational, either algebraic or
coalgebraic sentences were then used to formalise correctness properties of com-
bined structures, with both algebraic and coalgebraic features playing a rôle in
defining the associated notions of satisfaction. Both notions of satisfaction were
shown to give rise to institutions [6].

The equational sentences used in [5], although similar in their expressive-
ness to the equational formulae of [2] and the modal formulae of [9], have a
strong semantic flavour, being indexed by classes of algebras and respectively
coalgebras. This makes such sentences difficult to use for actual specification. In
addition, the coalgebraic framework described in [5] only considers (coalgebras
of) ωop-continuous, pullback-preserving endofunctors, and thus does not account
for endofunctors defined in terms of powersets. Similar ω-cocontinuity restric-
tions are imposed to the endofunctors used in [5] to specify algebraic structures.
A first goal of this paper is to define individual frameworks for the specification
of coalgebraic and respectively algebraic structures, which, on the one hand, have
a more concrete notion of syntax associated to them, and, on the other hand,
are more general than the ones in [5] w.r.t. the endofunctors considered. Then,
a second goal of the paper is to integrate the resulting frameworks in order to
account for structures having both a coalgebraic and an algebraic component.

In the first part of the paper, coalgebraic and respectively algebraic struc-
tures are considered independently of each other. In each case, an institution
is shown to arise from suitable choices for the notions of signature, signature
morphism, sentence and satisfaction (with the choices for the notion of sentence
being driven by the results in [9] and respectively [2]). In the second part of the
paper, structures comprising both observational and computational features are
considered. As in [5], the choice of models incorporating both coalgebraic and al-
gebraic structure, and of the syntax used to specify these models is based on the
approach in [17], and results in a compatibility between the two categories of fea-
tures, in that computations preserve observational indistinguishability whereas
observations preserve reachability. The sentences used for specification are the
ones employed by the individual frameworks, while the associated notions of
satisfaction exploit the previously-mentioned compatibility in order to abstract
away unwanted detail (in the form of unreachable and respectively observation-
ally indistinguishable behaviours). This results in the availability of inductive
and respectively coinductive techniques for correctness proofs. Suitably restrict-
ing the notions of signature morphism associated to the individual frameworks
yields institutions w.r.t. each of the two notions of satisfaction.

2 Coalgebras and Modal Logic

This section builds on the approach in [9] in order to obtain notions of cosig-
nature, modal formula and satisfaction of a modal formula by a coalgebra, and
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subsequently derives a specification logic for coalgebras based on these notions.
The multi-modal logic described in [7] is used to exemplify the approach.

Definition 1. A cosignature is a pair (C,G), with C a category and G an
endofunctor on C, subject to the following constraints:

1. C is complete, cocomplete, regular2, wellpowered and has enough injectives;
2. G preserves weak pullbacks3;
3. the functor UG : Coalg(G)→ C which takes G-coalgebras to their carrier has

a right adjoint RG.

G-coalgebras are taken as models for a cosignature (C,G). A consequence
of Def. 1 and of [8, Prop. 2.1] is that the functor UG is comonadic, and hence
Coalg(G) � Coalg(D) for some comonad (D, ε, δ). Specifically, D : C→ C is given
by UG ◦ RG, ε : D ⇒ Id is given by the counit of the adjunction UG � RG, while
δ : D ⇒ D ◦ D is given by UGηRG , with η : Id ⇒ RG ◦ UG denoting the unit of
UG � RG.

Remark 1. The following hold for a cosignature (C,G):

1. UG preserves and reflects monomorphisms. This is a consequence of Def. 1 (2).
2. The components of η are monomorphisms. This follows from UGηγ being a

split monomorphism (as εC ◦ UGηγ = 1C) for any G-coalgebra 〈C, γ〉.
3. Coalg(G) has a final object, given by RG1. The final G-coalgebra incorporates

all abstract G-behaviours. The homomorphisms into it abstract away the
non-observable information contained in arbitrary coalgebras.

4. Largest bisimulations on G-coalgebras are constructed as kernel pairs of the
C-arrows underlying the unique homomorphisms into the final G-coalgebra.
Again, this is consequence of Def. 1 (2).

Definition 2. Given a cosignature (C,G), a G-coalgebra is observable4 if and
only if its unique homomorphism into the final G-coalgebra is a monomorphism.

Example 1. Finitely-branching transition systems are specified using the cosig-
nature (Set,GTS), where GTS = Pf (Id) (with the functor Pf : Set → Set taking
a set to the set of its finite subsets). Finitely-branching, A-labelled transition
systems are specified using the cosignature (Set,GLTS), where GLTS = Pf (A× Id).

The following is a direct consequence of [8, Lemma3.9].

Proposition 1. For a cosignature (C,G), the category Coalg(G) is regular, and
the functor UG preserves regular-epi-mono factorisations.
2 Hence, C has regular-epi-mono factorisations. The existence of strong-epi-mono fac-
torisations (which is a consequence of the completeness and wellpoweredness of C) is
actually sufficient for the approach in this section. Regularity is only required here
for consistency with the next two sections.

3 Weak pullbacks are defined similarly to standard pullbacks, except that the mediat-
ing arrow is not required to be unique.

4 Observable coalgebras are called simple in [16].
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The existence of a factorisation system for Coalg(G) yields notions of G-
subcoalgebra (given by a monomorphism in Coalg(G)), G-homomorphic image
(given by a regular epimorphism in Coalg(G)), and G-covariety (given by a class
of G-coalgebras which is closed under subcoalgebras, homomorphic images and
coproducts5). A characterisability result for covarieties in terms of modal formu-
lae is given in [9]. There, covarieties are defined in terms of factorisation systems
(E ,M) for categories of coalgebras, while modal formulae are defined as subcoal-
gebras withM-injective codomains. However, as noted in [9, Thm. 2.5.4], in order
to characterise covarieties it suffices to consider modal formulae given by sub-
coalgebras whose codomains belong to a subclass ofM-injective objects, namely
a subclass which provides enoughM-injectives for the category of coalgebras in
question. The notion of covariety considered here is obtained by instantiating
the one in [9] with the factorisation system (RegEpi(Coalg(G)),Mono(Coalg(G))).
The following observations can be made relatively to this factorisation system:

1. If a C-object Z is injective (and hence UG(Mono(Coalg(G)))-injective), then
the G-coalgebra RGZ is injective (by [9, Prop. 2.2.10]).

