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Abstract 

After defining a class of generalized Fibonacci numbers and Lucas numbers, we 
characterize the Fibonacci pseudoprimes of the mth kind. 

In virtue of the apparent paucity of the composite numbers which are Fibonacci 
pseudoprimes of the mth kind for distinct values o f  the integral parameter m , a 
method, which we believe to be new, for finding large probable primes is proposed. An 
efficient computational algorithm is outlined. 

1. Introduction and generalities 

In this paper, after defining the generalized Fibonacci numbers V ,  and the generalized 
Lucas numbers V ,  (Set-1), the Fibonacci Pseudoprimes of the m th kind are 
characterized (Sec.2). 

In virtue of the scarceness of the pseudoprimes which are simultaneously of the m* 
kind for distinct values of m , a method for finding probable primes is proposed in 
Sec.3 (for a definition of probable primes see [ 11). 

In Sec.4 some theoretical aspects concerning the above said pseudoprimes are 
considered. 

Let m be an arbitrary natural number. The generalized Fibonacci numbers U,(m) 
(or simply U, , if there is no fear of confusion) and the generalized Lucas numbers 
V,(m ) (or simply V ,  ) are defined (e.g., see [2]) by the second order recurrence 
relations 
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Un+2= + U, ; UO = 0, Ul = 1 

and 

Vn+2=,mV,+1 + V ,  ; Vo = 2, Vl = m , 

respectively. These numbers can also be expressed [2] by means of the closed forms 
(Binet forms) 

where 

A = ( m 2 + 4 ) l n  

p = ( m - A ) / 2 .  
a = ( m + A ) / 2  (1 - 5 )  

The notations %, &, and A, will be employed whenever the meaning of a, p and A 
can be misunderstood (e.g., see Lemma 2). By (1.5) it can be seen that a/3 = -1 and 
a+ p = m . Moreover, it can be noted that, letting m = 1 in (1.1) and (1.2), the usual 
Fibonacci numbers F, and Lucas numbers L, turn out, respectively. 

A further interesting expression for V ,  is [3] 

In121 

where 

Rewriting (1.6) as 

[n / 21 

i =  1 
V, = mn+ n C 

noting that, if n is a 
theorem, the following 

prime then C,t, / n is ;in integer and using Fermat's little 
fundmenial  propcriy of [lie numbers V ,  is established 

Vn(m) = m (mod n ) Y m ( if n is ;I prime) . (1.9) 
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2. The Fibonacci pseudoprimes of the mth kind : definition and 
numerical aspects 

Observing (1.9), the following question arises spontaneously: "Do odd composites exist 
which satisfy this congruence?" The answer is affirmative.. 

We define as Fibonacci Pseudoprimes of the m th kind ( m-F.Psps.) all odd 
composite integers n for which Vn(m) = m (mod n ) and denote them by sk(m) ( k  
= 1, 2, ...). The corresponding sets will be denoted by S, , while the sets of all 
m-F.Psps. not exceeding a given n will be denoted by Sm, n .  For example, we found 

The numbers sk(1) have been analyzed in previous papers [4], [5]. In particular, 
we found that all composite integers belonging to Sl, (for n = 108) are square-free 
and most of them are congruent to 1 both modulo 4 (82.3 S) and modulo 10 (63.2 %). 
Moreover, we noted that this behavior seems to become more marked as n increases, 
but we were not able to find any justification of these facts. 

Now, another question arises:"Do odd composite integers exist which are 
m-F.Psps. for distinct values of m ?" Once again, the answer is affirmative. For 
example, the number 34,561 = I7 - 19 . 107 is the smallest number belonging to both 

A computer experiment was carried out essentially to determine the cardinality of 

that ~ l ( 1 )  = 705 = 3 * 5 * 47, ~ l ( 2 )  = 169 = 132 and ~ i ( 3 )  = 33 = 3  * 11 . 

S1 and S2 . 

the intersections 

Namely, we found that, for n = l o g ,  

The fact that Gn, 3 and Gn, 
(Sec.4). The numbers (below 108) belonging to these two sets are 

have the same cardinality will be justified by Theor.6 

~89(l)  = 1,034,881 = 41 * 43 * 587 
~ ~ ~ ~ ( 1 )  = 2,184,533 = 13 - 197.853 
~ 3 ~ ( 1 )  = 15,485,185 = 5.79.197 * 199 
s561(l) = 39,002,041 = 13 .19 * 269 .5S7 
~ 8 0 2 ( l )  = 87,318,001 = 17 * 71 . 73 .991 

of which the latter belongs also to Gn, , besides being a Carmichael number [I I . 

vs. n is shown in fig.1, while the behavior of I Gn 
Let o,(n) = I §m, I be the rn-F.Psp.-counting function. The behavior of ol(n) 

I is shown in table 1. 
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Fig.1- Behavior of ol(n) vs n . 

