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Abstract. For decades, data—flow analysis (DFA) has been done us-
ing an iterative algorithm based on graph representations of programs.
For a given data—flow problem, this algorithm computes the maximum
fixed point (MFP) solution. The edge structure of the graph represents
possible control flows in the program. In this paper, we present a new,
graph—free algorithm for computing the MFP solution. The experimental
implementation of the algorithm was applied to a large set of samples.
The experiments clearly show that the memory usage of our algorithm is
much better: Our algorithm always reduces the amount of memory and
reached improvements upto less than a tenth. In the average case, the
reduction is about a third of the memory usage of the classical algorithm.
In addition, the experiments showed that the runtimes are almost the
same: The average speedup of the classical algorithm is only marginally
greater than one.

1 Introduction

Optimising compilers perform various static program analyses to obtain informa-
tions needed to apply optimisations. In the context of imperative languages, the
technique commonly used is data—flow analysis (DFA). It provides information
about properties of the states that may occur at a given program point during
execution. Here, programs considered are intermediate code, e.g. three address
code, register code, or Java Virtual Machine (JVM) code [LY97].

For decades, the de facto classical algorithm for DFA has been an iterative
algorithm [MJ81, ASU86, Muc97] which uses a graph as essential data structure.
The graph is extracted from the program, making explicit the possible control
flows in the program as the edge structure of the graph. Typically, the nodes
of the graph are basic blocks (BB), i.e. maximal sequences of straight-line code
(but see also [[KI{598] for comments on the adequacy of this choice). A distinct
root node of the graph corresponds to the entry point of the program.

For a given graph and a given initial annotation of the root node, the algo-
rithm computes an annotation for each of the nodes. Each annotation captures
the information about the state of the execution at the corresponding program
point. The exact relation between annotations and states depends on the data—
flow problem. However, independently of the exact relation, the annotations
computed by the algorithm are guaranteed to be the greatest solution of the
consistency equations imposed by the data—flow problem. This result is known
as the maximal fixed point (MFP) solution.
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In the context of BB graphs, there is a need for an additional post—processing
of the annotations. Since each BB represents a sequence of instructions, the
annotation for a single BB must be propagated to the instruction level. As a
result of this post—processing, each program instruction is annotated.

The contribution of this paper is an alternative algorithm for computing the
MFP solution. In contrast to the classical algorithm, our approach is graph—free:
Besides a working set, it does not need any additional data structures (of course,
the graph structure is always there implicitly in the program). The key idea is
to give the program a more active role: While the classical approach transforms
the program to a passive data object on which the solver operates, our point of
view is that the program itself executes on the annotation.

An obvious advantage of this approach is the reduced memory usage. In addi-
tion, it is handy if there is already machinery for execution of programs available.
Consequently, our execution—based approach is advantageous in settings where
optimisations are done immediately before execution of the code. Here it saves
effort to implement the analyses and it saves valuable memory for the execu-
tion. The most prominent example of such a setting is the Java Virtual Machine
(JVM) [LY97]. In fact, the JVM specification requires that each class file is ver-
ified at linking time by a data—flow analyser. The purpose of this verification is
to ensure that the code is well-typed and that no operand stack overflows or
underflows occur at runtime.

In addition, certain optimisations cannot be done by the Java compiler
producing JVM code. For instance, optimisation w.r.t. memory allocation like
compile-time garbage collection (CTGC) can only be done in the JVM since the
JVM code does not provide facilities to influence the memory allocation. CTGC
was originally proposed in the context of functional languages [Deu97, Moh97]
and then adopted for Java [B1a93, Bla99].

To validate the benefits of our approach, we studied the performance of the
new algorithm in competition with the classical one, both in terms of memory
usage and runtime. Therefore, we applied both to a large set of samples. The
experiments clearly show that the memory usage of our algorithm is much better:
Our algorithm always reduces the amount of memory and reached improvements
upto less than a tenth. In the average case, the reduction is about a third of the
memory usage of the classical algorithm. Moreover, the runtimes are comparable
in the average case: Using the classical algorithm does not give a substantial
speedup.