2. If C has enough injectives, then Coalg(G) has enough injectives. Moreover,
the cofree G-coalgebras over injective C-objects still provide enough injectives
for Coalg(G). For, if 〈C, γ〉 is a G-coalgebra and f : C → Z is a Mono(C)-
arrow with an injective codomain, then f � = RGf ◦ ηγ : 〈C, γ〉 → RGZ
is a Mono(Coalg(G))-arrow with an injective codomain. (Rem. 1 (2) and the
preservation of monomorphisms by RG are used here.)

These observations together with the previous remarks justify the following.

Definition 3. A modal formula over a cosignature (C,G) is a G-subcoalgebra
ι : 〈D, δ〉 → RGZ with Z an injective C-object. A G-coalgebra 〈C, γ〉 satisfies a
modal formula of this form (written 〈C, γ〉 |= ι) if and only if, for any C-arrow
f : C → Z, the G-coalgebra homomorphism f � : 〈C, γ〉 → RGZ factors through ι.

C
f

��

〈C, γ〉
��� � �

f�
��

Z 〈D, δ〉
ι

�� RGZ

Modal formulae ι : 〈D, δ〉 → RGZ with Z final in C (and hence RGZ final in
Coalg(G)) specify properties up to observational equivalence. Existing specifica-
tion frameworks for coalgebras [13,15,10,7] only employ such modal formulae.

The satisfaction of modal formulae by coalgebras is preserved along homo-
morphic images and reflected along subcoalgebras. These are consequences of [9,
Coroll. 2.4.6] and respectively [9, Prop. 2.4.8], but also follow directly from Def. 3
together with Prop. 1. Also, a consequence of [9, Coroll. 2.5.5] and of the dual of
[1, Coroll. 20.29] is that, for a cosignature (C,G), modally definable6 classes of
G-coalgebras coincide with covarieties.
5 Note that the cocompleteness of C results in the cocompleteness of Coalg(G), with
colimits in Coalg(G) being created by UG.

6 In the sense of Def. 3.
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We now show that monomorphisms into the carriers of coalgebras induce
largest subcoalgebras factoring through such monomorphisms.

Proposition 2. Let (C,G) denote a cosignature, let 〈C, γ〉 denote a G-coalgebra,
and let ι : X → C denote a C-monomorphism. Then, the full subcategory of
Coalg(G)/〈C, γ〉 whose objects 〈〈D, δ〉, d〉 are such that UGd factors through ι has
a final object 〈〈E, η〉,m〉. Moreover, m defines a G-subcoalgebra of 〈C, γ〉.
Proof (sketch). Since C is wellpowered, there is only a set D of G-coalgebra homo-
morphisms d : 〈D, δ〉 → 〈C, γ〉 whose image under UG is a monomorphism which
factors through ι. If c :

∐
d∈D

dom(d) → 〈C, γ〉 is the G-coalgebra homomorphism

arising from the universality of
∐
d∈D

dom(d), and if c = m ◦ e is a regular-epi-

mono factorisation for c, then one can show that m defines a final object in the
full subcategory of Coalg(G)/〈C, γ〉 whose objects 〈〈D, δ〉, d〉 are such that UGd
factors through ι. (The preservation of coproducts and of regular-epi-mono fac-
torisations by UG and the unique (RegEpi(C),Mono(C))-diagonalisation property
of C are used.)

Similarly, modal formulae induce largest subcoalgebras of given coalgebras.

Proposition 3. Let (C,G) denote a cosignature, let 〈C, γ〉 denote a G-coalgebra,
and let F denote a set of modal formulae over (C,G). Then, the full subcategory
of Coalg(G)/〈C, γ〉 whose objects satisfy the modal formulae in F has a final
object, which at the same time defines a G-subcoalgebra of 〈C, γ〉.
Proof. Similar to the proof of Prop. 2. The set D of G-coalgebra homomorphisms
d : 〈D, δ〉 → 〈C, γ〉 which are such that UGd is a C-monomorphism and such that
f � : 〈D, δ〉 → RGZ factors through ι for any ι ∈ F with codomain RGZ and any
f : D → Z is considered this time.

[7] (see also [15]) develops a modal logic for coalgebras of (finite) Kripke
polynomial endofunctors, that is, endofunctors G on Set constructed from con-
stant and identity endofunctors using products, coproducts, exponentials with
constant exponent and (finite) powersets. Here we use finite Kripke polynomial
endofunctors (which satisfy the conditions in Def. 1, and therefore give rise to
cosignatures) to exemplify our approach. The modal formulae associated to such
endofunctors, built from basic formulae of form a with a ∈ A (where the set A
appears covariantly in the definition of G) using propositional connectives and
modal operators (whose form depends on G), induce predicates on the carriers
of final G-coalgebras, and therefore, by Prop. 2, are an instance of the notion
of modal formula given by Def. 3. Moreover, the fact that bisimulation coin-
cides with logical equivalence (see [7, Coroll. 5.9], or [15, Prop. 4.8]) results in
the notion of satisfaction used in [7] agreeing with the one given by Def. 3.

