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Abstract. With the increasing importance of just-in-time or dynamic
compilation and the use of program analysis as part of software devel-
opment environments, there is a need for techniques for demand driven
construction of a call graph. We have developed a technique for demand
driven call graph construction which handles dynamic calls due to poly-
morphism in object-oriented languages. Our demand driven technique
has the same accuracy as the corresponding exhaustive technique. The
reduction in the graph construction time depends upon the ratio of the
cardinality of the set of influencing nodes and the total number of nodes
in the entire program.

This paper presents a detailed experimental evaluation of the benefits
of the demand driven technique over the exhaustive one. We consider a
number of scenarios, including resolving a single call site, resolving all call
sites in a method, resolving all call sites within all methods in a class, and
computing reaching definitions of all actual parameters inside a method.
We compare the analysis time, the number of methods analyzed, and the
number of nodes in the working set for the demand driven and exhaustive
analyses.

We use SPECJVM programs as benchmarks for our experiments. Our
experiments show for the larger SPECJVM programs, javac, mpegaudio,
and jack, demand driven analysis on the average takes nearly an order
of magnitude less time than exhaustive analysis.

1 Introduction

A call graph is a static representation of dynamic invocation relationships be-
tween procedures (or functions or methods) in a program. A node in this directed
graph represents a procedure and an edge (p — ¢) exists if the procedure p
can invoke the procedure ¢. In program analysis or compiler optimizations for
object-oriented programs, call graph construction becomes a critical step for at
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least two reasons. First, because the average size of a method is typically quite
small, very limited information is available without performing interprocedural
analysis. Second, because of the frequent use of virtual functions, accuracy and
efficiency of the call graph construction technique is crucial for the results of
interprocedural analysis. Therefore, call graph construction or dynamic call site
resolution has been a focus of attention lately in the object-oriented compilation
community [3,4,8,9,11,13,14,15,19,20,21,24].

We believe that with an increasing popularity of just-in-time or dynamic com-
pilation and with an increasing use of program analysis in software development
environments, there is a need for demand driven call graph analysis techniques.
In a dynamic or just-in-time compilation environment, aggressive compiler anal-
ysis and optimizations are applied to selected portions of the code, and not to
other less frequently executed or never executed portions of the code. Therefore,
the set of procedures called needs to be computed for a small set of call sites, and
not for all the call sites in the entire program. Similarly, when program analy-
sis is applied in a software development environment, demand driven call graph
analysis may be preferable to exhaustive analysis. For example, while construct-
ing static program slices [23], the information on the set of procedures called is
required only for the call sites included in the slice and depends upon the slicing
criterion used. Similarly, during program analysis for regression testing [16], only
a part of the code needs to be analyzed, and therefore, demand driven call graph
analysis can be significantly quicker than an exhaustive approach.

We have developed a technique for performing demand driven call graph
analysis [1,2]. The technique has two major theoretical properties. The worst-
case complexity of our analysis is the same as the well known 0-CFA exhaustive
analysis technique [18], except that our input is the cardinality of the set of
influencing nodes, rather than the total number of nodes in the program repre-
sentation. Thus, the advantage of our demand driven technique depends upon
the ratio of the size of set of influencing nodes and the total number of nodes. Sec-
ond, we have shown that the type information computed by our technique for all
the nodes in the set of influencing nodes is as accurate as the 0-CFA exhaustive
analysis technique. This paper presents an implementation and detailed experi-
mental evaluation of our demand driven call graph construction technique. The
implementation has been carried out using the SABLE infrastructure developed
at McGill University [22].

Initial work on call graph construction exclusively focused on exhaustive
analysis, i.e., analysis of a complete program. Many recent efforts have focused on
analysis when entire program may not available, or cannot be analyzed because
of memory constraints [6,17,19]. These efforts focus on obtaining most precision
with the amount of available information. In comparison, our goal is to reduce
the cost of analysis when demand-driven analysis can be performed, but not
compromise the accuracy of analysis. We are not aware of any previous work on
performing and evaluating demand-driven call graph analysis for the purpose of
efficiency, even when the full program is available. Our work is also related to
previous work on demand driven data flow analysis [10,12]. Their work assumes
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Fig. 1. Procedure A: :P’s portion of PSG

that a call graph is already available and does not, therefore, apply to the demand
driven call graph construction problem.