Structure of this article. We start by defining some basic notions. In Section 3
the classical, iterative algorithm for computing the MFP solution is discussed
briefly. Our main contribution starts with Section 4 where we present the new
execution algorithm, discuss its relation to the classical algorithm, and prove the
termination and correctness. Experimental results presented in Section 5 give an
estimation of the benefits our method. Finally, Section 6 concludes the paper.
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2 Notations

In this section, we briefly introduce the notations that we use in the rest of the
paper. Although we focus on abstract interpretation based DFA, our results are
applicable to other DFAs as well.

The programs we consider are three—address code programs, i.e. non—empty
sequences of instructions I € Instr. Each instruction [ is either a jump, which can
be conditional (if ) goto n) or unconditional (goto n), or an assignment (x:=yoz).
In assignments, x must be a variable, and y and z can be variables or constants.
Since we consider intraprocedural DFA only, we do not need instructions for
procedure calls or exits. The major point of this setting is to distinguish be-
tween instructions which cause the control flow to branch and those which keep
the control flow linear. Hence, the exact structure is not important. Any other
intermediate code, like the JVM code, is suitable as well.

To model program properties, we use lattices L = (A, M, ) where A is a set,
and M and L are binary meet and join operations on A. Furthermore, 1 and T
are least and greatest element of the lattice. Often, finite lattices are used, but
in general it suffices to consider lattices which have only finite chains.

The point of view of DFA based on abstract interpretation [CC77, ATI87] is to
replace the standard semantics of programs by an abstract semantics describing
how the instructions operate on the abstract values A. Formally, we assume a
monotone semantic functional ![.!] : Instr — (A — A) which assigns a function
on A to each instruction.

A data—flow problem is a quadruple (P, L,![.!],a9) where P = Iy...I, €
Instr™ is a program, L is a lattice, ![.!] is an abstract semantics, and ag € A is
an initial value for the entry of P.

To define the MFP solution of a data—flow problem, we first introduce the
notion of predecessors. For a given program P = Iy ... I, € Instr™, we define the
function predp : {0,...,n} — P({0,...,n}) in the following way: j € predp(7)
iff either I; € {goto i,if ¢ goto i}, or i = j + 1 and I; # goto t for some t.
Intuitively, the predecessors of an instruction are all instructions which may be
executed immediately before it.

The MFP solution is a vector of values s, . .., s, € A. Each entry s; is the ab-
stract value valid immediately before the instruction I;. It is defined as the great-
est solution of the equation system s; = [];c eq,i)![1;!)(s;). The well-known
fixed point theorem by Tarski guarantees the existence of the MFP solution in
this setting.

Ezample 1 (Constant Folding Propagation). We now introduce an example,
which we use as a running example in the rest of the paper. Constant fold-
ing and propagation aims at finding as many constants as possible at compile
time, and replacing the computations with the constant values. In the setting
described above, we associate with each variable and each program point the
information if the variable is always constant at this point. For simplicity, we
assume that the program only uses the arithmetic operations on integers. We
define aset C':=ZW{T, L} and a relation ¢; < ¢2 iff (a) ¢1 = o, (b) 1 = L, or
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(¢) co = T. Intuitively, values can be interpreted in the following way: An integer
means “constant value”, T means “not constant due to missing information”,
and 1 means “not constant due to conflict”. The relation < induces meet and
join operations. Hence, (C,MM,1) is a (non-finite) lattice with only finite chains.
Fig. 1 shows the corresponding Hasse diagram.

The abstract lattice is defined in terms of this lattice. Formally, let X be
the set of variables of a program P. By definition, X is finite. We define the
set of abstract values as € := X — (|, the set of all functions mapping a
variable to a value in C. Since X is finite, € is finite as well. We obtain meet
and join operations Mg, L in the canonical way by argument—wise use of the
corresponding operation on C. Hence, our lattice for this abstract interpretation
is <¢ |_|Q'7 |_|Q>

The abstract semantics ![.!]¢ : Instr — (€ — €) is defined in the following
way: For jumps, we define ![goto I!]¢ and ![if 1) goto !]¢ to be the identity, since
jumps do not change any variable. For assignments, we define ![x:=yoz!]¢ := ¢ —
¢, where ¢’ = ¢[x/al, i.e. ¢’ is the same function as ¢ except at argument x. The
new value is defined as

andz=a,€Zorc(z)=a, €7

ajoa, fy=a,€Zorcly)=a €Z
dx)=a:=
L otherwise

Intuitively, the value of the variable on the left-hand side is constant iff all
operands are either constants in the code or known to be constants during exe-
cution.