Example 2. Consider the cosignature (Set,GFTS), with GFTS = Pf (Id)×N. Under
the approach in [7], the modal language associated to GFTS is given by:

ϕ ::= ⊥ | ϕ→ ψ | [succ]ϕ | [depth]ϕN ϕN ::= ⊥ | ϕN → ψN | n, n ∈ N
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while its associated notion of satisfaction is given by:

C, n′ |= n ⇔ n′ = n

C, c |= [succ]ϕ ⇔ (∀ s) (s ∈ succ(c)⇒ C, s |= ϕ)
C, c |= [depth]ϕN ⇔ (∀n) (depth(c) = n⇒ C, n |= ϕN)

for any GFTS-coalgebra C = 〈C, 〈succ : C → Pf (C), depth : C → N〉〉, n, n′ ∈ N

and c ∈ C. One can also define modal operators 〈succ〉 and 〈depth〉, namely by
〈succ〉ϕ ::= ¬[succ]¬ϕ and 〈depth〉ϕN ::= ¬[depth]¬ϕN. Thus:

C, c |= 〈succ〉ϕ ⇔ (∃ s) (s ∈ succ(c) and C, s |= ϕ)
C, c |= 〈depth〉ϕN ⇔ (∃n) (depth(c) = n and C, n |= ϕN)

(Note therefore that 〈depth〉ϕN and [depth]ϕN are semantically equivalent for any
ϕ.) Finitely branching transition systems of finite depth can now be specified
using the following modal formulae:

[depth]0↔ [succ]⊥
[depth](n+1)↔ 〈succ〉[depth]n ∧ [succ][depth](0 ∨ . . . ∨ n), n ∈ N

formalising the statement that a rooted transition system has depth 0 precisely
when its root has no successors, and has depth n+1 precisely when its root has
a successor of depth n, and the depth of any of its successors does not exceed n.
Alternatively, natural numbers can be regarded as colours used to decorate the
states of an unlabelled transition system. The decorations of interest are those
where the colour decreases by 1 in successor states, and where (only) states with
no successor have colour 0. Such an approach, equivalent to the previous one,
corresponds to specifying a subcoalgebra of the cofree Pf (Id)-coalgebra over N.

We now introduce a notion of cosignature morphism, capturing translations
between different types of observational structures.

Definition 4. A cosignature morphism between cosignatures (C,G) and
(C′,G′) consists of a pair (U, τ) with U : C′ → C a functor with right adjoint
R, and with τ : U ◦ G′ ⇒ G ◦ U a natural transformation.

Cosignature morphisms (U, τ) : (C,G)→ (C′,G′) induce reduct functors Uτ :
Coalg(G′)→ Coalg(G), with Uτ taking 〈C ′, γ′〉 ∈ |Coalg(G′)| to 〈UC ′, τC′ ◦Uγ′〉 ∈
|Coalg(G)|. Moreover, the existence of cofree coalgebras w.r.t. the functors UG and
UG′ , together with the existence of largest subcoalgebras induced by monomor-
phisms into the carriers of coalgebras (see Prop. 2) can be used to show that the
reduct functors induced by cosignature morphisms have right adjoints.

Proposition 4. Let (U, τ) : (C,G) → (C′,G′) denote a cosignature morphism.
Then, the reduct functor Uτ : Coalg(G′)→ Coalg(G) has a right adjoint.

Proof (sketch). A cofree G′-coalgebra over a G-coalgebra 〈C, γ〉 w.r.t. Uτ is ob-
tained as the largest G′-subcoalgebra of the cofree G′-coalgebra over RC w.r.t. UG′

whose image under Uτ has a homomorphism into 〈C, γ〉.
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The right adjoint to Uτ is denoted Rτ . The uniqueness up to isomorphism of
right adjoints yields a natural isomorphism i : Rτ ◦ RG ⇒ RG′ ◦ R.

The existence of right adjoints to the reduct functors induced by cosignature
morphisms yields translations of modal formulae over the sources of cosignature
morphisms to modal formulae over their targets. Specifically, a modal formula
ι : 〈D, δ〉 → RGZ translates along a cosignature morphism (U, τ) : (C,G) →
(C′,G′) to the modal formula τ(ι) = iZ ◦ Rτ ι : Rτ 〈D, δ〉 → RG′RZ. (The fact
that RZ is injective whenever Z is injective follows from the preservation of
monomorphisms by UG. Also, the fact that UG′Rτ ι, and hence iZ◦UG′Rτ ι, belongs
to Mono(C′) follows from UGι being a monomorphism together with the reflection
of monomorphisms by UG and their preservation by each of Rτ and UG′ .)

The translation of modal formulae along cosignature morphisms is such that
the satisfaction condition of institutions (formalising the statement that truth is
invariant under changes of notation [6]) holds for the resulting logic.

Theorem 1. Let (U, τ) : (C,G) → (C′,G′) denote a cosignature morphism, let
〈C ′, γ′〉 denote a G′-coalgebra, and let ι : 〈D, δ〉 → RGZ denote a modal formula
over (C,G). Then, Uτ 〈C ′, γ′〉 |= ι iff 〈C ′, γ′〉 |= τ(ι).

Proof (sketch).

Uτ 〈C ′, γ′〉 |= ι ⇔ (defn. of |=)
for all f : UC ′ → Z, f � factors through ι ⇔ (U � R, Uτ � Rτ , i-iso)

for all f ′ : C ′ → RZ, f ′� factors through iZ ◦ Rτ ι ⇔ (defn. of |=)
〈C ′, γ′〉 |= τ(ι)

UC ′

f
��

Uτ 〈C ′, γ′〉
g

��� � �
f�

��

〈C ′, γ′〉
g′

��� � � � � � �
f ′�

��

C ′

f ′
��

Z 〈D, δ〉
ι

�� RGZ Rτ 〈D, δ〉
Rτ ι

�� RτRGZ iZ
�� RG′RZ RZ

The second equivalence exploits the existence of isomorphisms C(UC ′, Z) �
C′(C ′,RZ) and Coalg(G)(Uτ 〈C ′, γ′〉, 〈D, δ〉) � Coalg(G′)(〈C ′, γ′〉,Rτ 〈D, δ〉), and
the relationship between the counits of the adjunctions U � R, Uτ � Rτ , UG � RG

and UG′ � RG′ , determined by the existence of the natural isomorphism i.