The rest of the paper is organized as follows. The demand driven call graph
construction technique is reviewed in Section 2. Our experimental design is pre-
sented in Section 3 and experimental results are presented in Section 4. We
conclude in Section 5.

2 Demand Driven Call Graph Construction

In this section, we review our demand driven call graph construction technique.
More details of the technique are available from our previous papers [1,2].

We use the interprocedural representation Program Summary Graph (PSG),
initially proposed by Callahan [5], for presenting our demand driven call graph
analysis technique. Procedure A: :P’s portion of PSG is shown in Figure 1. We
also construct a relatively inaccurate initial call graph by performing relatively
inexpensive Class Hierarchy Analysis (CHA) [7].

In presenting our technique, we use the following definitions.

pred(v) : The set of predecessors of the node v in the PSG. This set is
initially defined during the construction of PSG and is not modified as the type
information becomes more precise.

proc(v) : This relation is only defined if the node v is an entry node or an
exit node. It denotes the name of the procedure to which this node belongs.

TYPES(v): The set of types associated with a node v in the PSG during
any stage in the analysis. This set is initially constructed using Class Hierarchy
Analysis, and is later refined through data-flow propagation.
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THIS.NODE(v): This is the node corresponding to the THIS pointer at the
procedure entry (if v is an entry node), procedure exit (if v is an exit node),
procedure call (if v is a call node) or call return (if v is a return node).

THIS_-TYPE(v). If the vertex v is a call node or a return node, THIS_TYPE(v)
returns the types currently associated with the call node for the THIS pointer at
this call site. This relation is not defined if v is an entry or exit node.

PROCS(S): Let S be the set of types associated with a call node for a THIS
pointer. Then, PROCS(S) is the set of procedures that can actually be invoked at
this call site. This function is computed using Class Hierarchy Analysis (CHA).

We now describe how we compute the set of nodes in the PSG for the entire
program that influence the set of procedures invoked at the given call site ¢;.
The PSG for the entire program is never constructed. However, for ease in pre-
senting the definition of the set of influencing nodes, we assume that the PSG
components of all procedures in the entire program are connected based upon
the initial sound call graph.

Let v be the call node for the THIS pointer at the call site ¢;. Given the
hypothetical complete PSG, the set of influencing nodes (which we denote by S)
is the minimal set of nodes such that: 1) v € S,2) (z € S)A(y € pred(z)) —
y € S;and 3)x € S — THIS.NODE(z) € S

Starting from the node v, we include the predecessors of any node already in
the set, until we reach internal nodes that do not have any predecessors. For any
node included in the set, we also include the corresponding node for the THIS
pointer (denoted by THIS_.NODE) in the set.

The next step in the algorithm is to perform iterative analysis over the set
of nodes in the Partial Program Summary Graph (PPSG) to compute the set
of types associated with a given initial node. This problem can be modeled as
computing the data-flow set TYPES with each node in the PPSG and refining it
iteratively. The initial values of TYPES(v) are computed through class hierarchy
analysis that we described earlier in this section. If a formal or actual parameter
is declared to be a reference to class cname, then the actual runtime type of that
parameter can be any of the subclasses (including itself) of cname.

The refinement stage can be described by a single equation, which is shown
in Figure 2. Consider a node v in PPSG. Depending upon the type of v, three
cases are possible in performing the update: 1) v is a call or exit node, 2) v is
an entry node, and 3) v is a return node.

In Case 1, the predecessors of the node v are the internal nodes, the entry
nodes for the same procedure, or the return nodes at one of the call sites within
this procedure. The important observation is that such a set of predecessors does
not change as the type information is made more precise. So, the set TYPES(v)
is updated by taking union over the sets of TYPES(v) over the predecessors of
the node v.

We next consider case 2, i.e., when the node v is an entry node. proc(v) is
the procedure to which the node v belongs. The predecessors of such a node are
call nodes at all call sites at which the function proc(v) can possibly be called,
as per the initial call graph assumed by performing class hierarchy analysis.
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Fig. 2. Data-flow equation for propagating type information

Such a set of possible call sites for proc(v) gets restricted as interprocedural
type propagation is performed. Let p be a call node that is a predecessor of v.
We want to use the set TYPES(p) in updating TYPES(v) only if the call site
corresponding to p invokes proc(v). We determine this by checking the condition
proc(v) € PROCS(THIS_.TYPE(p)). The function THIS_.TYPE(p) determines
the types currently associated with the THIS pointer at the call site corresponding
to p and the function PROCS determines the set of procedures that can be called
at this call site based upon this type information.