For a data—flow problem, the initial value will be ag = L: At the entry, no
variable can be constant. Fig. 1 shows an example for a program, the associ-
ated abstractions, the equation system, and the MFP solution. This example
also demonstrates why it is necessary to use the infinite lattice C: The solution
contains the constant ‘5’ which is not found in the program.

Our presentation of these notions differs slightly from the presentation found
in text books. Typically, data—flow problems are already formulated using an
explicit graph structure. However, we want to point out that this is not a ne-
cessity. Furthermore, it allows us to formulate and prove the correctness of our
algorithm without reference to the classical one.

&
vk

-
|
0
|

L

Fig. 1. Hasse diagram of (C,M, L))
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Program Abstractions” Equations Solution
Ip=x:=1 x/1 S0 = ao x/Ly/Lz/L v/l
Li=y:=2 y/2 51 =![lo]e(s0) X1 y/Lz/L L
12 =Z .= 3 ;/3 S2 :'[[1']¢(51) X/]. y/2 Z/J_ r/J_
I3 = goto 8 (identity) sz =!Iz e(s2) X1 y2 z/3 r/L
c(y)+e(z) ey), c(z) € Z
Li=r=y+z v{ sa =[Is!]e(s8) /L yR 23 v/l
Is=ifx<zgoto7 |( prhene ale (s4) XLy o 15
5 = If x <z goto 1 entlty ss5 =!I4!|¢ (84 Y, r
c(@)+e(y) e(y), c(z) € Z 171
Is=r=z+y y{ o0 € 8l gg —1[T5lJe (s5) WL y2 23 15
Ir=x:=x+1 x/{ LN zi);emlse st =![Is!]e(s5)M[L6!]e(s6) YL y/2 23 15
Is = if x < 10 goto 4 (1dent1ty ss ={Isl)e(s3)MN L7 ]e(s7) XL y2 23 15

“ For each abstraction only the modification x/y as abbreviation for ¢ — c[z/y] is
given.

Fig. 2. Example for data—flow problem

The approach described so far can be generalised in two dimensions: Firstly,
changing M to U results in existential data—flow problems, in contrast to universal
data—flow problems: The intuition is that a property holds at a point if there is
a single path starting at the point such that the property holds on this path. For
existential data—flow problems, the least fixed point is computed instead of the
greatest fixed point. Secondly, we can change predecessors predp to successors
succp : {0,...,n} — P{O,...,n}) defined as i € succp(j) < j € predp(i).
The resulting class of data—flow problems are called backward problems (in con-
trast to forward problems), since the flow of information is opposite to the
normal execution flow. Here, the abstract values are valid immediately after the
corresponding instruction.

Altogether, the resulting taxonomy has four cases. However, the algorithms
for all the cases have the same general structure. Therefore, we will consider only
the forward and universal setting.

3 Classical Iterative Basic-Block Based Algorithm

This section reviews the classical, graph—based approach to DFA. To make the
data—flow of program explicit, we define two types of flow graphs: single instruc-
tion (SI) graphs and basic block (BB) graphs. For a program P = I...I,, we
define the SI graph SIG(P) := ({Io,...,In},{(;,1;) | j € predp(i)}, Ip) with a
node for each instruction, an edge from node I; to node I; iff j is predecessor
of i, and root node Iy. Intuitively, the BB graph results from the SI graph by
merging maximal sequences of straight-line code. Formally, we define the set of
basic blocks as the unique partition of P: BB(P) = {By,..., By} iff (a) B; =
I, ... 1, with ji1 = je+1, (b) predp(j1) # {(j—1)a} or succp((j—1)n) # {j1},
(c) [predp(je)| = 1 for ji < ji < jn, and (d) Lj,+1 = IGyn,, Lo, = o,
and I,,, = I,. The BB graph is defined as BBG(P) := (BB(P),{(B;, B;) |
Jn € predp(i1)}, Bo).
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(a) SI graph (b) BB graph
Fig. 3. Examples for SI graph and BB graph

Ezample 2 (Constant Folding Propagation, Cont’d). In Fig. 3 we see the SI graph
and the BB graph for the example program from the last section.