Example 3. Consider the cosignature (Set,GLFTS), with GLFTS = Pf (A× Id)×N.
Then, (Id, τ) with τ = Pf (π2) × 1N : Pf (A × Id) × N ⇒ Pf (Id) × N defines a
cosignature morphism from (Set,GFTS) to (Set,GLFTS). The induced reduct func-
tor takes a GLFTS-coalgebra 〈C, 〈next, depth〉〉 to the GFTS-coalgebra 〈C, 〈Pf (π2) ◦
next, depth〉〉. The modal language associated to GLFTS is given by:

ϕ ::= ⊥ | ϕ→ ψ | [label]ϕA | [succ]ϕ | [depth]ϕN ϕA ::= ⊥ | ϕA → ψA | a, a ∈ A

while its associated notion of satisfaction is given by:

C, c |= [label]ϕA ⇔ (∀ a) (a ∈ Pf (π1)(next(c))⇒ C, a |= ϕA)
C, c |= [succ]ϕ ⇔ (∀ s) (s ∈ Pf (π2)(next(c))⇒ C, s |= ϕ)

C, c |= [depth]ϕN ⇔ (∀n) (depth(c) = n⇒ C, n |= ϕN)



On Specification Logics for Algebra-Coalgebra Structures 89

for any GLFTS-coalgebra C = 〈C, 〈next : C → Pf (A × C), depth : C → N〉〉
and c ∈ C. The translation along (Id, τ) of modal formulae over GFTS to modal
formulae over GLFTS leaves GFTS-formulae (including the ones in Ex. 2) unchanged.

Remark 2. Cosignature morphisms (U, τ) : (C,G) → (C′,G′) induce comonad
morphisms7 (U, ρ) : (D, ε, δ) ⇒ (D′, ε′, δ′). Specifically, if δ : D ⇒ G ◦ D and
δ′ : D′ ⇒ G′ ◦ D′ denote the G- and respectively G′-coalgebra structures on
D and respectively D′, then the natural transformation ρ : U ◦ D′ ⇒ D ◦ U
arises from the cofreeness of 〈D ◦ U, δU〉 w.r.t. UG: for C ′ ∈ |C′|, ρC′ is the
C-arrow underlying the G-coalgebra homomorphism (Uε′C′)

� : 〈UD′C ′, τD′C′ ◦
Uδ′C′〉 → 〈DUC ′, δUC′〉 (where Uε′C′ : UD′C ′ → UC ′). The induced comonad
morphism provides some information about the relationship between the notions
of observability associated to G and G′. For, if 1′ denotes a final C′-object, then
the C-arrow ρ1′ : UD′1′ → DU1′ defines the unique homomorphism from the
Uτ -reduct of the final G′-coalgebra to the final G-coalgebra. Hence, the fact that
ρ1′ belongs to Mono(C) reflects the fact that the target cosignature does not
refine the notion of observability induced by the source cosignature.

Definition 5. A cosignature morphism (U, τ) is horizontal if and only if ρ1′ ∈
Mono(C), with (U, ρ) denoting the induced comonad morphism.

3 Algebras and Equational Logic

A framework for the specification of algebraic structures can be obtained using
an approach similar to that of the previous section.
Definition 6. A signature is a pair (C,F), with C a category and F an endo-
functor on C, subject to the following constraints:

1. C is complete, cocomplete, regular, RegEpi(C)-cowellpowered and has enough
RegEpi(C)-projectives;

2. all regular epimorphisms in C are split;
3. the functor taking F-algebras to their carrier has a left adjoint.

It then follows by [1, Thm. 20.17]8 and respectively by [4, Thm. 4.3.5] that,
for a signature (C,F), the functor taking F-algebras to their carrier is monadic
and preserves regular epimorphisms9. Hence, by [1, Thm. 20.32], this functor
is RegEpi(C)-monadic. Thus, Alg(F) � Alg(T), with the monad (T, η, µ) being
defined similarly to the comonad (D, ε, δ) induced by a cosignature.

T-algebras are taken as models for a signature (C,F)10. The functor taking
T-algebras to their carrier is denoted UT, while its left adjoint (whose existence
is guaranteed by Def. 6 (3)) is denoted LT.
7 The notion of (co)monad morphism considered here generalises the standard one,
as defined e.g. in [1, Def. 20.55], being given by a pair (U, ρ) with U : C′ → C and
ρ : U ◦ D′ ⇒ D ◦ U, rather than by a natural transformation ρ : D′ ⇒ D.

8 See also [9, Thm. 1.1.8] for a proof in the dual case.
9 Note that [4, Thm. 4.3.5] requires Def. 6 (2) to hold, and the category C to be regular.

10 The choice of working with algebras of the induced monads rather than with algebras
of endofunctors is driven by the approach in Section 4.
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Remark 3. The following hold for a signature (C,F):

1. Alg(T) is cocomplete. This follows by [4, Thm. 4.3.5]. In particular, Alg(T)
has an initial object, which incorporates all ground F-computations. The
homomorphisms from it interpret ground computations in arbitrary algebras.

2. UT preserves and reflects regular epimorphisms. Again, this follows by [4,
Thm. 4.3.5].

3. The components of the counit ε of the adjunction LT � UT are regular
epimorphisms (as the components of UTε are split, and hence regular epi-
morphisms).

Definition 7. Given a signature (C,F), a T-algebra is reachable if and only if
the unique homomorphism from the initial T-algebra into it is a regular epimor-
phism.