Case 3 is very similar to the case 2. If the node v is a return node, the prede-

cessor node p to v is an exit node. We want to use the set TYPES(p) in updating
TYPES(v) only if the call site corresponding to v can invoke the function proc(p).
We determine this by checking the condition proc(p) € PROCS(THIS_TYPE(v)).
The function THIS_.TYPE(v) determines the types currently associated with the
THIS pointer at the call site corresponding to v and the function PROCS deter-
mines the set of procedures that can be called at this call site based upon this
type information.
Theoretical Results: The technique has two major theoretical properties [2].
The worst-case complexity of our analysis is the same as the well known 0-CFA
exhaustive analysis technique [18], except that our input is the cardinality of the
set of influencing nodes, rather than the total number of nodes in the program
representation. Thus, the advantage of our demand driven technique depends
upon the ratio of the size of set of influencing nodes and the total number
of nodes. Second, we have shown that the type information computed by our
technique for all the nodes in the set of influencing nodes is as accurate as the
0-CFA exhaustive analysis technique.

3 Experiment Design

We have implemented our demand driven technique using the SABLE infrastruc-
ture developed at McGill University [22]. In this section, we describe the design
of the experiments conducted, including benchmarks used, scenarios used for
evaluating demand driven call graph constructions, and metrics used for com-
parison.

Benchmark Programs: We have primarily used programs from the most com-
monly used benchmark set for Java programs, SPECJVM. The 10 SPECJVM

programs are check, compress, jess, raytrace, db, javac, mpegaudio, mtrt,
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Benchmark|| no. off] no. of no. of]

classes|methods|PSG nodes
check 20 96 3954
compress 15 35 601
jess 8 41 1126
raytrace 28 130 6518
db 6 34 1452
javac 180 1004 48147
mpegaudio 58 270 6205
mtrt 4 6 51
jack 61 261 14080
checkit 6 8 495

Fig. 3. Description of benchmarks

jack, and checkit. The total number of classes, methods, and PSG nodes for
each of these benchmarks is listed in Figure 3. The number of classes ranges
from 4 to 180, the number of methods ranges from 6 to 1004, and the number
of PSG nodes ranges from 51 to 48147.
Scenarios for Experiments: In Section 2, our technique was presented under
the assumption that the call graph edges need to be computed for a single call
site. In practice, demand driven analysis may be invoked under more complex
scenarios. For example, one may be interested in knowing the reaching definitions
for a set of variables in a method. Performing this analysis may require knowing
the methods invoked at a set of call sites in the program. Thus, demand driven
call graph analysis may be performed to determine the call graph edges at the
call sites within this set. Alternatively, there may be interest in fully analyzing
a single method or a class, and selectively analyzing codes from other methods
or classes to have more precise information within the method or class.

We have conducted experiments to evaluate demand driven call graph con-
struction under the following scenarios:

— Experiment A: Resolving a single call site in the program. We have only
considered the call sites that can potentially invoke multiple methods after
Class Hierarchy Analysis (CHA) is applied. This is the simplest case for the
demand driven technique, and should require analyzing only a small set of
procedures and PSG nodes in the program.

— Experiment B: Computing reaching definitions of all actual parameters at all
call sites within a method. Computing interprocedural reaching definitions
will typically require knowing calling relationship at a set of call sites. This
scenario depicts a situation in which demand driven call graph construction
is invoked while computing certain data-flow information on a demand basis.

— Experiment C: Resolving all call sites within a method. This is more com-
plicated than the experiment A above, and represents a more realistic case
when interprocedural optimizations are applied at a portion of the program.
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— Experiment D: Resolving all call sites within all methods within a class. This
scenario represents analyzing a single class, but performing selective analysis
on portions of code from other classes to improve the accuracy of analysis
within the class.