Table 1 

n 

6*107 
7.107 
8*107 
9*107 
108 

39 
41 
44 
45 
48 

100 

Numerically,q(n) seems asymptotically related to the prime-counting function 
z (n).The inspection of fig.1 suggests the following 

CONJECTURE I : “There exists a positive constant c not exceeding 1 such that cT~(n) is 
asymptotic to c ~ ( . l n ) . ~ ~  

3. A possible probabilistic prirniility test 

The numerical evidence that turns out from the experimental results suggests a 

Let c a >b denote the remainder of a divided by b. For given integers n (odd) 
method for obtaining probable primes . 

and M ( n > M ), let us calculate 
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r, = < V,(rn) >, for rn = 1,2, ... , M . (3.1) 

If r,  f m for some value of m , then n is composite. If n passes M consecutive 
tests, that is if r, = m for all values of m (1 I m 5 M ) ,  then n is a probable prime 
(with probability P, ). A thorough investigation of the properties of the m-F.Psps. 
could suggest a suitable value for M depending on the order of magnitude of n . This 
will be the aim of a future work. 

It must be noted that, if Conj.1 were proved, a sufficiently large n which passes 
the first test ( m = 1) would be prime with probability 

P , = 1 - 2 c / d n .  (3.2) 

Due to the apparent extreme scarceness of the composites n E 5, ( m = 1,2, ... , M 1, 
the probability PM seems to rapidly increase as M increases, The choice of the most 
suitable set of tests to which submit n is still an open problem. 

By suitably modifying the algorithm for obtaining r1 = < L, >, [4], an efficient 
calculation of V ,  reduced modulo n can be performed. The so-obtained algorithm 
finds r ,  after [log, n]  recursive calculations. For example, ascertaining that the 
81-digit composite 

1 10,221,474,294,665,636,794,O 1 6,854,99 1,608,758,669,69 1,745,119, 
008,792,721,304,656,075,481,680,733,031,679 

belongs to S, required a calculation time of about 25 seconds on a VAX 11 / 750 
computer. 

4. Some properties of the m-F.Psps. 

In this section several properties of the m-F.Psps. are demonstrated . We hope that 
they can lead to the discovery of further properties of these numbers. In particular, a 
formula which gives the minimum value of M ( or an upper bound for this value) 
for which I G,, I = 0, once n is given, would be greatly appreciated. 

First, let us state some theorems concerning the case rn = 1. 

THEOREM I : If n is an odd integer not divisible by 3 and L,  = 1 (mod n ), then 

L = 1 (mod L , ) .  
=?I 

Proof: Since it is known [6] that L, is odd, we can write 
L n = 4 h + 1 = l ( m o d n )  ( h  E N  = { 0 , 1 , 2  ,... I ) .  



216 

We have 2h = 0 (mod n ), whence [7] 

F2h 0 (mod L, ) . 

From the identities available in [8, p.951, we can write 

whence, by (4.1), 

L - l =  5 - 0 . F u t + l  =O(modL,). 
Ln 

Case2: Ln=4h-1=1(modn)  

We have 2h - 1 = 0 (mod n ), whence [7] 

Again from [8, p.951, we can write 

whence, by (4.3), 

L - I =  ~h-O'o(mOdL,) .  Q.E.D. 
4 

From Theor.l we can derive the following corollaries. 

COROLLARY I : If p 2 5 is a prime and Lp is composite, then Lp E $1 . 

COROLLARY 2 : If n is not divisible by 3 and belongs to S, ,  then L, E S1. 

Proof: 

( i ) From Theor.1 we have L = 1 (mod L, ). 

( ii ) By hypothesis n = s t ,  with s and t odd integers not divisible by 3. Hence 
L, is odd and composite [7]. This completes the proof. It can be noted that also L, is 
not divisible by 3, as n is odd [6]. 

=n 

Q.E.D. 
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If n is not divisible by 3 and belongs to S,, then the number L,  fulfils the same 
conditions. Therefore, we can claim that 

and such a statement can be iterated ad infinitum , so that 

LL E s, . 

Consequently, since there exists at least a number sk( 1) not divisible by 3 (the smallest 
among them is ~ ~ ( 1 )  = 2,465) the following proposition can be stated 

PROPOSi77ON I (Conj. 3 in [4]) : There exist infinitely many I -F.Psps. 