Obviously, for a given flow graph G = (N, E,r), the usual notions of pre-
decessors preds : N — P(N) and successors succg : N — P(N), defined as
n € preda(n'),n’ € succg(n) : <= (n’,n) € E coincide with the corresponding
notions for programs.

For a given data—flow problem (P, L,![.!],a), an additional pre-processing
step must be performed to extend the abstract semantics to basic blocks: We
define I[.!] : Instrt — (A — A) as [Iy ... L,!] :=[I,)] o - - - o![Ip]].

The classical iterative algorithm for computing the MFP solution of a data—
flow problem is shown in Fig. 4. In addition to the BB graph G it uses a working
set W and an array a, which associates an abstract value with each node. The
working set keeps all nodes which must be visited again. In each iteration a node
is selected from the working set. At this level, we assume no specific strategy
for the working set and consider this choice to be non—deterministic. By visiting
all predecessors of this node, a new approximation is computed. If this approxi-
mation differs from the last approximation, the new one is used. In addition, all
successors of the node are put in the working set. After termination of the main
loop, the post—processing is done, which propagates the solution from the basic
block level to the instruction level.

Ezample 8 (Constant Folding Propagation, Cont’d). For the example from the
last section, Table 1 shows a trace of the execution of the algorithm. Each line
shows the state of working set W, the selected node B, and the array al.] at
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Input: Data—flow problem (P, L,![.!], ao)
where P =1Iy...I,, L = (A, 1,1)
Output: MFP solution sg,...,s, € A

G = (BB(P), E, By) := BBG(P)

a[Bo] = ao
for each B € BB(P)— By do a[B]:=T
W :=BB(P)

while W # () do
choose Be W
W:=W-B
new := a[B]
for each B’ € predg(B) do new := newn![B!](a[B’])
if new # a[B] then
a[B] := new;
for each B’ € succg(B) do W :=W + B’
end
end
for each B € BB(P) do
with B=1...I; do

sk = a[B]
for i:=k+1 to ! do s; :=![li—1!](si-1)
end
end

Fig. 4. Classical iterative algorithm for computing MFP solution

the end of the main loop. To keep the example brief, we omitted all cells which
did not change w.r.t. the previous line and we have chosen the best selection of
nodes. The resulting MFP solution is identical to the one in Fig. 1, of course.

In an implementation, the non—deterministic structure of the working set
must be implemented in a deterministic way. However, both the classical algo-
rithm described above and the new algorithm, which we describe in the next
section, based on the concept of working sets. Therefore, we continue to assume
that the working set is non—deterministic.

4 New Execution Based Algorithm

The new algorithm for computing the MFP solution (see Fig. 5) of a given
data—flow problem is graph—free. The underlying idea is to give the program
a more active role: The program itself executes on the abstract values. The
program counter variable pc always holds the currently executing instruction.
The execution of this instruction affects the abstract values for all succeeding
instructions and it is propagated iff it makes a change. Here we see another
difference w.r.t. the classical algorithm: While the pc in our algorithm identifies
the instruction causing a change, the current node n in the classical algorithm
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Table 1. Example Execution of classical iterative algorithm

w |B |a[Bo] |a[B1] |a[Bz] |a[Bg] |a[B4]
{B1, B2, Bs, Ba}|Bo|/L y/LIx/T y/T|X/T y/TIxT y/T|¥Ty/T
Z/L /L |z/T T |2/T T |2/T o/T |2/T ¢/T
{B1,B2,Bs} |Ba X1 yf2
Z3 /L
{Bz, B3} By X1 y/2
73 15
{Bs} B X1 yf2
73 15
{Ba} B3 %2 y/2
Z3 15
{B1} By XL yf2
Z3 /L
{B2} By XL yf2
73 15
{Bs} B AR
73 15
0 Bs XLy
73 15

identifies the point where a change is cumulated. Note that the algorithm checks
whether or not the instruction makes a change by the condition new < sp¢
which is equivalent to new M sper = new and new # spe.