Metrics Used: We now describe the metrics used for reporting the benefits
of demand driven call graph construction over exhaustive call graph analysis.
Performing demand driven analysis will require fewer PSG nodes to be analyzed,
fewer procedures to be analyzed, and should require lesser time. We individually
report these three factors. Specifically, the three metrics used are:

— Time Ratio: This is the ratio of the time required for demand driven analysis,
as compared to exhaustive analysis. This metric evaluates the benefits of
using demand driven analysis, but is dependent on our implementation.

— Node Ratio: This is the ratio of the number of nodes in PPSG to the total
number of nodes in PSG of the entire program. This metric is an implemen-
tation independent indicative of the benefits of the analysis.

— Procedure Ratio: This is the ratio of the number of methods analyzed dur-
ing demand driven analysis, as compared to the total number of methods in
the entire program. Since each method’s portion of the full program repre-
sentation used in our analysis is constructed only if that method needs to
be analyzed, and is always constructed in entirety if the methods needs to
be analyzed; this metric demonstrates the space-efficiency of demand driven
call graph construction.

4 Experimental Results

We now present the results from our experiments. Our experiments were con-
ducted on a Sun 250 MHz Ultra-Sparc processor with 512 MB of main memory.
We first present results from exhaustive analysis. Then, we present results from
demand driven analysis for scenarios A, B, C, and D.

Exhaustive Analysis: To provide a comparison against demand driven anal-
ysis, we first include the results from exhaustive 0-CFA call graph construction
on our set of benchmarks.

The results from exhaustive analysis are presented in Figure 4. The time
required for Class Hierarchy Analysis (CHA), time required for the iterative call
graph refinement, and the number of call sites that are not-monomorphic after
applying CHA are shown here. Call sites that can potentially invoke multiple
methods after CHA has been applied are the ones that can benefit from more
aggressive iterative analysis.

The time required in CHA phase in our implementation is dominated by
setting up of data-structures, and turns out to be almost the same for all bench-
marks. The time required for the iterative refinement phase varies a lot between
benchmarks, and is roughly proportional to the size of the benchmark.

Two important observations from the Figure 4 are as follows. First, only
4 of the 10 programs have call sites that are polymorphic after the results of
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Benchmark||CHA time|Iter. Analysis|Polymorphic Call Sites

(sec.) (sec.) After CHA
check 72.3 27.7 0
compress 84.5 13.3 0
jess 96.5 59.4 0
raytrace 82.1 60.9 39
db 72.8 12.0 0
javac 85.6 2613 577
mpegaudio 73.4 462 35
mtrt 80.2 3.5 0
jack 74.1 250.7 7
checkit 73.6 5.3 0

Fig. 4. Results from exhaustive analysis

CHA are known. These 4 programs are raytrace, javac, mpegaudio, and jack.
These are also the 4 largest programs among the programs in this benchmark set,
comprising 28 to 180 classes and 130 to 1004 methods. For the smaller programs,
CHA is as accurate as any analysis for constructing the call graph. The second
observation is that for 7 of 10 programs, the total time required for exhaustive
call graph construction is dominated by the CHA phase. For the three remaining
programs, javac, mpegaudio, and jack, the time required for iterative analysis
is 30 times, 6 times, and nearly 4 times the time required for CHA analysis,
respectively.

Therefore, for the smaller programs in the benchmark set, CHA analysis is
sufficient, and they do not benefit from more aggressive analysis. The dominant
cost of analysis is CHA, which remains the same during demand driven call graph
construction. So, these programs cannot benefit from demand driven analysis.

On the other hand, the time required for analysis is dominated by the itera-

tive phase in the larger programs. A large number of call sites are polymorphic
after applying CHA, and are therefore likely to benefit from iterative analysis.
Since the iterative analysis is applied on a much small number of nodes in the
demand driven technique, these programs are likely to benefit from the proposed
demand driven analysis. This is analyzed in details in the remaining part of this
section.
Experiment A: In the first set of experiments, we perform demand driven
analysis to resolve a single call site in the program. We only consider call sites
that are known to potentially invoke multiple procedures after CHA has been
applied.

As we described in the previous subsection, only raytrace, javac,
mpegaudio, and jack contain such polymorphic call sites. Therefore, the results
are only presented from these call sites.

