Effective Enhancement
of Loop Versioning in Java

Vitaly V. Mikheev, Stanislav A. Fedoseev,
Vladimir V. Sukharev, and Nikita V. Lipsky

A. P. Ershov Institute of Informatics Systems, Excelsior, LLC
Novosibirsk, Russia
{vmikheev ,sfedoseev,vsukharev, nlipsky}@excelsior-usa. com

Abstract. Run-time exception checking is required by the Java Lan-
guage Specification (JLS). Though providing higher software reliability,
that mechanism negatively affects performance of Java programs, es-
pecially those computationally intensive. This paper pursues loop ver-
sioning, a simple program transformation which often helps to avoid
the checking overhead. Basing upon the Java Memory Model precisely
defined in JLS, the work proposes a set of sufficient conditions for appli-
cability of loop versioning. Scalable intra- and interprocedural analyses
that efficiently check fulfilment of the conditions are also described. Im-
plemented in Excelsior JET, an ahead-of-time compiler for Java, the
developed technique results in significant performance improvements on
some computational benchmarks.

Keywords: Java, performance, loop optimizations, ahead-of-time com-
pilation

1 Introduction

To date, Java has become an industry-standard programming language. As Java
bytecode [3] is a (portable) form of intermediate representation, a great wealth
of dynamic and static optimization techniques was proposed to improve the
originally poor performance of Java applications. One of the reasons for the in-
sufficient performance is obligatory run-time checks for array elements access op-
erations. JLS [2] requires two checks' for read/write of each array element a[i]:
first, a has not to be null (otherwise NullPointerExceptionshould be thrown),
then i must be in the range 0<=i<a.length (if not, IndexOut0fBoundException
should be thrown). It is easy to see that the major execution overhead occurs in
loop-carried array operations. A Java implementation could yield to temptation
to provide a mode in which the run-time checks are disabled but that would
effectively violate JLS terms.

Traditional static analyses may ameliorate the situation to some extent. For
instance, no checks are required if a is known to be a non-null value and i has

1 Writes to an array of a reference type may also require type inclusion check

R. N. Horspool (Ed.): CC 2002, LNCS 2304, pp. 293-306, 2002.
© Springer-Verlag Berlin Heidelberg 2002

294 Vitaly V. Mikheev et al.

proved to be in the proper range. Intraprocedural static analyses are able to infer
such program properties quite effectively, of course, if array objects are created
and then used within the same Java method ([12], [13]). Unfortunately, the
optimization of real Java programs often requires global analyses. It is enough to
note that array references are typically stored in shared memory variables (static
or instance fields). However, Java dynamic facilities such as Reflection API, JNI,
dynamic class loading inhibit applicability of the analyses, not to mention their
high spatial and time complexity.

An original technique called loop versioning was proposed to optimize loops
without global flow analysis ([3]). The key idea is to keep a part of checks in the
resulting code but move them out of the loop body as illustrated in Figures 1, 2.

for(i=0; i<=ub; i++)
chk_null(A) [chk_idx(A,i)] = 2%chk_null(B) [chk_idx(B,i+1)];

Fig. 1. Original loop code

if ((A!=null) && (B!'=null) && (ub<A.length) && (ub+1<B.length))
//version with no checks
for(i=0; i<=ub; i++)
A[i] = 2xB[i+1];
else
// original version
for(i=0; i<=ub; i++)
chk_null(A) [chk_idx(A,i)] = 2%chk_null(B) [chk_idx(B,i+1)];

Fig. 2. Versioned loop code

In such case, two copies (or versions) of a loop have to be generated. One copy
is checks-free provided all required conditions are tested before loop. The other
is the original loop with checks. The technique has a great advantage over static
analysis: the program properties which are extremely hard to analyze statically,
now may be just checked at run-time before loop execution. However, care must
be taken to transform the original program correctly, as array reference vari-
ables, index expressions and the final value of the inductive variable have to
be loop invariants. Thus, any loop versioning implementation should advocate
(easy provable) conditions for correctness of the optimization.