Example 4. Non-deterministic, sequential processes over an alphabet A are spec-
ified using the signature (Set,FNSP), with FNSP = 1 + A×X +X ×X +X ×X.
An FNSP-algebra is given by a Set-arrow α : FNSPC → C, or equivalently, by
four Set-arrows nil : 1 → C, . : A × C → C, + : C × C → C and
; : C × C → C (corresponding to the empty process, the prefixing operator,

the non-deterministic choice operator and respectively sequential composition).

Proposition 5. For a signature (C,F), the category Alg(T) is regular, and the
functor UT preserves regular-epi-mono factorisations.

The existence of a factorisation system for Alg(T) yields notions of T-sub-
algebra, T-homomorphic image and T-variety .

Definition 8. An equation over a signature (C,F) is a T-homomorphic image
q : LTX → 〈B, β〉 with X a RegEpi(C)-projective C-object. A T-algebra 〈A,α〉
satisfies an equation of this form (written 〈A,α〉 |= q) if and only if, for any
C-arrow f : X → A, the T-algebra homomorphism f# : LTX → 〈A,α〉 factors
through q.

X
f

��

LTX

f#
��

q
�� 〈B, β〉

��� � �

A 〈A,α〉
Equations as defined above are an instance of the notion of equation defined

in [2]. Moreover, equations over a signature are sufficient to characterise varieties.
These are consequences of the following observations:

1. If a C-object X is RegEpi(C)-projective (and hence UT(RegEpi(Alg(T)))-
projective), then the T-algebra LTX is RegEpi(Alg(T))-projective.

2. If C has enough RegEpi(C)-projectives, then Alg(T) has enough
RegEpi(Alg(T))-projectives. Moreover, the free T-algebras over RegEpi(C)-
projective C-objects still provide enough RegEpi(Alg(T))-projectives for
Alg(T).
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Remark 4. Given a signature (C,F), equations q : LTX → 〈B, β〉 over (C,F) can
be specified using pairs of C-arrows l, r : K → UTLTX, with X a RegEpi(C)-
projective C-object. For, such pairs induce pairs of T-algebra homomorphisms
l#, r# : LTK → LTX, whose coequaliser defines an equation over (C,F). (The
preservation of regular epimorphisms by UT is used to show this.)

Alg(T)
UT

��

LTK
l# ��

r#
�� LTX q

�� ��

f#

��〈B, β〉 ���� 〈A,α〉

C
LT

��

K
l ��

r
�� UTLTX

UTf
#

�� A

Moreover, a T-algebra 〈A,α〉 satisfies the induced equation if and only if UTf
# ◦

l = UTf
# ◦ r for any f : X → A. This follows from the definition of q using

standard properties of adjunctions.

Equations q : LTX → 〈B, β〉 with X initial in C specify properties up to
reachability under (ground) computations. Results dual to Props. 2 and 3 hold
for algebras of signatures (with the proofs also dualising).

Example 5. The commutativity of the non-deterministic choice operator on pro-
cesses is formalised by the equation: (∀X)(∀Y ) X + Y = Y +X.

Definition 9. A signature morphism between signatures (C,F) and (C′,F′)
consists of a pair (U, ξ) with U : C′ → C a functor with left adjoint L, and with
ξ : F ◦ U ⇒ U ◦ F′ a natural transformation. (U, ξ) is horizontal if and only if
ν0′ ∈ RegEpi(C), with (U, ν) the induced monad morphism11 and 0′ initial in C′.

Signature morphisms (U, ξ) : (C,F) → (C′,F′) induce reduct functors Uν :
Alg(T′) → Alg(T), with Uν taking 〈C ′, α′〉 ∈ |Alg(T′)| to 〈UC ′,Uα′ ◦ νC′〉 ∈
|Alg(T)|. Horizontal signature morphisms capture situations where the target
signature does not enrich the notion of reachability induced by the source sig-
nature. For, the C-arrow ν0′ : TU0′ ⇒ UT′0′ defines the unique homomorphism
from the initial T-algebra to the Uν-reduct of the initial T′-algebra.

Proposition 6. Let (U, ξ) : (C,F) → (C′,F′) denote a signature morphism.
Then, the reduct functor Uν : Alg(T′)→ Alg(T) has a left adjoint.

Proof. The conclusion follows from L � U, LT � UT, LT′ � UT′ and UT ◦ Uν =
U ◦UT′ using the Adjoint Lifting Theorem (see e.g. [4, Thm. 4.5.6]), after noting
that Alg(T′) has coequalisers (by Rem. 3 (1)).

The left adjoint to Uν is denoted Lν . And, as in the coalgebraic case, there
exists a natural isomorphism j : LT′ ◦ L⇒ Lν ◦ LT.

Signature morphisms also induce translations of equations over their source
to equations over their target: an equation q : LTX → 〈B, β〉 translates along a
signature morphism (U, ξ) : (C,F)→ (C′,F′) to the equation ν(q) = Lνq ◦ jX .
11 The natural transformation ν : T ◦ U ⇒ U ◦ T′ is obtained similarly to the natural

transformation ρ : U ◦ D′ ⇒ D ◦ U in Rem. 2.
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Remark 5. A signature morphism (U, ξ) : (C,F) → (C′,F′) also induces a map-
ping from pairs of C-arrows defining equations over (C,F) (see Rem. 4) to pairs
of C′-arrows defining equations over (C′,F′). The mapping takes a pair l, r : K →
UTLTX to the pair (UUT′j

−1
X ◦UTην,LTX ◦ l)#, (UUT′j

−1
X ◦UTην,LTX ◦ r)# : LK →

UT′LT′LX, where ην : Id⇒ Uν ◦ Lν denotes the unit of the adjunction Lν � Uν .

