A PROBABILISTIC PRIMALITY TEST BASED ON THE PROPERTIES OF CERTAIN GENERALIZED LUCAS NUMBERS

Adina Di Porto and Piero Filipponi
Fondazione Ugo Bordoni
I-00142 Roma, Italy

Abstract

After defining a class of generalized Fibonacci numbers and Lucas numbers, we characterize the Fibonacci pseudoprimes of the $m^{\text {th }}$ kind.

In virtue of the apparent paucity of the composite numbers which are Fibonacci pseudoprimes of the $m^{\text {th }}$ kind for distinct values of the integral parameter m, a method, which we believe to be new, for finding large probable primes is proposed. An efficient computational algorithm is outlined.

1. Introduction and generalities

In this paper, after defining the generalized Fibonacci numbers U_{n} and the generalized Lucas numbers V_{n} (Sec.1), the Fibonacci Pseudoprimes of the m th kind are characterized (Sec.2).

In virtue of the scarceness of the pseudoprimes which are simultaneously of the $m^{\text {th }}$ kind for distinct values of m, a method for finding probable primes is proposed in Sec. 3 (for a definition of probable primes see [1]).

In Sec. 4 some theoretical aspects concerning the above said pseudoprimes are considered.

Let m be an arbitrary natural number. The generalized Fibonacci numbers $U_{n}(m)$ (or simply U_{n}, if there is no fear of confusion) and the generalized Lucas numbers $V_{n}(m)$ (or simply V_{n}) are defined (e.g., see [2]) by the second order recurrence relations

[^0]\[

$$
\begin{equation*}
U_{n+2}=m U_{n+1}+U_{n} ; \quad U_{0}=0, U_{1}=1 \tag{1.1}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
V_{n+2}=, m V_{n+1}+V_{n} ; V_{0}=2, V_{1}=m \tag{1.2}
\end{equation*}
$$

respectively. These numbers can also be expressed [2] by means of the closed forms (Binet forms)

$$
\begin{align*}
& U_{n}=\left(\alpha^{n}-\beta^{n}\right) / \Delta, \tag{1.3}\\
& V_{n}=U_{n-1}+U_{n+1}=\alpha^{n}+\beta^{n}, \tag{1.4}
\end{align*}
$$

where

$$
\left\{\begin{array}{l}
\Delta=\left(m^{2}+4\right)^{1 / 2} \tag{1.5}\\
\alpha=(m+\Delta) / 2 \\
\beta=(m-\Delta) / 2
\end{array}\right.
$$

The notations α_{m}, β_{m} and Δ_{m} will be employed whenever the meaning of α, β and Δ can be misunderstood (e.g., see Lemma 2). By (1.5) it can be seen that $\alpha \beta=-1$ and $\alpha+\beta=m$. Moreover, it can be noted that, letting $m=1$ in (1.1) and (1.2), the usual Fibonacci numbers F_{n} and Lucas numbers L_{n} turn out, respectively.

A further interesting expression for V_{n} is [3]

$$
\begin{equation*}
V_{n}=\sum_{i=0}^{[n / 2]} C_{n, i} m^{n-2 i} \tag{1.6}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
C_{0,0}=2 \tag{1.7}\\
C_{n, i}=\frac{n}{n-i}\binom{n-i}{i}
\end{array}\right.
$$

Rewriting (1.6) as

$$
\begin{equation*}
V_{n}=m^{n}+n \sum_{i=1}^{[n / 2]} \frac{C_{n, i}}{n} m^{n-2 i}, \quad(n \geq 1) \tag{1.8}
\end{equation*}
$$

noting that, if n is a prime then $C_{n, i} / n$ is an integer and using Fermat's little theorem, the following fundamental property of the numbers V_{n} is established

$$
\begin{equation*}
V_{n}(m) \equiv m(\bmod n) \quad \forall m \quad(\text { if } n \text { is a prime }) \tag{1.9}
\end{equation*}
$$

2. The Fibonacci pseudoprimes of the $\boldsymbol{m}^{\text {th }}$ kind : definition and numerical aspects

Observing (1.9), the following question arises spontaneously: "Do odd composites exist which satisfy this congruence?" The answer is affirmative.