We propose a simple and effective algorithm of loop versioning that can be
used in production Java compilers. We implemented it in Excelsior JET [23], an
ahead-of-time Java bytecode to native code compiler. The rest of the paper is
organized as follows. Section 2 highlights certain aspects of the Java Memory
Model with respect to applicability of loop versioning. Sections 3, 4 describe
program analysis and transformation required for the optimization. Section 5

Effective Enhancement of Loop Versioning in Java 295

outlines our implementation of loop versioning in the Excelsior JET optimizing
compiler. The obtained results are presented in Section 6. Section 7 pursues
related works and, finally, Section 8 concludes.

2 Java Memory Model

Let us consider an example in Figure 3. The question is under which circum-
stances A, B and UB are loop invariants? If they are not, loop versioning may
not be a correct transformation for such loops. This section helps answer the
question. Note that we discuss a general case when the expressions may include
not only locals but also static or instance fields.

for(i=0; i<UB; i++) {
A[i] = B[i+1];
<operator 1>;

<operator k>;

}

Fig. 3. If A, B and UB are loop invariants?

The ”"Threads and Locks” chapter of JLS rigorously defines the Java Memory
Model for (generally) multi-threaded programs with the help of three abstract
machines: main memory, thread working memory and thread execution engine as
depicted in Figure 4. The main memory keeps track of shared variables status
performing the read/write actions. Each thread has working memory, its own
"local view” of the main memory. A thread working memory holds working
copies of shared variables and communicates with the main memory through
load/store message streams specific for each shared variable. Thread execution
engines carry out Java code according to the language semantics and exchange
data with working memory through use/assign message streams.

The main concern of the specification is that reading and writing shared
variables are non-atomic w.r.t. thread switching. For instance, the entire read-
load-use action chain is not guaranteed to be executed in one time slice of a
thread though each of the actions is atomic by definition. The main rules related

to shared variables are?:

1. A thread execution engine is free to use a working copy of a particular shared
variable provided that copy was loaded from the main memory at least once.

2. If a thread updates a working copy through an assign action, subsequent use
actions that occur in the thread, should return the most recently assigned
value.

2 The memory model has a more rich set of restrictions. For our purposes, we shortly
describe only those useful for loop invariant computation.

296 Vitaly V. Mikheev et al.

if (V) use N @

...... /Oac,

Thread 1 execution engine Thread 1 memory ~ag
,/;\‘(e‘

:

©©
v=c.f _ @ °© K
assign Main memory

Thread 2 execution engine Thread 2 memory

Fig. 4. The Java Memory Model

In fact, the specification imposes a strict order on use and assign actions only
whereas other actions updating the main and working memory may be issued at
any time, at the whim of implementation®. However, there are two exceptional
cases in which working copies have to be in sync with the main memory:

(i) A shared variable has the volatile modifier. In such case, a working copy
should be synchronized with the main memory each time a use or assign
action occurs in a thread.

(ii) A synchronized block (or call to a synchronized method) is present on
execution path. If so, all working copies should be synchronized with the
main memory at enter and exit of the block.

Proposition 1 (”Localization” of shared variables). Let a loop-carried
statement include an expression with shared variables. If meither of the above
conditions holds, the variables may be read before the loop and then treated as
locals.

Thus, if the expressions to be proved loop invariants contain shared variables,
our algorithm analyzes loop body to check the conditions (i), (ii). If they are
not fulfilled, the analysis concludes that the involved shared variables may be
invariants, otherwise it makes a conservative assumption they are not. Loop-
carried calls are discussed in the next Section.

3 Program Analysis

This section gives a set of sufficient conditions for applicability of loop versioning
and describes several analyses to effectively check them.