Obviously, the execution cannot be deterministic: On the level of abstract
values there is no way to determine which branch to follow at conditional jumps.
Therefore, we consider both branches here. Consequently, we use a working set
of program counters, just like the classical algorithm uses a working set of graph
nodes. However, the new algorithm uses the working set in a more modest way
that the classical: While the classical one chooses a new node from the working
set in each iteration, the new one follows one path of computation as long as
changes occur and the path does not reach the end of the program. This is
done in the inner repeat/until loop. Only if this path terminates, elements
are chosen from the working set in the outer while loop. In addition, the new
algorithm tries to keep the working set as small as possible during execution of
a path: Note that the instruction W := W — pc is placed inside the inner loop.
Hence, even execution of a path may cause the working set to shrink.

In comparison to the classical algorithm, our approach has the following
advantages:

— It uses less memory: There is neither a graph to store the possible control
flows in the program nor an associative array needed to store the abstract
values at the basic block level.
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Input: Data—flow problem (P, L,![.!], ao)
where P =1Iy...I,, L = (A, 1,L)
Output: MFP solution sg,...,s, € A

Sp ‘= ap
for i:=1 ton do s;:= T
W :={0,...,n}

while W # 0 do
choose pc e W
repeat
W =W —pc
new :=![Ipc!](spc)
if I,. = (goto l) then pc’ =1
else
pc’ == pc+1
if Ip. = (if ¢ goto [) and new < s; then
W.=W+1
S; 1= new
end
end
if new < sps then
Spe! 1= New
pc == pc
else pc:=n+1
end
until pc=n-+1
end

Fig. 5. New execution algorithm for computing MFP solution

The data locality is better. At a node, the classical algorithm visits all pre-
decessors and potentially all successors. Since these nodes will typically be
scattered in memory, the access to the abstract values associated with them
will often cause data cache misses. In contrast, our algorithm only visits a
node and potentially its successors. Typically, one of the successors is the
next instruction. Since the abstract values are arranged in an array, the ab-
stract value associated with the next instruction is the next element in the
array. Here, the likelihood of cache hits is large. Recent studies show that
such small differences in data layout can cause large differences in perfor-
mance on modern system architectures [CHL99, CDIL99].

There is no need for pre—processing by finding the abstract semantics of a
basic block ![Iy ... I,,)!]] :==![I,!] o -+ - ol[Io]].

There is no need for a post—processing stage, which propagates the solution
from the basic block level to the instruction level.

Theorem 1 (Termination). The algorithm in Fig. 5 terminates for all inputs.

Proof. During each execution of the inner loop at least one 0 < i < n exists
such that value of the variable s; decreases w.r.t. the underlying partial order of
the lattice L. Since L only has finite chains, this can happen only finitely many
times. Hence, the inner loop always terminates.
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Furthermore, the working set grows iff a conditional jump is encountered
and the corresponding value s; decreases. Just like above, this can happen only
finitely many times. Hence, there is an upper bound for the size of the working
set. In addition, during each execution of the outer loop, the working set shrinks
at least by one element, the one chosen in the outer loop. Hence, the outer loop
always terminates. O

Theorem 2 (Correctness). After termination of the algorithm in Fig. 5, the
values of the variables sg, ..., s, are the MFP solution of the given data—flow
problem.

Proof. To prove correctness, we can obviously consider a modified version of
the algorithm, where the inner loop is removed and nodes are selected from the
working set in each iteration. In this setting, no program point will be ignored
forever. Hence, we can use the results from [GKL"94]: The selection of program
point is a fair strategy and the correctness of our algorithm directly follows from
the theorem on chaotic fixed point iterations.

To do so, we have to validate one more premise of the theorem: We have to
show that the algorithm computes s; = Hjepredp(i)![fj!](sj) for each program
point 0 < i < n. The algorithm can change s; iff it visits a program point pc with
pe € predp(i). Let s be the value of s; before the loop and s’ be the value after
the loop. If we can show that s’ = sM![L,c!](spc), we know that the algorithm
computes the meet over all predecessors by iteratively computing the pairwise
meet. To show that, we distinguish two cases:

1. I Tpe!)(spe) = new < s then s’ = new = sM[Ipe!](spe)-

2. Otherwise, we know that ![,.!](spc) = new > s since ![.!] is monotone and
the initial value of s is the top element. Hence we also have s’ = s =
ST Ipe!] (Spe)- O

Ezample 4 (Constant Folding Propagation, Cont’d). Table 2 shows an trace of
the execution of the new algorithm for the constant folding propagation example.
Each line shows the state of the working set and the approximations at the end
of the inner loop, and the values of the program counter pc at the beginning and
the end of the inner loop (written in the column pcs in the form begin/end).