C′

U
��

LK
(UUT′ j

−1
X ◦UTην,LTX◦l)# ��

(UUT′ j
−1
X ◦UTην,LTX◦r)#

�� UT′LT′LX

C

L

��

K
l ��

r
�� UTLTX

UTην,LTX �� UTUνLνLTX
UUT′ j

−1
X �� UUT′LT′LX

Moreover, the mapping thus defined agrees with the translation of equations
over (C,F) to equations over (C′,F′). That is, the translation along (U, ξ) of
the equation induced by l, r coincides (up to isomorphism in Alg(T′)) with the
equation induced by (UUT′j

−1
X ◦UTην,LTX ◦ l)#, (UUT′j

−1
X ◦UTην,LTX ◦ r)#. This

follows using standard properties of adjunctions.

Theorem 2. Let (U, ξ) : (C,F) → (C′,F′) denote a signature morphism, let
〈A′, α′〉 denote a T′-algebra, and let q : LTX → 〈B, β〉 denote an equation over
(C,F). Then, Uν〈A′, α′〉 |= q iff 〈A′, α′〉 |= ν(q).

4 Combined Structures and Their Logic

The frameworks described in Sections 2 and 3 are now integrated in order to
account for structures incorporating both algebraic and coalgebraic features.
Modal as well as equational formulae are used to formalise correctness properties
of such structures, with the associated notions of satisfaction abstracting away
unreachable and respectively observationally indistinguishable behaviours. Such
an abstraction is possible due to a compatibility between computational and
observational features in the structures considered. This compatibility, which
amounts to computations preserving observational indistinguishability and to
observations preserving reachability, is attained using an approach similar to
that of [17], where liftings of monads to categories of coalgebras are used to
define operational semantics which are well-behaved w.r.t. denotational ones.

Definition 10. A combined signature is a tuple (C,G,F, σ), with (C,G) a
cosignature, (C,F) a signature inducing a monad (T, η, µ), and σ : T ◦ UG ⇒
G ◦T ◦UG a natural transformation, such that the following diagram commutes:

UG
ηUG ��

λ ��

T ◦ UG

σ ��

T ◦ T ◦ UG
µUG��

σTσ��
G ◦ UG

GηUG �� G ◦ T ◦ UG G ◦ T ◦ T ◦ UG
GµUG��

where the natural transformation λ : UG ⇒ G ◦ UG is given by λγ = γ for
〈C, γ〉 ∈ |Coalg(G)|, while the functor Tσ : Coalg(G) → Coalg(G) is given by
Tσ〈C, γ〉 = 〈TC, σγ〉 for 〈C, γ〉 ∈ |Coalg(G)| (and consequently UG◦Tσ = T◦UG).
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A combined signature morphism from (C,G,F, σ) to (C′,G′,F′, σ′) is a
tuple (U, τ, ξ), with (U, τ) : (C,G)→ (C′,G′) a cosignature morphism and (U, ξ) :
(C,F) → (C′,F′) a signature morphism inducing a monad morphism (U, ν) :
(T, η, µ)→ (T′, η′, µ′), such that the following diagram commutes:

T ◦ U ◦ UG′ = T ◦ UG ◦ Uτ
νUG′ ��

σUτ �� G ◦ T ◦ UG ◦ Uτ = G ◦ T ◦ U ◦ UG′

GνUG′��
U ◦ T′ ◦ UG′

Uσ′ �� U ◦ G′ ◦ T′ ◦ UG′
τT′◦UG′ �� G ◦ U ◦ T′ ◦ UG′

The natural transformation σ used in the definition of combined signatures
specifies the relationship between the algebraic and coalgebraic substructures
of combined structures. Its components define G-coalgebra structures on (the
carriers of) the free T-algebras over (the carriers of) G-coalgebras12. The ad-
ditional constraints on σ ensure that, for any G-coalgebra 〈C, γ〉, the C-arrows
ηC : C → TC and µC : TTC → C define G-coalgebra homomorphisms. This
results in the tuple (Tσ, η, µ) defining a monad on Coalg(G). The algebras of this
monad are taken as models for a combined signature (C,G,F, σ). A Tσ-algebra
is thus given by a C-object C carrying both a G-coalgebra structure 〈C, γ〉 and
a T-algebra structure 〈C,α〉, such that α defines a G-coalgebra homomorphism
from 〈TC, σγ〉 to 〈C, γ〉. Then, the constraints defining a combined signature
morphism (U, τ, ξ) ensure that, for a G′-coalgebra 〈C ′, γ′〉, the G′-coalgebra struc-
ture induced by σ′ on T′C ′ agrees with the G-coalgebra structure induced by
σ on TUC ′. This results in combined signature morphisms (U, τ, ξ) inducing
reduct functors U(τ,ν) : Alg(T′σ′) → Alg(Tσ), with U(τ,ν) taking a T′σ′ -algebra
〈〈C ′, γ′〉, α′〉 to the Tσ-algebra 〈〈UC ′, τC′ ◦ Uγ′〉,Uα′ ◦ νC′〉.
Remark 6. In [12,11], combined structures are captured using pairs consisting
of an algebra and a coalgebra structure on the same carrier, with the addi-
tional requirement that bisimulation on the coalgebraic structure is a congruence
w.r.t. the algebraic structure. Here, the presence of natural transformations σ
in the definition of combined signatures ensures this, as well as the fact that
reachable subalgebras carry coalgebraic structure. Another consequence of the
use of such natural transformations is the existence of reduct functors induced
by combined signature morphisms. An alternative approach to specifying com-
bined structures would be to require the above-mentioned compatibility between
the algebraic and coalgebraic structure directly, rather than ensuring it through
the natural transformations σ. Formally, this would amount to requiring the
reachable subalgebras of the underlying algebras to carry coalgebraic structure,
and the observable homomorphic images of the underlying coalgebras to carry
algebraic structure13. However, in this case, horizontality of the signature and
cosignature morphisms used to define combined signature morphisms would be
12 A dual approach would be to consider natural transformations of form F ◦D ◦UF ⇒

D ◦ UF, with D the comonad induced by G.
13 The existence of factorisation systems for Alg(T) and Coalg(G) results in the reachable
subalgebra of a T-algebra and the observable homomorphic image of a G-coalgebra
being defined uniquely up to isomorphism in Alg(T) and respectively Coalg(G).
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needed to ensure the well-definedness of reduct functors. ([11] also uses a con-
dition which resembles horizontality to ensure that reduct functors preserve the
compatibility between the algebraic operations and the bisimulation relation.)