The averages for time ratio, node ratio, and procedure ratio for these 4 pro-
grams is shown in Figure 5. The analysis time compared in this table is the time
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Benchmark||No. of Cases|| Analysis Time PPSG Nodes Procedures
Avg. (sec.)| Ratio||Avg. No.| Ratio||Avg. No.| Ratio
raytrace 39 3.78] 6.2% 96.6| 1.5% 13.7|10.5%
javac 577 341.2(13.1% 9831(20.4% 747|74.5%
mpegaudio 35 15.6| 3.3% 186.3| 3.0% 31.9|11.8%
jack 77 11.8 4.7% 422.3| 2.9% 46.1(17.6%

Fig. 5. Results from experiment A

for iterative analysis only. For both demand driven and exhaustive versions,
additional time is spent in performing CHA.

The average of the ratio of the number of nodes that need to be analyzed
during demand driven analysis is extremely low for raytrace, mpegaudio, and
jack, ranging between 1.5% and 3.0%. This results in an average iterative anal-
ysis time ratio of less than 7%. Even the number of procedures that need to be
analyzed is less than 20% for these three programs. The results for javac are
significantly different, but still demonstrate gains from the use of demand driven
analysis. The average node ratio is 20.4%, resulting in an average time ratio of
13.1%. However, the average procedure ratio is nearly 75%. This means that
for most of the cases, a very large fraction of procedures need to be involved
in demand driven analysis. Use of demand driven analysis does not result in
significant space savings for javac.

After including the time for CHA, the average time ratio are 60%, 16%,
17%, and 26% for raytrace, javac, mpegaudio, and jack, respectively. The
gains from demand driven analysis for raytrace are limited, because the time
required for CHA exceeds the exhaustive iterative analysis time. javac, which
had the highest ratio before CHA time was included, has the lowest ratio after
including CHA because the time required for exhaustive iterative analysis is
more than 30 times the time required for CHA.

Demand driven analysis gives clear benefits in the case of javac, mpegaudio,
and jack, because the time required for the iterative phase dominates the time
required for CHA. To further study the results from these three benchmarks, we
present a series of cumulative frequency graphs. For the experiment A, cumulative
frequency graphs for the benchmarks javac, mpegaudio, and jack are presented
in Figures 6, 7, and 9, respectively. A point (x,y) in such a graph means that
the fraction = of the cases in the experiments had a ratio of less than or equal
to y.

The results from javac follow an interesting trend. 56 of the 577 cases require
analysis of 120 or fewer procedures, or nearly 12% of all procedures. The same
set of cases requires analyzing 257 or fewer nodes, or less than 1% of all nodes.
The time taken for these cases is also less than 2% of the time for exhaustive
analysis. However, the ratios are very different for the remaining cases. The
next 413 cases require analysis of the same set of 837 procedures, or 83% of all
procedures. The remaining cases require between 838 and 876 procedures to be
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analyzed. The analysis time is between 15% and 20% of the exhaustive analysis
time, and the number of nodes involved for these cases is nearly 25% of the total
number of nodes.

The results from mpegaudio are as follows. 11 of the 35 cases require analysis
of between 73 and 98 procedures, or between 27% and 36% of all procedures. The
same 11 cases require analysis of between 8% and 10% of nodes, and between
2% and 4% of time. The other 24 cases require analysis of less than 12% of all
procedures, and less than 1.5% of nodes and time.

For jack, 61 of 77 cases require analysis of 59 or 57 procedures, or nearly
20% of all procedures. The same set of cases require between 4% and 6% of time,
and 2% and 4% of all nodes. The other 16 cases involve analyzing less than 5%
of all procedures, less than 1% of time, and less than 0.5% of all nodes.
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Experiment B: In the second set of experiments, we evaluated the performance
of demand driven call graph construction when it is initiated from demand driven
data flow analysis. The particular data flow problem we consider is the compu-
tation of reaching definitions for all actual parameters in a procedure. We report
results from this experiment only on raytrace, mpegaudio, and jack. The 6
smaller programs in SPECJVM benchmark set do not contain any polymorphic
call sites. Even after many attempts, we could not complete this experiment for
javac, which is the largest program in this benchmark set. We believe that it
was because of very large memory requirements when reaching definition and
call graph construction analyses are combined.