During this execution, the algorithm loads the value of pc only three times
from the working set: Once at the beginning and twice after reaching the end of
the program (pcs = 8/9).

The adaption of the execution algorithm for the other three cases of the
taxonomy of data—flow problems described at the end of Section 2 is straightfor-
ward: (a) Existential problems can simply be handled by replacing < by >, and
(b) backward problems require a simple pre—processing which inserts new pseudo
instructions to connect jump targets with the corresponding jump instructions.

5 Experimental Results

To validate the benefits of our approach, we studied the performance of the
new algorithm in competition with the classical one, both in terms of memory
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Table 2. Example execution of new algorithm

w |pcs|so |s1 |52 |53 |84 |85 |86 |S7 |88
{1, 8O/ L y/ LI y/T T y/T T y/TTy/TIXTy/TINTyTT YT yT
2L/ LT T |/T oT 2T 0T |2/T T |z/T T |Z/T T (2T oT |2/T /T
{2,...,8}|1/2 X1 yf2
7/ v/l
{3,...,8}|2/3 X1 yf2
Z3 /L
{4,..,8}[3/8
{4,...,7}|8/9 X1 yf2
Z3 /L
{5,...,7}4/5 x/1 yf2
Z3 b
16,7y |5/6 X1 y2 XL /2
Z3 b |z3 b
{7} 6/7
0 7/8 X2 y/2
73 b
{4} 8/9 XL yf2
73 /L
0 4/5 XL yf2
73 b
{7} 5/6 XL y/2 %L y/f2
Z3 15 |73 b
{7} 6/7
0 7/8 XL y/2
73 b
0 8/9

usage and runtimes. Prior to the presentation of the results, we discuss the
experimental setting in more detail.

We have implemented the classical BB algorithm and our new execution
algorithm for full Java Virtual Machine (JVM) code [LY97]. This decision was
taken in view of the following reasons:

1. As already mentioned, we see the JVM as a natural target environment
for our execution—based algorithm, since it already contains an execution
environment and is sensitive to high memory overhead.

2. Except for native code compilers for Java [GJS96], all compilers generate
the same JVM code as target code. Consequently, we get realistic samples
independent of a specific compiler.

3. Java programs are distributed as JVM code, often available for free on the
internet.
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Although we omitted procedure/method calls from our model, we can handle
full JVM code. For intraprocedural analysis, we assume the result of method
invocations to be the top element of the lattice.

All these aspects allowed us to collect a large repository of JVM code with
little effort. In addition to active search, we established a web site for dona-
tions of class files at http://www-i2.informatik.rwth-aachen.de/ mohnen/
CLASSDONATE/. So far, we have collected 15,339 classes with a total of 98,947
methods. This large set of samples covers a wide range of applications, applets,
and APIs. To name a few, it contains the complete JDK runtime environment
(including AWT and Swing), the compiler generator ANTLR, the Byte Code
Engineering Library, and the knowledge-based system Protégé. The classes were
compiled by a variety of compilers: javac (Sun) in different version, jikes
(IBM), CodeWarrior (Metrowerks), and JBuilder (Borland). In some cases,
the class files were compiled to JVM code from other languages than Java, for
instance from Ada using Jgnat.

In contrast to a hand-selected suite of benchmarks like SPECjvm98 [SPE],
we do not impose any restrictions on the samples in the set: The samples may
contains errors or even might not be working at all. In our opinion, this allows a
better estimation of the “average case” a data—flow analyser must face in prac-
tice. Altogther, we consider our experiments suitable for estimating the benefits
and drawbacks of our method.

import de.fub.bytecode.generic.*;
import Domains.*;

public interface JVMAbstraction {
public Lattice getLattice();
public Element getInitialValue(InstructionHandle ih);
public Function getAbstract(InstructionHandle ih);