3 Obviously, CPU architectures with a lot of registers especially benefit from the mem-
ory model. Although on Intel x86, shared variables are unlikely to be allocated on
registers for a long time, an implementation may provide better cache behaviour if
working copies are assigned to local temporaries

Effective Enhancement of Loop Versioning in Java 297

3.1 Alias Analysis

If expressions to be proved loop invariants contain instance fields or array el-
ements, the analysis has to infer that they are immutable in the loop body.
The problem is that instance fields and array elements may be aliased in Java
so that writing one variable changes the value of the other. For example, two
expressions ol.f and 02.f are aliases, if both o1 and 02 refer to the same ob-
ject. In general, the property is practically undiscoverable at compile-time even
with (computationally hard) global flow analysis. Instead, our algorithm detects
which expressions may not be aliases employing the following simple criteria®:

1. Instance fields with different names may not be aliases (e.g. expressions
exprl.f and expr2.g may not be aliases).

2. Let us consider two expressions ol.f and 02.f. Let C1 and C2 be static (de-
clared) classes for objects o1 and 02. Furthermore, SuperC1(SuperC2) is the
superclass of C1(C2) in which instance field £ was declared. Expressions ol. £
and 02.f may not be aliases if SuperC1 and SuperC2 are different classes.

3. Let T1[] be a static (declared) type for array object al and T2[] be a static
type for array object a2. Expressions a1 [n] and a2[m] may not be aliases if
either

— at least one of types T1, T2 is primitive and they are different types
— types T1, T2 are not interfaces® and neither can be cast to the other

In other cases, the analysis conservatively concludes that the expressions may
be aliases. Of course, the technique gives us correct but (generally) non-precise
results. Nevertheless, we prefer to use it for effective computability. For instance,
the criteria for arrays do not work if a loop computes arrays of the int[] type
and an invariant expression contains an access to another (immutable) integer
array a[expr]. However, it works fine if the loop computes £loat [] or double[]
arrays only.

3.2 Loop Invariants Computation

For the sake of simplicity, the augment of inductive variable is required to be
a constant and, thus, is invariant. However, the following entities have to be
proved loop invariants for correct application of loop versioning:

— the expression that denotes the final value of the inductive variable
— array references which are subjects for check removal
— index expressions provided the inductive variable is fixed®

4 The proposed criteria benefit from the strict type system and absence of address
arithmetic in Java.

5 If at least one type is an interface, there may exist a class that implements it. In
such case, the non-aliasing property can not be determined without a global type
analysis.

5 To be more precise, if each occurence of the inductive variable in an index expression
is replaced with a constant, the expression would become loop invariant.

298 Vitaly V. Mikheev et al.

First, our algorithm performs ”localization” of shared variables as proposed in
Section 2. Then it proves that shared variables appearing in the left side of
assignments may not be aliases of those which are part of invariant expressions
being analyzed. Finally, a traditional local flow-sensitive analysis [1] is employed
to check whether the expressions are invariants. If an either test fails, versioning
is not applied to the loop.

3.3 Checking Boundaries of Index Expressions

As long as index expressions (with a fixed inductive variable) are loop invariants,
they may be thought of as a set of functions { f3(7) : [a..b] — int}y, where a and b
are initial and final values of inductive variable i. For practical consideration,
the algorithm recognizes only linear functions in the form f(i) = k x ¢ + [which
give minimum and maximum at the margins of the domain range. Thus, for each
array access arr [k*i+1], the compiler should emit checking this pre-condition
formula for positive augment of the inductive variable”.

(k > 0) 7 0 <= kxat+l && k*b+l <arr.length :
0 <= k*b+1l && k*a+l <arr.length

Thus, the compiler has to generate a concatenation of similar formulas for each
index expression within loop. Note that as a rule, the resulting formula will be
essentially reduced during further local constant propagation and range analyses
that our compiler performs.