The average time, node, and procedure ratios for the three benchmarks are
presented in Figure 8. As compared to the experiment A, we are reporting results
from a significantly larger number of cases, because this analysis was performed
on all procedures. At the same time, for many cases in experiment B resolution
of several polymorphic call sites may be required. The three ratios for mpegaudio
are lower for the experiment B, as compared to the ones obtained from experi-
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Benchmark||No. of Cases|| Analysis Time || PPSG Nodes Procedures
Avg. (sec.)[Ratio||Avg. No.[Ratio||Avg. No.] Ratio

raytrace 129 4.36| 7.2% 354.3| 5.4% 28.7| 22.0%
mpegaudio 270 5.48| 1.2% 133.5| 2.2% 26.8| 9.9%
jack 261 15.44| 6.2% 524.9| 3.7% 94.8(36.6 %

Fig. 8. Results from experiment B
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ment A. For raytrace and jack, the reverse is true; the three ratios are higher
for the experiment B.

The ratio for iterative analysis time are 7.2%, 1.2%, and 6.2% for raytrace,
mpegaudio, and jack, respectively. After including the time for CHA, the ratios
of the time required are 60%, 14%, and 27%, respectively.

We studied the results in more details for mpegaudio and jack. The cu-
mulative frequency plots for these two benchmarks are presented in Figures 10
and 11, respectively.

The results from mpegaudio are as follows. 192 of 270 cases require analysis
of 33 or fewer procedures, or less than 12% of all procedures. The same set of
cases require analysis of less than 2% of all nodes, and take less than 1% of time
for exhaustive analysis. For the remaining cases, the number of procedures to be
analyzed is distributed fairly uniformly between 66 and 118.

For jack, the trends are very different. 126 of 261 cases require analysis of
162 or 161 procedures, or nearly 62% of all procedures. The same set of cases
require analysis of nearly 800 nodes, or 6% of all nodes. The time required for
this set of cases is nearly 9% of the time for exhaustive iterative analysis. The
portions of the program that need to be analyzed for this set of cases (48% of all
cases) is almost the same. This has the following implications. If demand driven
analysis is performed for one of these cases, and then needs to be performed for
another case in the same set, very limited additional effort will be required.
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Benchmark||No. of Cases|| Analysis Time PPSG Nodes Procedures
Avg. (sec.)| Ratio||Avg. N0.| Ratio||Avg. N0.| Ratio
raytrace 130 4.51| 7.4% 358.9] 5.5% 29.1|22.4%
javac 1004 271.1]10.3% 7634.5(15.8 % 587|58.5%
mpegaudio 270 5.37| 1.2% 133.5) 2.1 % 26.8| 9.9%
jack 261 14.9| 5.9% 524.9| 3.7% 94.8(36.3%

Fig. 13. Results from experiment C

Experiment C: Our next set of experiments evaluated the performance of
demand driven call graph construction when all call sites in a procedures had to
be resolved. We present data only from raytrace, javac, mpegaudio, and jack,
because they contain polymorphic call sites. For these programs, we include
results from analysis of all methods, even if they do not contain any polymorphic
call site.

The averages of time, node, and procedure ratios are presented in Figure 13.
The averages are very close to the results for experiment B. We believe that this
because all call sites in a method had to be resolved for experiment C, and all
cites that can potentially invoke a method had to be resolved for experiment B.

The three ratios for javac are lower for experiment C, as compared to the
experiment A. This is because the averages are taken over much larger number
of cases in the experiment C. Many of the procedures do not require analysis of
any polymorphic call site, and contribute to a lower overall average.

The cumulative frequency plots for javac, mpegaudio, and jack are pre-
sented in Figures 12, 14, and 15, respectively.

Results from javac for experiment C are similar to the results from experi-
ment A, with one important difference. A larger fraction of cases can be analyzed
with a small fraction of procedures and nodes. 316 of 1004 cases require between
1 and 125 procedures, or up to 12% of all procedures. The remaining 688 cases
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require between 837 and 907 procedures, nearly 25% of all nodes, and nearly
15% of exhaustive analysis time.