}

Fig. 6. Interface JVMAbstraction

However, we did not integrate our experiment in a JVM. Doing so would have
fixed the experiment to a specific architecture since the JVM implementation de-
pends on it. Therefore, we implemented the classical BB algorithm and our new
execution algorithm in Java, using the Byte Code Engineering Library [BD9g]
for accessing JVM class files. The implementation directly follows the notions de-
fined in Section 2: We used the interface concept of Java to model the concepts
of lattices, (JVM) abstractions, and data—flow problems. For instance, Fig. 6
shows the essential parts of the interface JUMAbstraction which models JVM
abstractions. Consequently, the algorithms do not depend on specific data—flow
problems. In contrast, our approach allows to model any data—flow problem sim-
ply by providing a Java class which implements the interface JUMAbstraction.
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Fig. 7. Histogram of memory reduction

For the experiment, we implemented constant folding propagation, as de-
scribed in the previous sections. All experiment were done on a system with
Pentium IIT at 750 Mhz, 256 MB main memory running under Linux 2.2.16
and Sun JDK 1.2.2. For each of the 98,947 JVM methods of the repository, we
measured memory usage and runtimes of both our algorithm and the classical
algorithm. The working set was implemented as a stack.

Memory improvement. Given the number of bytes mx allocated by our
algorithm and the number of bytes m¢ allocated by the classical algorithm, we
compute the memory reduction as the percentage myx /me *100. In the resulting
distribution, we found a maximal reduction of 7.28%, a minimal reduction of
74.61%, and an average reduction of 30.83%. Moreover, the median' is 31.28%,
which is very close to the average. Hence, our algorithm always reduces the
amount of memory and reached improvements upto less than a tenth! In the
average case, the reduction is about a third. Fig. 7 shows a histogram of the
distribution.

A study of the relation of number of instructions and memory reduction does
not reveal a relation between those values. In Fig. 8(a) each point represents
a method: The coordinates are the number of instructions on the horizontal
axis and memory reduction of the vertical axis. We have restricted the plot to
the interesting range up to 1,000 instructions: While the sample set contains
methods with up to 32,768 instructions, the average of instructions per method
is only 40.3546 and the median is only 11. Obviously, object—orientation has a
measurable impact on the structure of program.

Surprisingly, there is a relation between the amount of reduction caused by
BBs and memory reduction. One might expect that the classical algorithm is
better for higher amounts of reduction cause by BBs. However, this turns out to

! The median (or central value) of a distribution is the value with the property that
one half of the elements of the distribution is less or equal and the other half is
greater or equal.
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Fig. 8. Memory reduction of new algorithm

be a wrong: Fig. 8(b) shows that the new algorithm reduces the memory even
more for higher BB reductions.

Runtimes. For the study of runtimes, we use the speedup caused by the
use of the classical algorithm: If t¢ is the runtime of the classical algorithm
and tx is the runtime of our algorithm, we consider t¢/tx to be the speedup.
The distribution of speedups turned out to be a big surprise: Speedups vary
from 291.2 down to 0.015, but the mean is 1.62, median is 1.33, and variance
is only 7.49! Hence, for the majority of methods our algorithm performs as well
as the BB algorithm. Fig. 9 shows a histogram of the interesting area of the
distribution.

Again, relating speedup on one hand and number of instructions Fig. 10(a)
on the other hand did not reveal a significant correlation. In addition, and not
surprisingly, the speedup is higher for better BB reduction Fig. 10(b) .

. Ao . l

0.5 1. 1.5 2. 2.5 3.

BB Speedup

Fig. 9. Histogram of BB speedup
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Fig. 10. Speedup of classical algorithm

6 Conclusions and Future Work

We have shown that data—flow analysis can be done without explicit graph struc-
ture. Our new algorithm for computing the MFP solution of a data—flow problem
is based on the idea of the program executing on the abstract values. The advan-
tages resulting from the approach are less memory use, better data locality, and
no need for pre—processing or post—processing stages. We validated these expec-
tation by applying a test implementation to a large set of sample. It turned out
that while the runtimes are almost identical, our approach always saves between
a third and 9/10 of the memory used by the classical algorithm. In the average
case, it saves two thirds of the memory used by the classical algorithm.

The algorithm is very easy to implement in settings where there is already
a machinery for execution of programs available, for instance in Java Virtual
Machines. In addition, the absence of the graph makes the algorithm easier to
implement. In the presence of full JVM code, implementing BB graphs turned
out to be trickier than expected. In fact, after having implemented both ap-
proaches, errors in the implementation of the BB graphs were revealed by the
correct results of the new algorithm.
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