3.4 Handling Loop-Carried Calls

In general, a loop body may include calls to other methods among operators in
Fig. 3. Though called methods cannot access locals of the caller, they may mod-
ify shared variables, contain synchronized blocks or invoke yet other methods
which do that. In order to get more precise results, our algorithm makes a simple
interprocedural analysis to check operators from the called methods®. One might
note that the same effect may be achieved through simply inlining such methods.
However, care must be taken to prevent excessive inlining. Not to mention the
growth of the code size, it may result in decreasing performance. Let us imagine
a loop containing a call to quite a large method on a rarely executed branch.
If the call is inlined, it may consume extra CPU registers and worsen instruc-
tion cache behaviour as noted in the work [14]. Because our compiler framework
is able to perform adaptive profile-based optimizations (including inlining), we
prefer to implement scalable interprocedural analyses (if possible), and not to
rely on increasing inline aggressiveness.

7 As mentioned above, the sign of the inductive variable augment is known at compile-
time. We give the formula for positive augments only as it is symmetric for negative
ones.

8 Of course, virtual method invocation hinders the analysis. Our compiler accomplishes
local type propagation which often helps to ”devirtualize” such methods. If that is
not possible, the analysis treats such methods as potentially unsafe and declines
versioning if invariant expressions contain shared variables.

Effective Enhancement of Loop Versioning in Java 299

3.5 Complexity

The described algorithms scale linearly in the size of the program. The flow-
insensitive analysis of loop-carried operators and the simple alias analysis give
the complexity proportional to N (program size) + G (non-virtual call graph
size). Thus, our algorithm runs in O(N + G) both time and space.

Strictly speaking, our compiler performs a flow-sensitive intraprocedural
analysis that runs in O(n?), where n is the number of local temporaries. As
it takes effect during compilation of each method anyway, it does not matter
whether loop versioning is applied. This is why we give ”"pure” complexity of the
versioning analysis not taking into account other local optimizations.

4 Program Transformation

If the described analyses have succeeded, the compiler can safely perform loop
versioning. The necessary program transformation is very simple and includes
the following steps:

1. Generation of pre-conditions for nullness of array references
2. Generation of pre-conditions for index bounds
3. Replication of loop body with removal of checks

The only important note is that index bound checks must follow nullness checks
in the pre-condition formula concatenated. As the index check conditions deref-
erence array variables (in the form expr<A.length), NullPointerException
may occur before entering the loop if the formula is constructed in the reverse
order. As can be seen, that would change the Java semantics (namely, the precise
exception model [2]) because loop operators may have side-effects.

5 Implementation

This section highlights our implementation of loop versioning and particularly
focuses on the benefits of ahead-of-time (static) compilation.

5.1 Excelsior JET

We implemented the described algorithm in Excelsior JET, a static compiler
which converts Java bytecode to native (platform specific) code before execu-
tion. JET is based on the Excelsior’s compiler construction framework which
architecture is shown in Figure 5. Organization of the framework is similar to
those of other known compilers, e.g. Marmot [9], HPJC [10].

The main advantage of static compilation is that it is performed only once,
on a developer’s machine and typically, the majority of classes is known at

300 Vitaly V. Mikheev et al.

Java source javac bytecode R Java bc Intel x8:6 object code
front-end code emitter
triad and
SSA-optimization
source | other language R other object code
front-end back-ends
front-end middle-end back-end

Fig. 5. The Excelsior’s compiler construction framework

compile-time?. Thus, the compiler is free to employ any time- and memory-
expensive optimization technique, resulting in much better code quality than
in the case of dynamic (just-in-time) compilation. In that sense, the JET ab-
breviation stands for Just-Enough-Time compiler. The Java ”Write Once, Run
Anywhere” ™ paradigm is supported by providing static Java compilers for all
major platforms, just like it is supported right now by providing a JVM for each
of them. Currently, JET is targeting the Wintel platform, however, porting to
other platforms is under consideration.

5.2 Implementation Notes

Now we describe certain aspects of versioning implementation in Excelsior JET.