We define as Fibonacci Pseudoprimes of the $m^{\text {th }}$ kind (m-F.Psps.) all odd composite integers n for which $V_{n}(m) \equiv m(\bmod n)$ and denote them by $s_{k}(m)$ (k $=1,2, \ldots$). The corresponding sets will be denoted by S_{m}, while the sets of all m-F.Psps. not exceeding a given n will be denoted by $S_{m, n}$. For example, we found that $s_{1}(1)=705=3 \cdot 5 \cdot 47, s_{1}(2)=169=13^{2}$ and $s_{1}(3)=33=3 \cdot 11$.

The numbers $s_{k}(1)$ have been analyzed in previous papers [4], [5]. In particular, we found that all composite integers belonging to $\mathbb{S}_{1, n}$ (for $n=10^{8}$) are square-free and most of them are congruent to 1 both modulo 4 (82.3%) and modulo $10(63.2 \%)$. Moreover, we noted that this behavior seems to become more marked as n increases, but we were not able to find any justification of these facts.

Now, another question arises:"Do odd composite integers exist which are m-F.Psps. for distinct values of m ?" Once again, the answer is affirmative. For example, the number $34,561=17 \cdot 19 \cdot 107$ is the smallest number belonging to both S_{1} and S_{2}.

A computer experiment was carried out essentially to determine the cardinality of the intersections

$$
\begin{equation*}
G_{n, M}=\bigcap_{m=1}^{M} \mathbb{S}_{m, n}\binom{n=10^{8}}{M=1,2, \ldots, \mu\left(\mu: G_{n, \mu}=\varnothing, G_{n, \mu-1} \neq \varnothing\right)} . \tag{2.1}
\end{equation*}
$$

Namely, we found that, for $n=10^{8}$,

$$
\begin{aligned}
& \left|G_{n, 1}\right|=\left|\mathbb{S}_{1, n}\right|=852,\left|G_{n, 2}\right|=48,\left|G_{n, 3}\right|=\left|G_{n, 4}\right|=5, \\
& \left|G_{n, 5}\right|=\left|G_{n, 6}\right|=\left|G_{n, 7}\right|=1,\left|G_{n, 8}\right|=0 .
\end{aligned}
$$

The fact that $\mathbb{G}_{n, 3}$ and $\mathbb{G}_{n, 4}$ have the same cardinality will be justified by Theor. 6 (Sec.4). The numbers (below 10^{8}) belonging to these two sets are

$$
\begin{aligned}
s_{89}(1) & =1,034,881=41 \cdot 43 \cdot 587 \\
s_{137}(1) & =2,184,533=13 \cdot 197 \cdot 853 \\
s_{364}(1) & =15,485,185=5 \cdot 79 \cdot 197 \cdot 199 \\
s_{561}(1) & =39,002,041=13 \cdot 19 \cdot 269 \cdot 587 \\
s_{802}(1) & =87,318,001=17 \cdot 71 \cdot 73 \cdot 991
\end{aligned}
$$

of which the latter belongs also to $\mathbb{G}_{n, 7}$, besides being a Carmichael number [1].
Let $\sigma_{m}(n)=\left|S_{m, n}\right|$ be the m-F.Psp.-counting function. The behavior of $\sigma_{1}(n)$ vs. n is shown in fig. 1 , while the behavior of $\left|G_{n, 2}\right|$ is shown in table 1 .

Fig.1-Behavior of $\sigma_{1}(n)$ vs n.