THEOREM 2 : For k E N , 

Proof : The statement holds clearly for k = 0,l. In fact, we have 
= 1 (mod 3). Hence, let us consider k 2 2. It is known [ 9 ]  that 

b k  + 1 = 0 (mod 2k ), 

so, b k  can be rewritten as 

In order to satisfy the congruence 

L -1 =O(modL;?k) 
L 2 k  

L1 = 1 (mod 1) and L3 

(4.5) 

(4.8) 

it suffices that the left factor on the right-hand side of (4.7) is divisible by Gk, that is, it 
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suffices [7] that h2k-1 is an odd multiple of 2k. Equivalently, we can say that the 
fulfilment of the equality h = 2(21 + 1 ) ( t E N ), that is of the equality (see (4.6)) 

L2k+ 1 =(2 t+  1)2k+1 ( I  E N )  , (4.9) 

is a sufficient condition for the congruence (4.8) to be satisfied. 

identity I,, [lo] which allows us to write 
To establish the general validity of (4.9) we shall use induction on k and the 

The equality (4.9) holds for k = 2. In fact, we have L, + 1 = 8 = (2 - 0 + l)z3 . k t  us 
suppose that (4.9) holds up to a certain k > 2. For the inductive step k + k + 1, from 
(4.10) and (4.9) we can write 

COROLLARY 3 : If L2k is composite, then L2k E Sl. 

To prove the next theorem we need the following 

LEMMA 1 : If L ,  = 0 (mod n ), then L,  5 0 (mod 3n ). 

Proof: The congruence L,  E 0 (mod n ) implies (8, Theor. F, p.721 that 

n = 6 ( 2 k + l ) = 2 * 3 ' + ' ( 6 h f l )  ( k , r , h  E N ) .  (4.1 1) 

Therefore, it suffices to prove that 

L, = &.3r+1(6M1) 5 0 (mod 3r+2). (4.12) 

Let us invoke induction on r . The congruence (4.12) holds for r = 0. In fact, 
considering the sequence ( L, ) reduced modulo 9 [6], it is readily seen that L6(,9&1) 
I 0 (mod 9). Let us suppose that (4.12) holds up to a certain r > 0. For the inductive 
step r + r + 1, using the identity L,+l = LAf - L,, ( r even) [lo], we write 
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It is known [6] that L4.3'+1(6Ml) = 1 (mod 3). Then, by (4.13) and hypothesis we 
obtain the congruence 4 . 3 r + 2 ( 6 f i l )  = 0 (mod 3'+3 ). Q.E.D. 

THEOREM.? : If L, = 0 (mod n ), then 

= 1 (mod L, - 1). L Ln-1 

Proof: Since we have necessarily (see (4.1 1)) n = 6(2h + 1) and, therefore [6] 
L, = 4k + 2 ( k E N ), from Lemnia 1 we have Ln = 4k + 2 = 0 (mod 18(2h + 1)) 
( h E N), that is 

2k + 1 = 0 (mod 9(2h + 1)). 

From [8, p.951 we can write 

Ln - = L4(3h+1)+2 - = F3[2(3h+l)+l] /F2(3h+l )+ l  

whence 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

Since, by (4.16) and (4.14). we see that L,  - 1 I F9(2h+l) and [71 F,(,h+,) I Fzk+l,  
from (4.17) we obtain 

L - 1 = S F 2 - O = O ( m o d  L,-1) .  Q.E.D. Ln-1 

COROLLARY 4 : If L, = 0 (mod n ) and L,  - 1 (necessarily odd) is composite, then 
L,-1 E s , .  

COROLLARY 5 (see [ 111): If L2.3k - 1 ( k 2 1) is composite, then L2.3k - 1 E S 1  . 

THEOREM 4 : If n = p l  p2 * - p k ,  with p i =  5hi i 1 (1 5 i I k )  is a Carmichael 
number, then n E S1 . 
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Proof: Let Pi  be a repetition period (not necessarily the shortest period) of the Lucas 
sequence reduced modulo the prime pi and let A = l.c.m.(PI, P 2  ... Qk ). 

A sufficient condition for n to belong to Sl is that 

M + l = n  ( h ~  N). (4.18) 

In fact, the fulfilment of this condition implies that LhA+l 5 L, = 1 (modpl p2 ...pk ). 
On the other hand, it is known [6] tliat if  pi = 5hi k 1, tlicn Pi = pi - 1. Therefore, it is 
immediately seen that A equals the Caniiichael A function [l]. Since , by hypothesis, 
A I n - 1, from (4.18) the theorem is proved. Q.E.D. 