Decompilation of loop operators. The Java bytecode which JET takes as in-
put language, contains stack-based VM instructions [3]. JET bytecode front-end
employs quite complex algorithms of abstract interpretation and symbolic com-
putations to reconstruct (or decompile) structural operators. The reconstruction
algorithms recognize loops with inductive variables and, thus, are not limited to
for operators only. For instance, the loops might be written with the use of
while or do-while operators in the original Java sources. In essence, the ex-
ploited algorithms are similar to those of related works [18], [19]. However, in
order to make them work properly on a variety of real-world Java applications,
we had to carefully adapt the algorithms to the Java bytecode specification.

Powerful local optimizations. As in most advanced compilers, JET middle-
end has 3-address value internal representation and features local SSA-based
optimizations [1]. If possible, checks are removed during local constant propa-
gation and range analysis. However, along with CSE (Common Subexpressions

9 If a class is unknown beforehand, JET provides caching dynamic compilation through
Mixed Compilation Model [23] sacrificing several inreprocedural optimizations in
favour of lower resource consumption at run-time

Effective Enhancement of Loop Versioning in Java 301

Elimination), the optimizations are extremely useful for the reduction of pre-
condition formulas generated during the loop versioning transformation.

Generation of run-time checks. JET, as well as other compilers, co-operates
with the run-time system to handle NullPointerException. In fact, dereference
of zero or another (small) value is treated as the exception. Intel x86 assembly
code for checking instructions is presented in Table 1.

Table 1. Excelsior JET check instructions

Null check Combined null/index check
// eax holds address of array // eax holds address of array
cmp eax, [eax] // ebx holds index value

cmp [eax+arrLenOffset], ebx
jbe IndexOutOfBound

Note that it would make little sense to remove null checks while preserving index
ones as both are performed at once by a single CPU instruction.

Adaptive optimizations. Our compiler framework supports profile-based opti-
mizations. The collected profile often recommends not to inline particular meth-
ods as they are rarely executed. This is the reason that caused us to implement
interprocedural analysis of loop-carried calls.

Interprocedural analysis. In order to allow JET to perform interprocedural
optimizations (e.g. escape analysis [7], inlining etc.), we have implemented syn-
tax tree object persistency permitting arbitrary tree object graphs to be saved
to/restored from file or cached into memory, if they are intensively used. This
technique resembles the slim binaries approach proposed in [16] as an alternative
to the Java bytecode during dynamic compilation. However, we restrict its use
to static code analysis and optimization only. The mechanism was just recycled
for analyzing loop-carried calls. In it, we benefit from the ahead-of-time com-
pilation approach because most dynamic compilers cannot afford even simple
interprocedural analyses due to time and memory limitations.

6 Experimental Results

This section gives the results we obtained on two series of benchmarks. One
series is provided to discover the "pure” effect of versioning when only array
access operations are executed in loops. The other series is well-known stan-
dard benchmark suites - JavaGrande/EPCC Sequential 2.0 [20] and SciMark
2.0 [21]. All tests were run on the same system: AMD Athlon™ running at

302 Vitaly V. Mikheev et al.

1400MHz/768MB RAM/Windows 2000 Professional. In order to see the best
results that versioning may potentially give and the actual performance impact
of the optimization, we provide the results for the following execution modes:

1. checks enabled, versioning disabled
2. both checks and versioning enabled
3. all checks disabled

6.1 Pure Effect of Versioning

Suml, Sumb5 and Sum10 are simple benchmarks which sum the contents of one,
five and ten int[200000] arrays in the innermost loop during a number of
iterations. Table 2 shows the execution time in seconds.

Table 2. Summing elements of large arrays

Benchmark|| +checks -vers | +checks +vers -checks
Suml 1.07s 0.64s (-39%) 0.64s (-39%)
Sumb 2.89s 2.45s (-15%) 2.43s (-15%)
Sum10 7.55s 6.38s (-15%) 6.38s (-15%)

The best result (39% reduction of execution time) is achieved on the simplest
benchmark. Smaller improvement of the others is caused by the CPU data cache
behaviour as the tests read elements of several very large arrays in the same
loop. It is not surprisingly that benchmarks with enabled versioning are almost
as fast as checks-free ones.