Table 1

n	$\left\|G_{n, 2}\right\|$	n	$\left\|G_{n, 2}\right\|$
10^{7}	18	$6 \cdot 10^{7}$	39
$2 \cdot 10^{7}$	27	$7 \cdot 10^{7}$	41
$3 \cdot 10^{7}$	30	$8 \cdot 10^{7}$	44
$4 \cdot 10^{7}$	36	$9 \cdot 10^{7}$	45
$5 \cdot 10^{7}$	38	10^{8}	48

Numerically, $\sigma_{1}(n)$ seems asymptotically related to the prime-counting function $\pi(n)$.The inspection of fig. 1 suggests the following

CONJECTURE I : "There exists a positive constant c not exceeding 1 such that $\sigma_{1}(n)$ is asymptotic to $c \pi(\sqrt{ } n)$."

3. A possible probabilistic primality test

The numerical evidence that turns out from the experimental results suggests a method for obtaining probable primes.

Let $\langle a\rangle_{b}$ denote the remainder of a divided by b. For given integers n (odd) and $M(n>M)$, let us calculate

$$
\begin{equation*}
r_{m}=\left\langle V_{n}(m)\right\rangle_{n} \quad \text { for } m=1,2, \ldots, M \tag{3.1}
\end{equation*}
$$

If $r_{m} \neq m$ for some value of m, then n is composite. If n passes M consecutive tests, that is if $r_{m}=m$ for all values of m ($1 \leq m \leq M$), then n is a probable prime (with probability P_{M}). A thorough investigation of the properties of the m-F.Psps. could suggest a suitable value for M depending on the order of magnitude of n. This will be the aim of a future work.

It must be noted that, if Conj. 1 were proved, a sufficiently large n which passes the first test ($m=1$) would be prime with probability

$$
\begin{equation*}
P_{1} \approx 1-2 c / V_{n} \tag{3.2}
\end{equation*}
$$

Due to the apparent extreme scarceness of the composites $n \in \mathbb{S}_{m}(m=1,2, \ldots, M)$, the probability P_{M} seems to rapidly increase as M increases. The choice of the most suitable set of tests to which submit n is still an open problem.

By suitably modifying the algorithm for obtaining $r_{1}=\left\langle L_{n}\right\rangle_{n}$ [4], an efficient calculation of V_{n} reduced modulo n can be performed. The so-obtained algorithm finds r_{m} after $\left[\log _{2} n\right]$ recursive calculations. For example, ascertaining that the 81-digit composite
$110,221,474,294,665,636,794,016,854,991,608,758,669,691,745,119$,
$008,792,721,304,656,075,481,680,733,031,679$
belongs to \mathbb{S}_{1} required a calculation time of about 25 seconds on a VAX $11 / 750$ computer.

4. Some properties of the $m-$ F.Psps.

In this section several properties of the m-F.Psps. are demonstrated. We hope that they can lead to the discovery of further properties of these numbers. In particular, a formula which gives the minimum value of M (or an upper bound for this value) for which $\left|G_{n, M}\right|=0$, once n is given, would be greatly appreciated.

First, let us state some theorems concerning the case $m=1$.

THEOREM $1:$ If n is an odd integer not divisible by 3 and $L_{n} \equiv 1(\bmod n)$, then

$$
L_{L_{n}} \equiv 1\left(\bmod L_{n}\right)
$$

Proof: Since it is known [6] that L_{n} is odd, we can write

$$
L_{n}=4 h \pm 1 \equiv 1(\bmod n) \quad(h \in \mathbb{N}=\{0,1,2, \ldots\})
$$

Case $1: L_{n}=4 h+1 \equiv 1(\bmod n)$

We have $2 h \equiv 0(\bmod n)$, whence [7]

$$
\begin{equation*}
F_{2 h} \equiv 0\left(\bmod L_{n}\right) \tag{4.1}
\end{equation*}
$$

From the identities available in $[8, \mathrm{p} .95]$, we can write

$$
\begin{equation*}
L_{L_{n}}-1=L_{4 h+1}-1=5 F_{2 h} F_{2 h+1} \tag{4.2}
\end{equation*}
$$

whence, by (4.1),

$$
L_{L_{n}}-1 \equiv 5 \cdot 0 \cdot F_{2 h+1} \equiv 0\left(\bmod L_{n}\right)
$$