Example 6. Non-deterministic, sequential processes are specified using the com-
bined signature (Set,GLFTS,FNSP, σ), with σ : TNSP ◦ U ⇒ GLFTS ◦ TNSP ◦ U (where
TNSP denotes the monad induced by FNSP) being defined inductively by:

σγ(c) = 〈next(c), depth(c)〉
σγ(nil) = 〈∅, 0〉
σγ(a.c) = 〈{〈a, c〉}, 1 + depth(c)〉

σγ(c+ d) = 〈next(c) ∪ next(d),max(depth(c), depth(d))〉

σγ(c; d) =

{
〈next(d), depth(d)〉, if depth(c) = 0
〈{〈a, c′; d〉 | 〈a, c′〉 ∈ next(c)}, depth(c) + depth(d)〉, o/w

for any GLFTS-coalgebra 〈C, 〈next, depth〉〉, a ∈ A and c, d ∈ C.
It follows from [17] that, for a combined signature (C,G,F, σ), the category

Alg(Tσ) has both an initial and a final object. The initial Tσ-algebra provides an
observational structure on ground computations, whereas the final Tσ-algebra
provides a computational structure on abstract states. These Tσ-algebras will,
from now on, be denoted 〈〈I, γI〉, αI〉 and respectively 〈〈F, γF 〉, αF 〉.
Proposition 7. For a combined signature (C,G,F, σ), the factorisation system
for Coalg(G) given by Prop. 1 lifts uniquely to a factorisation system for Alg(Tσ).
Moreover, the functor taking Tσ-algebras to their underlying T-algebras preserves
factorisations.

Proof. The first statement follows by [1, Prop. 20.28], after noting that Tσ pre-
serves regular epimorphisms (as T preserves regular epimorphisms). For the sec-
ond statement, let UG

σ : Alg(Tσ)→ Coalg(G) and UT
σ : Alg(Tσ)→ Alg(T) denote

the functors taking Tσ-algebras to their underlying G-coalgebras and respec-
tively T-algebras. Then, the statement follows from UG ◦UG

σ = UT ◦UT
σ , together

with UG ◦ UG
σ preserving factorisations and UT creating them.

As a consequence of Prop. 7, the observable homomorphic images of the G-
coalgebras underlying Tσ-algebras carry T-algebra structure, whereas the reach-
able subalgebras of the T-algebras underlying Tσ-algebras carry G-coalgebra
structure.
Definition 11. Let (C,G,F, σ) denote a combined signature. A Tσ-algebra
〈〈C, γ〉, α〉 satisfies a modal formula ι : 〈D, δ〉 → RGZ over (C,G) up to reach-
ability (written 〈〈C, γ〉, α〉 |=r ι) if and only if, for any C-arrow f : C → Z, the
G-coalgebra homomorphism f �◦! : 〈I, γI〉 → RGZ, with ! : 〈I, γI〉 → 〈C, γ〉 arising
from the initiality of 〈〈I, γI〉, αI〉, factors through ι.

C
f

��

〈I, γI〉
��
�
�

! �� 〈C, γ〉
f�

��

Z 〈D, δ〉
ι

�� RGZ
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Also, a Tσ-algebra 〈〈C, γ〉, α〉 satisfies an equation q : LTX → 〈B, β〉 over
(C,F) up to observability (written 〈〈C, γ〉, α〉 |=o q) if and only if, for any
C-arrow f : X → C, the T-algebra homomorphism !′ ◦f# : LTX → 〈F, αF 〉, with
!′ : 〈C,α〉 → 〈F, αF 〉 arising from the finality of 〈〈F, γF 〉, αF 〉, factors through q.

X
f

��

LTX

f#
��

q
�� 〈B, β〉

��
�
�

C 〈C,α〉
!′

�� 〈F, αF 〉

Remark 7. If the equation q in Def. 11 is given by a pair of C-arrows l, r : K →
UTLTX, then 〈〈C, γ〉, α〉 |=o q translates to UT!′ ◦UTf

# ◦ l = UT!′ ◦UTf
# ◦ r for

any C-arrow f : X → C. This follows similarly to Rem. 4.

Remark 8. The notions of satisfaction introduced in Def. 11 can also be defined
in a more general setting, which does not assume the existence of initial/final
Tσ-algebras. In particular, in a setting where combined structures are given
by compatible algebra-coalgebra pairs (see Rem. 6), a notion of satisfaction of
modal formulae up to reachability is obtained by replacing the G-coalgebra ho-
momorphism ! : 〈I, γI〉 → 〈C, γ〉 in Def. 11 with the G-coalgebra homomorphism
r : 〈R, γR〉 → 〈C, γ〉 (with 〈R, γR〉 denoting the G-coalgebra structure on the
carrier of the reachable T-subalgebra of 〈C,α〉14). A notion of satisfaction of
equations up to observability can be defined in a similar way.

The satisfaction of a modal formula by a Tσ-algebra only requires the formula
to hold in reachable states. Also, as shown by the next result, the satisfaction of
an equation by a Tσ-algebra only requires the equation to hold up to bisimilarity.

Proposition 8. Let (C,G,F, σ) denote a combined signature. Then, a Tσ-algebra
〈〈C, γ〉, α〉 satisfies an equation l, r : K → UTLTX over (C,F) up to observability
if and only if, for any C-arrow f : X → C, 〈UTf

# ◦ l,UTf
# ◦ r〉 factors through

〈π1, π2〉, with π1, π2 : R→ C defining the kernel pair of UT!′15.

Proof (sketch). Rem. 7 is used.