The smallest Carmichael number of the above type which is also a l-F.Psp. is 
s44(l) = 252,601 = 4Z - 61 - ZOI, while the absolutely smallest Carmichael number 
which is also a 1-F.Psp. is s2( 1) = 2,465 = 5 . I 7  * 29. 

Now, let us state some theorems concerning the case m 2 1. 

THEOREM5 : If p 2 5 is a prime such that A2 is not divisible by p , then 

V m (mod U p ) .  
UP 

Proof: On the basis of the periodicity of the sequence ( U,, ) reduced modulo 4 [6] ,  it 
can be readily proved that, if p 2 5 ,  then Up has the form 4h + 1 ( h E M ). Since we 
have [121 Up = +1 (modp ) (except for the case A2 = 0 (modp ) which implies Up 3 
0 (modp )), we can write Up = 4h + 1 E 51 (mod p ). 

CaseI : Up=4h+ 1 = 1 (modp) 

We have 2h = 0 (mod p ) and, since [ 121 Un I U, , 

U2h = 0 (mod Up ) 

By using the identity 

easily obtainable with the aid of (1.3) and (1,4), we have 

V - m  = V&+1 -m = A2U2,CT2,1+1 
UP 

whence, by (4.19) 

(4.19) 

(4.20) 

(4.21) 
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V - m  I Az.0-U2h+l=O(rnodUp). 
UP 

Cme2: Up =4h+ 1 r-1 (rnodp) 

The proof is analogous to that of Case 1 and is omitted for brevity. Q.E.D. 

It must be noted that, for m = 1 and p = 5 .  the statement of Theor.5 is true even 
though A2 = 5 = 0 (mod 5). In fact, we have 

LFs = L5 = 11 3 1 (mod F ). 
5 

COROLLARY 6: If p 2 5 is a prime, A2 is not divisible by p and Up (necessarily odd) 
is composite, then Up E Sm . 

COROLLARY 7 : If p is a prime and Fp is composite, then Fp E S1 . 

In order to prove the last theorem, we need to prove the following two lemmata. 

(4.22) 

Using (1.4), (4.22) becomes 

2k+ 1 2k+l 
= {% + p:k+'+ (a,,2k+' -pm2k+')} / 2  = % . (4.23) 

Analogously, it is seen that 

(4.24) 

The statement of the lemma follows directly from (4.23), (4.24) and (1.4). Q.E.D. 
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LEMMA 3: If h E N and n E Sm,, then V h ( m )  = Vh(m) (mod n 1. 

Proof: Let us rewrite the result established in [13, Cor. 71 as 

(4.25) 

By hypothesis, (4.25) and (1.6), we can write 

THEOREM 6: If an odd composite n passes the m th test, then it passes also the 
Va+l(m)th tests ( k = 1,2, ...). 

As particular cases, we see that 

199,521, 1364, _.. 
- if n passes the 1st test ( m = l), then it passes also the tests for m = 4, 11,29,76, 

- if n passes the 2nd test ( m = 2), then it passes also for m = 14,232,478,2786, ... 
- if n passes the 3'd test ( m = 3), then it passes also for m = 36,393,4287,46764, ... 
- if n passes the 4* test ( m = 4), then it passes also for rn = 76,1364, .__ (cf. the 

tests passed for m = 1) . 

5. Conclusion 

Public-key cryptosystems make use of primes having approximately 100 digits, so we 
wish to conclude this paper with two questions. 

Pessimist's question : "Do odd composites n I 1O*m exist which are m-F.Psps. for 
all values of m I n - 1 ?" 

If such numbers exist, they will never reveal their compositeness under our test. 
Optimist's question : "Let M' be the maximum number of consecutive tests (m = 1, 

2, ... , M") passed by any odd composite n I Is M' comparatively small (say M' 
I 5 0 ) ?  

If the answer is in affirmative, then the method proposed in Sec.3 can readily find 
primes for cryptographic purposes. The calculation time is slightly less than that 
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required by the method proposed by Solovay & Strassen [ 141 for finding numbers that 
are prime with probability greater than or equal to 1 - 1 / 2M' . 

The authors offer a prize of 50,000 Italian Lire to the first person who 
communicates to them an odd composite (below lo1(@) which is an rn-F.Psp. for m = 
1, 2, ... , 8. Of course, at least one of its factors is also requested. A decuple pnze is 
offered to the first person who sends to them a proof that no such number exists. 

A table of l-F.Psps to 10s was compiled by the authors. It will be sent, free of 
charges, upon request. 
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