Case 2: $L_{n}=4 h-1 \equiv 1(\bmod n)$
We have $2 h-1 \equiv 0(\bmod n)$, whence [7]

$$
\begin{equation*}
L_{2 h-1} \equiv 0\left(\bmod L_{n}\right) \tag{4.3}
\end{equation*}
$$

Again from [8, p.95], we can write

$$
\begin{equation*}
L_{L_{n}}-1=L_{4 h-1}-1=L_{2 h} L_{2 h-1} \tag{4.4}
\end{equation*}
$$

whence, by (4.3),

$$
L_{L_{n}}-1 \equiv L_{2 h} \cdot 0 \equiv 0\left(\bmod L_{n}\right) . \quad \text { Q.E.D. }
$$

From Theor. 1 we can derive the following corollaries.

COROLLARY $1:$ If $p \geq 5$ is a prime and L_{p} is composite, then $L_{p} \in \mathbb{S}_{1}$.

COROLLARY 2 : If n is not divisible by 3 and belongs to \mathbb{S}_{1}, then $L_{n} \in \mathbb{S}_{1}$.
Proof:
(i) From Theor. 1 we have $L_{L_{n}} \equiv 1\left(\bmod L_{n}\right)$.
(ii) By hypothesis $n=s t$, with s and t odd integers not divisible by 3. Hence L_{n} is odd and composite [7]. This completes the proof. It can be noted that also L_{n} is not divisible by 3 , as n is odd [6]. Q.E.D.

If n is not divisible by 3 and belongs to S_{1}, then the number L_{n} fulfils the same conditions. Therefore, we can claim that
$L_{L_{n}} \in \mathbb{S}_{1}$,
and such a statement can be iterated ad infinitum, so that

$$
L_{L} \quad \in \mathbb{S}_{1}
$$

Consequently, since there exists at least a number $s_{k}(1)$ not divisible by 3 (the smallest among them is $\left.s_{2}(1)=2,465\right)$ the following proposition can be stated

PROPOSITION 1 (Conj. 3 in [4]) : There exist infinitely many 1-F.Psps.

THEOREM 2: For $k \in \mathbb{N}$,

$$
L_{L_{2} k} \equiv 1\left(\bmod L_{2^{k}}\right)
$$

Proof: The statement holds clearly for $k=0,1$. In fact, we have $L_{1} \equiv 1(\bmod 1)$ and L_{3} $\equiv 1(\bmod 3)$. Hence, let us consider $k \geq 2$. It is known [9] that

$$
\begin{equation*}
L_{2^{k}}+1 \equiv 0\left(\bmod 2^{k}\right) \tag{4.5}
\end{equation*}
$$

so, $L_{2} k$ can be rewritten as

$$
\begin{equation*}
L_{2^{k}}=h 2^{k}-1 \quad(h \in N) \tag{4.6}
\end{equation*}
$$

From (4.6) and [8, p.95] we can write

$$
\begin{equation*}
L_{L_{2^{k}}}-1=L_{h 2^{k}-1}-1=L_{4 h 2^{k-2}-1}-1=L_{h 2^{k-1}} L_{h 2^{k-1}-1} \tag{4.7}
\end{equation*}
$$

In order to satisfy the congruence

$$
\begin{equation*}
L_{L_{2^{k}}}-1 \equiv 0\left(\bmod L_{2^{k}}\right) \tag{4.8}
\end{equation*}
$$

it suffices that the left factor on the right-hand side of (4.7) is divisible by $L_{2} k$, that is, it
suffices [7] that $h 2^{k-1}$ is an odd multiple of 2^{k}. Equivalently, we can say that the fulfilment of the equality $h=2(2 t+1)(t \in N)$, that is of the equality (see (4.6))

$$
\begin{equation*}
L_{2^{k}+1}=(2 t+1) 2^{k+1} \quad(t \in \mathbb{N}) \tag{4.9}
\end{equation*}
$$

is a sufficient condition for the congruence (4.8) to be satisfied.
To establish the general validity of (4.9) we shall use induction on k and the identity $I_{15}[10]$ which allows us to write