6.2 Standard Benchmarks

For our purposes, we selected only those benchmarks which perform array access
operations in loops. Effectiveness of our versioning implementation is given in
Table 3. For each test, it shows the total number of loops ' and the number of
those to which the optimization was applied.

The benchmarks demonstrate 100% effectiveness, excepting JGFSeq3/Euler
which operates on int[] [] arrays. We did not implement loop versioning for
multidimensional arrays intentionally. The matter is that flattening multidimen-
sional arrays [17] is a different optimization complementary to loop versioning.
If a (rectangular) multidimentional array is flattened, the index expression
al[i] [j] is transformed to a[i*firstDimLength+j] which meets our versioning
criteria. We plan to implement support for rectangular arrays in future versions.

10 Note that the total numbers count only the loops with array access operations which
are subject for versioning.

Effective Enhancement of Loop Versioning in Java

Table 3. Effectiveness of loop versioning analysis

Benchmark Num. of loops | Versioned loops
SciMark2/FFT 3 3 (100%)
SciMark2/Sparse matmult 2 2 (100%)
SciMark2/SOR 2 2 (100%)
SciMark2/LU 14 14 (100%)
JGFSeq3/Search 5 5 (100%)
JGFSeq3/MonteCarlo 2 2 (100%)
JGFSeq3/RayTracer 2 2 (100%)
JGFSeq3/MolDyn 1 1 (100%)
JGFSeq3/Euler 8 4 (50%)

303

Table 4 gives the results of performance improvement due to loop versioning
application. Columns 2-4 hold the numbers of operations per second specific for
each benchmark (greater number means better result).

Table 4. Performance improvement

Benchmark +checks -vers | +checks +vers -checks
SciMark2/FFT 194.4 196.1 (4+0.8%) 196.8 (+1.2%)
SciMark2/ 170.8 212.6 (+24.4%) 246.9 (4+44.5%)
Sparse matmult 170.8 212.6 (4+24.4%) 246.9 (4+44.5%)
SciMark2/SOR 331.8 331.7 (0%) 333.9 (4+0.6%)
SciMark2 /LU 266.2 312.7 (+17.4%) 323.0 (+21.3%)
JGFSeq3/Search 712513.2 713972.4 (0%) 755216.94 (+1.0%)
JGFSeq3/MonteCarlo|| 1733.73 1733.4 (0%) 1757.77 (+1.3%)
JGFSeq3/RayTracer || 2706.92 2723.31 (+0.6%) 2729.92 (4+0.8%)
JGFSeq3/MolDyn 180562.11 247306.3 (4+36.9%)| 251991.67 (+39.5%)
JGFSeq3/Euler 5.14 5.14 (0%) 571 (+11.0%)

As can be seen, versioning gives performance improvement on the same tests as
check disabling does. The performance gap between columns 3 and 4 on JGF-
Seq3/Euler is due to not having yet implemented compiler support for rectangu-
lar multidimensional arrays. However, the effect on SciMark2/Sparse matmult is
a more subtle substance. The benchmark has three nested loops and versioning
two innermost ones disrupts (otherwise well-behaved) instruction cache because
of swollen code. We intend to ameliorate that as follows. Given the assumption
that the checked version is rarely executed, the compiler can move it to the

304 Vitaly V. Mikheev et al.

end of the method’s code section and then link it with the main code through
forward and backward jump instructions '!.

One might be interested to see the results of performance comparison between
Excelsior JET, the most current Java VMs (e.g. Sun’s HotSpot Server VM which
performs powerful SSA-based optimizations [4]) and other generally available
ahead-of-time compilers for Java. Although independent studies (e.g. [22]) show
that our compiler outperforms them on many benchmarks including those cited
in this paper, we do not give the results on purpose. That would require us
to consider the entire variety of optimizations implemented in JET and other
compilers, not only loop versioning we pursue in this paper.