The next result gives a necessary and sufficient condition for the satisfaction
of modal formulae up to reachability by algebras of combined signatures.

Proposition 9. Let (C,G,F, σ) denote a combined signature, let 〈〈C, γ〉, α〉 de-
note a Tσ-algebra with 〈〈R, γR〉, αR〉 its reachable Tσ-subalgebra, and let ι :
〈D, δ〉 → RGZ denote a modal formula over (C,G). Then, 〈〈C, γ〉, α〉 |=r ι iff
〈R, γR〉 |= ι.

Proof (sketch). The unique (RegEpi(Coalg(G)),Mono(Coalg(G)))-diagonalisation
property of Coalg(G) and the injectivity of Z are used for the only if direction.
14 The preservation of monomorphisms by G ensures the uniqueness of 〈R, γR〉.
15 Hence, by Rem. 1 (4), 〈R, π1, π2〉 gives precisely the bisimilarity relation on 〈C, γ〉.
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A similar result holds for the satisfaction of equations up to observability:
a Tσ-algebra satisfies an equation up to observability if and only if the algebra
underlying its observable homomorphic image satisfies that equation.

Initiality yields an inductive technique for proving the satisfaction of modal
formulae up to reachability by algebras of combined signatures. Also, finality
together with the existence of largest bisimulations yield a coinductive tech-
nique for proving the satisfaction of equations up to observability by algebras of
combined signatures. These techniques are briefly illustrated in the following.

Example 7. Proving that the modal formulae defining finitely-branching, A-
labelled transition systems of finite depth hold, up to reachability, in algebras
of the combined signature for non-deterministic, sequential processes can be re-
duced to proving that they hold in nil and that their satisfaction is preserved
by . , + and ; . But this follows directly from the constraints defining this
combined signature. Also, proving that the equation in Ex. 5 holds, up to observ-
ability, in algebras of the same combined signature can be reduced to exhibiting a
generic bisimulation relation (given by a functor R : Coalg(GLFTS)→ C together
with two natural transformations π1, π2 : R ⇒ UG, such that 〈Rγ, π1,γ , π2,γ〉
is a bisimulation relation on 〈C, γ〉 for each GLFTS-coalgebra 〈C, γ〉), such that
Rγ relates the interpretations in 〈C,α〉 of the two sides of the equation, for
any (GLFTS,FNSP, σ)-algebra 〈〈C, γ〉, α〉. Here, Rγ is taken to be the least reflexive
relation on C such that (c+d) Rγ (d+c) for any c, d ∈ C and any (GLFTS,FNSP, σ)-
algebra 〈〈C, γ〉, α〉. The fourth constraint in the definition of this combined sig-
nature results in Rγ being a bisimulation relation on 〈C, γ〉.

Finally, we show that combined signature morphisms whose underlying sig-
nature and respectively cosignature morphisms are horizontal give rise to institu-
tions w.r.t. the satisfaction of modal formulas up to reachability and respectively
of equations up to observability by algebras of combined signatures.

Theorem 3. Let (U, τ, ξ) : (C,G,F, σ) → (C′,G′,F′, σ′) denote a combined sig-
nature morphism, and let 〈〈C ′, γ′〉, α′〉 denote a T′σ′-algebra. The following hold:

1. If (U, ξ) is horizontal and ι : 〈D, δ〉 → RGZ denotes a modal formula over
(C,G), then Uτ,ν〈〈C ′, γ′〉, α′〉 |=r ι iff 〈〈C ′, γ′〉, α′〉 |=r τ(ι).

2. If (U, τ) is horizontal and q : LTX → 〈B, β〉 denotes an equation over (C,F),
then Uτ,ν〈〈C ′, γ′〉, α′〉 |=o q iff 〈〈C ′, γ′〉, α′〉 |=o ν(q).

Proof. Uτ,ν〈〈C ′, γ′〉, α′〉 |=r ι amounts to the existence, for any C-arrow f :
UC ′ → Z, of a G-coalgebra homomorphism g making the outer left diagram
below commute, whereas 〈〈C ′, γ′〉, α′〉 |=r τ(ι) amounts to the existence, for any
C′-arrow f ′ : C ′ → RZ, of a G′-coalgebra homomorphism g′ making the right
diagram below commute. Also, since U � R, C(UC ′, Z) � C′(C ′,RZ).

〈I, γI〉
ν̃0′ ��

g �����
Uτ 〈I ′, γI′〉 Uτ !′��

h
��
�
�

Uτ 〈C ′, γ′〉
f�

��

〈I ′, γI′〉 !′ ��

g′
��
�
�

〈C ′, γ′〉
f ′�

��

〈D, δ〉
ι

�� RGZ Rτ 〈D, δ〉
Rτ ι

�� RτRGZ iZ
�� RG′RZ
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For the if direction, let f : UC ′ → Z denote a C-arrow, let f ′ : C ′ → RZ
denote its corresponding C′-arrow, and let g′ : 〈I ′, γI′〉 → Rτ 〈D, δ〉 denote the
G′-coalgebra homomorphism which makes the right diagram commute. Then,
g is taken to be g′# ◦ ν̃0′ . For the only if direction, let f ′ : C ′ → RZ de-
note a C′-arrow, and let f : UC ′ → Z denote its corresponding C-arrow. Since
UGν̃0′ = ν0′ ∈ RegEpi(C) and UGι ∈ Mono(C), the unique (RegEpi(Coalg(G)),
Mono(Coalg(G)))-diagonalisation property of Coalg(G) yields a G-coalgebra ho-
momorphism h : Uτ 〈I ′, γI′〉 → 〈D, δ〉 satisfying h ◦ ν̃0′ = g and ι ◦ h = f � ◦ Uτ !′.
This, in turn, yields a G′-coalgebra homomorphism g′ : 〈I ′, γI′〉 → Rτ 〈D, δ〉 (by
Uτ � Rτ ).

The proof of the second statement is similar.
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