$$
\begin{equation*}
L_{2^{k+1}}=L_{2^{k}}^{2}-2 \tag{4.10}
\end{equation*}
$$

The equality (4.9) holds for $k=2$. In fact, we have $L_{4}+1=8=(2 \cdot 0+1) 2^{3}$. Let us suppose that (4.9) holds up to a certain $k>2$. For the inductive step $k \rightarrow k+1$, from (4.10) and (4.9) we can write

$$
L_{2^{k+1}}+1=L_{2^{k}}^{2}-1=\left[(2 t+1) 2^{k+1}-1\right]^{2}-1=\left(2 t_{1}+1\right) 2^{k+2} \quad\left(t_{1} \in \mathbb{N}\right)
$$

QE.D.

COROLLARY 3 : If $L_{2} k$ is composite, then $L_{2} k \in \mathbb{S}_{1}$.
To prove the next theorem we need the following

LEMMA 1: If $L_{n} \equiv 0(\bmod n)$, then $L_{n} \equiv 0(\bmod 3 n)$.
Proof: The congruence $L_{n} \equiv 0(\bmod n)$ implies [8, Theor. F, p.72] that

$$
\begin{equation*}
n=6(2 k+1)=2 \cdot 3^{r+1}(6 h \pm 1) \quad(k, r, h \in N) \tag{4.11}
\end{equation*}
$$

Therefore, it suffices to prove that

$$
\begin{equation*}
L_{n}=L_{2 \cdot 3^{r+1}(6 h+1)} \equiv 0\left(\bmod 3^{r+2}\right) \tag{4.12}
\end{equation*}
$$

Let us invoke induction on r. The congruence (4.12) holds for $r=0$. In fact, considering the sequence $\left\{L_{n}\right.$ \} reduced modulo 9 [6], it is readily seen that $L_{6(6 h \pm 1)}$ $\equiv 0(\bmod 9)$. Let us suppose that (4.12) holds up to a certain $r>0$. For the inductive step $r \rightarrow r+1$, using the identity $L_{s+t}=L_{s} L_{t}-L_{s-t}$ (t even) [10], we write

$$
\begin{equation*}
L_{2 \cdot 3^{r+2}(6 h \pm 1)}=L_{(2+1) \cdot 2 \cdot 3^{r+1}(6 h \pm 1)}=L_{2 \cdot 3^{r+1}(6 h \pm 1)}\left(L_{4 \cdot 3^{r+1}(6 h \pm 1)}-1\right) \tag{4.13}
\end{equation*}
$$

It is known [6] that $L_{4 \cdot 3^{r+1}(6 h \pm 1)} \equiv 1(\bmod 3)$. Then, by (4.13) and hypothesis we obtain the congruence $L_{2} \cdot 3^{r+2}(6 h \pm 1) \equiv 0\left(\bmod 3^{r+3}\right)$. Q.E.D.

THEOREM 3 : If $L_{n} \equiv 0(\bmod n)$, then

$$
L_{L_{n}-1} \equiv 1\left(\bmod L_{n}-1\right)
$$

Proof: Since we have necessarily (see (4.11)) $n=6(2 h+1)$ and, therefore [6] $L_{n}=4 k+2(k \in N)$, from Lemma 1 we have $L_{n}=4 k+2 \equiv 0(\bmod 18(2 h+1))$ ($h \in \mathbb{N}$), that is

$$
\begin{equation*}
2 k+1 \equiv 0(\bmod 9(2 h+1)) \tag{4.14}
\end{equation*}
$$

From [8, p.95] we can write

$$
\begin{equation*}
L_{n}-1=L_{4(3 h+1)+2}-1=F_{3[2(3 h+1)+1]} / F_{2(3 h+1)+1} \tag{4.15}
\end{equation*}
$$

whence

$$
\begin{equation*}
F_{3[2(3 h+1)+1]}=F_{9(2 h+1)} \equiv 0\left(\bmod L_{n}-1\right) \tag{4.16}
\end{equation*}
$$