Results from mpegaudio for experiment C are very similar to the results from
experiment B. 192 of 270 cases (the same number as in experiment B) require
analysis of at most 33 procedures, while the remaining cases need analysis of
between 66 and 118 procedures. The same trend (closeness between results from
experiments B and C) continues for jack.
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Experiment D: Our final set of experiments evaluates demand driven analy-
sis when all call sites in all procedures of a class are to be resolved. Figure 16
presents average time ratio, node ratio, and procedure ratio for raytrace, javac,
mpegaudio, and jack. Even though each invocation of demand driven analysis
may involve resolving several call sites, the ratio are quite small. For raytrace,
mpegaudio, and jack, the averages of time ratios and node ratios are still less
than 10%. The averages for javac are a bit higher, consistent with the previ-
ous experiments. The average time ratio and node ratio are 13.1% and 20.6%,
respectively. Space savings are not significant with javac, but quite impressive
for the other three benchmarks. After including the time required for CHA, the
average time ratio is 61% for raytrace, 16% for javac, 16% for mpegaudio, and
25% for jack.

In comparison with the results from experiment C, the averages of ratios from
experiment D are all higher for raytrace, javac, and mpegaudio, as one would
normally expect. The surprising results are from jack, where all three ratios
are lower in experiment D. The explanation for this is as follows. The results
from experiment D are averaged over a smaller number of cases, specifically, 61
instead of 261 for jack. It turns out that the procedures that require the most
time, number of nodes, and number of procedures to be analyzed belong to a
small set of classes. Therefore, they contribute much more significantly to the
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Benchmark||No. of Cases|| Analysis Time PPSG Nodes Procedures
Avg. (sec.)| Ratio||Avg. No.] Ratio||Avg. No.| Ratio
raytrace 28 5.32| 8.7% 598.3| 9.2% 41.5| 31.9%
javac 180 343.6(13.1% 9940(20.6% 741.3| 73.8%
mpegaudio 58 14.1| 3.1% 280.5| 4.5% 47.6(17.6 %
jack 61 7.49| 4.7% 291.3| 2.1% 27.6| 10.5%

Fig. 16. Results from experiment D
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average ratios in the results from the experiment C, than in the results from
experiment D.

Details of the results from javac, mpegaudio, and jack are presented in
Figures 17, 18, and 19, respectively. Again, the results from javac are very
different from the results on the other two benchmarks. In javac, 20 of the 180
classes can be resolved by analyzing a small fraction of procedures. Specifically,
these cases require analysis of between 1 and 63 procedures, i.e., less than 7% of
all procedures in the program. However, the other 160 cases require analysis of
between 837 and 963 procedures in the program. Each of the cases from this set
requires analyzing nearly 25% of all the nodes in the program, and between 15%
and 20% of the time for exhaustive analysis. However, the sets of influencing
nodes that need to analyzed for these cases are almost identical. Our theoretical
result, therefore, implies that after one of these cases has been analyzed, the
time required for other cases will be very small.

For mpegaudio, the number of procedures that need to be analyzed for the 58
cases ranges from 1 to 139, or from less than 1% to nearly 50%. The distribution
is fairly uniform. The time required for demand driven analysis for these cases
also has a fairly uniform distribution, between 0.1 second to 22.5 second, or
between 0.02% to 5% of the time required for exhaustive analysis. Similarly, the
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number of nodes ranges from 2 to 880, or from 0.03% to 13%. The results from
jack are similar.

5 Conclusions

We have presented evaluation of an algorithm for resolving call sites in an object
oriented program on a demand driven fashion. The summary of our results using
SPECJVM benchmarks is as follows:

— The time required for Class Hierarchy Analysis (CHA), which is a prerequi-
site for both exhaustive and demand driven iterative analysis, dominates the
exhaustive call graph construction time for 7 of the 10 SPECJVM programs.
However, CHA itself is sufficient for constructing an accurate call graph for
6 of these 7 programs. The time required for exhaustive iterative analy-
sis clearly dominates CHA time for the three largest SPECJVM programs,
javac, mpegaudio, and jack.

— For resolving a single call site, demand driven iterative analysis averages at
nearly 10% of the time required for exhaustive iterative analysis. The number
of nodes that need to be analyzed averages at nearly 3% for mpegaudio and
jack, but around 20% for javac. The number of procedures that need to
be analyzed is less than 20% for mpegaudio and jack, but nearly 75% for
javac.

— The averages for the number of nodes and procedures analyzed and the time
taken surprisingly stays low when all call sites within a class or a method are
analyzed instead of a single call site. This is because the program portions
that need to be analyzed for resolving different call sites within a method or
a class are highly correlated.
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