7 Related Works

Byler et al. [3] seemingly pioneered the loop versioning optimization. Their work
aimed at dealing with the lack of compile-time information when optimizing com-
putational programs for parallel architectures. Versioning was proposed to detect
alias-safe array regions thereby allowing concurrent computations. Pugh [15]
gives an excellent description of the Java Memory Model in details and pro-
poses further improvements to make more optimizations applicable to Java. The
works [12], [13] pursue various static analyses for array checks removal. The
proposed techniques are able to eliminate checks with the use of local (intrapro-
cedural) optimizations. However, real-world Java programs are unlikely to create
and use arrays within the same local scope of a method. Global flow-sensitive
analyses are computationally hard. In general, any global analysis may not be
used for Java due to presence of dynamic loading of classes and metaprogram-
ming facilities. Artigas et al. [11] consider loop versioning for Java implemented
in IBM High Performance Compiler [10]. Though the work mentions the possi-
bility of loop versioning in Java, conditions of its applicability are not discussed.
The main concern of their work is the use of versioning for parallel processing
alias-safe array regions as in [3]. We find the optimization very useful even for
single-processor architectures '> and plan to implement it in future releases of
Excelsior JET. Fitzgerald et al. at Microsoft Research, the authors of the Marmot
ahead-of-time compiler for Java [9] do not regard the loop versioning optimiza-
tion. The work [5] describing the architecture of the IBM Just-In-Time compiler
for Java, most directly relates to ours. The authors propose an algorithm which
relies on loop invariants, however, they do not describe invariant computation
and alias analysis (if the last was employed). Because their work is an overview of
the entire compiler architecture, it is hard to compare effectiveness of invariant
computation which is not described in details. Moreover, their algorithm limits
recognizable index expressions to i + constant whereas our algorithms permits
expressions k * ¢ + [, where k and [are loop invariants not necessary constants.

11 Some people from the compiler community wittily call the technique ”siberian code
sections”.

12 The guarantee of alias-free arrays contributes to more effective code generation as
many redundant load instructions may be eliminated.

Effective Enhancement of Loop Versioning in Java 305

The form of index expression (potentially) allows us to use versioning for rectan-
gular multidimensional arrays as well. Finally, the algorithm employed by IBM
JIT does not perform versioning if the loop includes calls. Our implementation
makes simple interprocedural analysis to handle loop-carried calls.

8 Conclusion

This paper presented loop versioning, a technique for removal of null and index
checks in Java programs working with arrays. A set of sufficient conditions for
correct application of loop versioning in Java was given. In order to effectively
check the conditions, this work proposed algorithms of alias analysis and loop in-
variant computation which scale linearly in the size of the program. Implemented
in Excelsior JET, an ahead-of-time compiler for Java, the developed technique
results in significant performance improvements on computational benchmarks.
The interesting area for future works is to provide the current implementation
with support for alias-free array regions and rectangular multidimensional ar-
rays.

Acknowledgements

Without the ongoing support of the entire Excelsior Java team, this work would
not have been possible. A special thank-you to John O. Osbourne for his support.

References

1. Steven S. Muchnik. Advanced Compiler Design And Implementation. Morgan Kauf-
mann Publishers, 1997. 298, 300

2. J. Gosling, B. Joy and G.Steele. The Java(tm) Language Specification, Second
Edition. Addison-Wesley, Reading, 2000. 293, 299

3. T. Lindholm, F. Yellin, B. Joy, K. Walrath. The Java Virtual Machine Specifica-
tion. Addison-Wesley, 1996. 293, 300

4. The Java HotSpot(tm) Virtual Machine, Technical Whitepaper, Sun Microsystems
Inc., 2001. 304
URL: http://www.sun.com/solaris/java/wp-hotspot

5. Suganuma et al. Overview of the IBM Java Just-In-time Compiler, IBM Systems
Journal, Vol. 39, No. 1, 2000. 304

6. V. Mikheev. Design of Multilingual Retargetable Compilers: Experience of the
XDS Framework Evolution. In Proc. of Joint Modular Languages Conference,
JMLC’2000, Volume 1897 of LNCS, Springer-Verlag, 2000.