Again, from [8, p.95], we have

$$
\begin{equation*}
L_{L_{n}-1}-1=L_{4 k+1}-1=5 F_{2 k} F_{2 k+1} \tag{4.17}
\end{equation*}
$$

Since, by (4.16) and (4.14), we see that $L_{n}-1 \mid F_{9(2 h+1)}$ and [7] $F_{9(2 h+1)} \mid F_{2 k+1}$, from (4.17) we obtain

$$
L_{L_{n}-1}-1 \equiv 5 F_{2 k} \cdot 0 \equiv 0\left(\bmod L_{n}-1\right) . \quad \text { Q.E.D. }
$$

COROLLARY $4:$ If $L_{n} \equiv 0(\bmod n)$ and $L_{n}-1$ (necessarily odd) is composite, then $L_{n}-1 \in \mathbb{S}_{1}$.

COROLLARY 5 (see [11]): If $L_{2 \cdot 3^{k}-1(k \geq 1) ~ i s ~ c o m p o s i t e, ~ t h e n ~} L_{2 \cdot 3^{k}}-1 \in S_{1}$.

THEOREM 4: If $n=p_{1} p_{2} \cdots p_{k}$, with $p_{i}=5 h_{i} \pm 1(1 \leq i \leq k)$ is a Carmichael number, then $n \in \mathbb{S}_{1}$.

Proof: Let P_{i} be a repetition period (not necessarily the shortest period) of the Lucas sequence reduced modulo the prime p_{i} and let $\Lambda=$ l.c.m. $\left(P_{1}, P_{2}, \ldots, P_{k}\right)$.

A sufficient condition for n to belong to \mathbb{S}_{1} is that

$$
\begin{equation*}
h \Lambda+1=n \quad(h \in \mathbb{N}) \tag{4.18}
\end{equation*}
$$

In fact, the fulfilment of this condition implies that $L_{h \lambda+1} \equiv L_{1} \equiv 1\left(\bmod p_{1} p_{2} \ldots p_{k}\right)$. On the other hand, it is known [6] that if $p_{i}=5 h_{i} \pm 1$, then $P_{i}=p_{i}-1$. Therefore, it is immediately seen that Λ equals the Carmichael λ function [1]. Since, by hypothesis, $\Lambda \mid n-1$, from (4.18) the theorem is proved. Q.E.D.

The smallest Carmichael number of the above type which is also a 1-F.Psp. is $s_{44}(1)=252,601=41 \cdot 61 \cdot 101$, while the absolutely smallest Carmichael number which is also a 1-F.Psp. is $s_{2}(1)=2,465=5 \cdot 17 \cdot 29$.

Now, let us state some theorems conceming the case $m \geq 1$.

THEOREM 5: If $p \geq 5$ is a prime such that Δ^{2} is not divisible by p, then

$$
V_{U_{p}} \equiv m\left(\bmod U_{p}\right)
$$

Proof: On the basis of the periodicity of the sequence $\left\{U_{n}\right\}$ reduced modulo 4 [6], it can be readily proved that, if $p \geq 5$, then U_{p} has the form $4 h+1(h \in N)$. Since we have [12] $U_{p} \equiv \pm 1(\bmod p)\left(\right.$ except for the case $\Delta^{2} \equiv 0(\bmod p)$ which implies $U_{p} \equiv$ $0(\bmod p)$), we can write $U_{p}=4 h+1 \equiv \pm 1(\bmod p)$.

Case 1: $U_{p}=4 h+1 \equiv 1(\bmod p)$
We have $2 h \equiv 0(\bmod p)$ and, since [12] $U_{n} \mid U_{k n}$,

$$
\begin{equation*}
U_{2 h} \equiv 0\left(\bmod U_{p}\right) \tag{4.19}
\end{equation*}
$$

By using the identity

$$
\begin{equation*}
V_{4 h+1}-m=\Delta^{2} U_{2 h} U_{2 h+1} \tag{4.20}
\end{equation*}
$$

easily obtainable with the aid of (1.3) and (1.4), we have

$$
\begin{equation*}
V_{U_{p}}-m=V_{4 h+1}-m=\Delta^{2} U_{2 h} U_{2 h+1} \tag{4.21}
\end{equation*}
$$

whence, by (4.19)

$$
V_{U_{p}}-m \equiv \Delta^{2} \cdot 0 \cdot U_{2 h+1} \equiv 0\left(\bmod U_{p}\right)
$$

Case 2: $U_{p}=4 h+1 \equiv-1(\bmod p)$
The proof is analogous to that of Case 1 and is omitted for brevity.
Q.E.D.

It must be noted that, for $m=1$ and $p=5$, the statement of Theor. 5 is true even though $\Delta^{2}=5 \equiv 0(\bmod 5)$. In fact, we have

$$
L_{F_{5}}=L_{5}=11 \equiv 1\left(\bmod F_{5}\right)
$$

COROLLARY 6: If $p \geq 5$ is a prime, Δ^{2} is not divisible by p and U_{p} (necessarily odd) is composite, then $U_{p} \in \mathbb{S}_{m}$.

COROLLARY 7: If p is a prime and F_{p} is composite, then $F_{p} \in \mathbb{S}_{1}$.
In order to prove the last theorem, we need to prove the following two lemmata.

LEMMA 2: $V_{n}\left(V_{2 k+1}(m)\right)=V_{n(2 k+1)}(m)$.
Proof: By (1.5) we have

$$
\begin{equation*}
\alpha_{V_{2 k+1}(m)}=\left\{V_{2 k+1}(m)+\left(V_{2 k+1}^{2}(m)+4\right)^{1 / 2}\right\} / 2 \tag{4.22}
\end{equation*}
$$

Using (1.4), (4.22) becomes

$$
\begin{align*}
\alpha_{V_{2 k+1}(m)} & =\left\{\alpha_{m}^{2 k+1}+\beta_{m}^{2 k+1}+\left(\alpha_{m}^{4 k+2}+\beta_{m}^{4 k+2}+2\right)^{1 / 2}\right\} / 2 \\
& =\left\{\alpha_{m}^{2 k+1}+\beta_{m}^{2 k+1}+\left(\alpha_{m}^{2 k+1}-\beta_{m}^{2 k+1}\right)\right\} / 2=\alpha_{m}^{2 k+1} \tag{4.23}
\end{align*}
$$

Analogously, it is seen that

$$
\begin{equation*}
\beta_{V_{2 k+1}(m)}=\beta_{m}^{2 k+1} \tag{4.24}
\end{equation*}
$$

The statement of the lemma follows directly from (4.23), (4.24) and (1.4). Q.E.D.

LEMMA 3: If $h \in N$ and $n \in S_{m}$, then $V_{h n}(m) \equiv V_{h}(m)(\bmod n)$.
Proof: Let us rewrite the result established in [13, Cor. 7] as

$$
\begin{equation*}
V_{h n}(m)=\sum_{i=0}^{[h / 2]} C_{h, i} V_{n}^{h-2 i}(m) \quad(n \text { odd }) . \tag{4.25}
\end{equation*}
$$

By hypothesis, (4.25) and (1.6), we can write

$$
V_{h n}(m)=\sum_{i=0}^{[h / 2]} C_{h, i} V_{n}^{h-2 i}(m) \equiv \sum_{i=0}^{[h / 2]} C_{h, i} m^{h-2 i}=V_{h}(m)(\bmod n) . \quad \text { Q.E.D. }
$$

THEOREM 6: If an odd composite n passes the $m^{\text {th }}$ test, then it passes also the $V_{2 k+1}(m)^{\text {th }}$ tests $(k=1,2, \ldots)$.