7. V. Mikheev, S. Fedoseev. Compiler-Cooperative Memory Management in Java. To
appear in Proc. of 4th International Conference Perspectives of System Informat-
ics, PSI’2001, LNCS, Springer-Verlag, 2001. 301

8. M. Byler et al. Multiple version loops. In Proc. of the 1987 International Conference
on Parellel Processing, 1987. 294, 304

9. R. Fitzgerald, T. Knoblock, E.Ruf, B. Steensgaard, D. Tarditi. Marmot: an Opti-
mizing Compiler for Java, Microsoft Research, MSF-TR~99-33, 1999. 299, 304

306

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Vitaly V. Mikheev et al.

V. Seshadri. IBM high performance compiler for Java. AIXpert Magazine, Septem-
ber 1997. 299, 304

P. Artigas, M. Gupta, S. Midkiff and J. Moreira. Automatic Loop Transformations
and Parallelization for Java, In Proc. International Conference on Supercomputing,
1CS’00, 2000. 304

D. Bodik, R. Gupta, and V. Sarkar. ABCD: Eliminating Array Bounds Checks on
Demand. In Proceeding of PLDI’00, 2000. 294, 304

P. Pomminvillen et al. A Framework for Optimizing Java Attributes. In Proc.
Compiler Construction, CC’2001, Volume 2027 of LNCS, Springer-Verlag, 2001.
294, 304

M. Arnold, S. Fink, V. Sarkar, and P. Sweeney. A Comparative Study of Static and
Profile-Based Heuristics for Inlining. In Proc. of ACM SIGPLAN 2000 Workshop
on Dynamic and Adaptive Compilation and Optimization, DYNAMO’00, 2000.
298

W. Pugh. Fixing the Java Memory Model. In ACM 1999 Java Grande Conference,
San Francisco, CA, June 1999. 304

M. Franz, Th. Kistler. Slim binaries. Technical report 96-24, Department of Infor-
mation and Computer Science, UC Irvine, 1996. 301

J. Moreira, S. Midkiff, M. Gupta. A comparison of three approaches to language,
compiler, and library support for multidimensional arrays in Java. In Proc. of
ISCOPE Conference on ACM 2001 Java Grande, 2001. 302

C. Cifuentes. Structuring Decompiled Graphs. In Proc. of the International Con-
ference on Compiler Construction, CC’96. Volume 1060 of LNCS, Springer-Verlag,
1996. 300

U. Lichtblau. Decompilation of control structures by means of graph transfor-
mations. In Proc. of the International Joint Conference on Theory and Practice
of Software Development, TAPSOFT’85. Volume 185 of LNCS, Springer-Verlag,
1985. 300

The Java Grande Forum Sequential Benchmarks, Version 2.0. 301

URL: http://www.epcc.ed.ac.uk/javagrande/sequential.html

SciMark 2.0. Java benchmark for scientific and numerical computing. 301

URL: http://math.nist.gov/scimark2/

O. P. Doederlein. The Java Performance Report - Part IV: Static Compilers, and
More. JavaLobby, August, 2001 URL:
http://www.javalobby.org/fr/html/frm/javalobby/features/jpr/part4.html
304

Excelsior JET. Technical Whitepaper, Excelsior LLC, 2001. 294, 300

URL: http://www.excelsior-usa.com/jetwp.html

	Effective Enhancement of Loop Versioning in Java
	Introduction
	Java Memory Model
	Program Analysis
	Alias Analysis
	Loop Invariants Computation
	Checking Boundaries of Index Expressions
	Handling Loop-Carried Calls
	Complexity

	Program Transformation
	Implementation
	Excelsior JET
	Implementation Notes

	Experimental Results
	Pure Effect of Versioning
	Standard Benchmarks

	Related Works
	Conclusion
	Acknowledgements
	References