Proof: From Lemma 2, Lemma 3 can read: If $V_{n}(m) \equiv m(\bmod n)$, then

$$
V_{n}\left(V_{2 k+1}(m)\right)=V_{n(2 k+1)}(m) \equiv V_{2 k+1}(m)(\bmod n) \text {. Q.E.D. }
$$

As particular cases, we see that

- if n passes the $1^{\text {st }}$ test ($m=1$), then it passes also the tests for $m=4,11,29,76$, 199, 521, 1364, ...
- if n passes the $2^{\text {nd }}$ test ($m=2$), then it passes also for $m=14,82,478,2786, \ldots$
- if n passes the $3^{\text {rd }}$ test $(m=3)$, then it passes also for $m=36,393,4287,46764, \ldots$
- if n passes the $4^{\text {th }}$ test $(m=4)$, then it passes also for $m=76,1364, \ldots$ (cf. the tests passed for $m=1$).

5. Conclusion

Public-key cryptosystems make use of primes having approximately 100 digits, so we wish to conclude this paper with two questions.

Pessimist's question : "Do odd composites $n \leq 10^{100}$ exist which are m-F.Psps. for all values of $m \leq n-1$?"

If such numbers exist, they will never reveal their compositeness under our test.
Optimist's question : "Let M^{*} be the maximum number of consecutive tests ($m=1$, $2, \ldots, M^{*}$) passed by any odd composite $n \leq 10^{100}$. Is M^{*} comparatively small (say M^{*} ≤ 50)?

If the answer is in affirmative, then the method proposed in Sec. 3 can readily find primes for cryptographic purposes. The calculation time is slightly less than that
required by the method proposed by Solovay \& Strassen [14] for finding numbers that are prime with probability greater than or equal to $1-1 / 2^{M^{\bullet}}$.

The authors offer a prize of 50,000 Italian Lire to the first person who communicates to them an odd composite (below 10^{100}) which is an m-F.Psp. for $m=$ $1,2, \ldots, 8$. Of course, at least one of its factors is also requested. A decuple prize is offered to the first person who sends to them a proof that no such number exists.

A table of 1-F.Psps to 10^{8} was compiled by the authors. It will be sent, free of charges, upon request.

References

[1] H.Riesel, Prime Numbers and Computer Methods for Factorization . Boston: Birkhäuser Inc., 1985.
[2] M.Bicknell, "A Primer on the Pell Sequence and Related Sequences", The Fibonacci Quarterly, vol.13, pp. 345-349, no.4, 1975.
[3] O.Brugia, P.Filipponi, "Waring Formulae and Certain Combinatorial Identities", Fondaz. Ugo Bordoni Techn. Rep. 3B5986, Oct. 1986.
[4] A.Di Porto, P.Filipponi, "More on the Fibonacci Pseudoprimes", Fondaz.Ugo Bordoni Techn. Rep. 3t0687, May 1987. The Fibonacci Quarterly (to appear).
[5] A.Di Porto, P.Filipponi, "Un Metodo di Prova di Primalità Basato sulle Proprietà dei Numeri di Lucas Generalizzati", Proc. of the Primo Simposio Nazionale su: Stato e Prospettive della Ricerca Crittografica in Italia, Roma, Oct. 1987, pp. 141-146.
[6] Bro. A.Brousseau, An Introduction to Fibonacci Discovery . Santa Clara (Cal.): The Fibonacci Association, 1965.
[7] L.Carlitz, "A Note on Fibonacci Numbers", The Fibonacci Quarterly, vol. 2, pp. 15-28, no.1, 1964.
[8] D.Jarden, Recurring Sequences, $3^{\text {rd }}$ ed., Jerusalem : Riveon Lematematika, 1973.
[9] V.E.Hoggatt, Jr., M.Bicknell, "Some Congruences of the Fibonacci Numbers Modulo a Prime $P{ }^{\prime \prime}$, Math. Magazine , vol. 47, pp. 210-214, no.3, 1974.
[10] V.E.Hoggatt, Jr., Fibonacci and Lucas Numbers, Boston: Houghton Mifflin Co., 1969.
[11] V.E.Hoggatt, Jr., G.E.Bergum, "Divisibility and Congruence Relations", The Fibonacci Quarterly, vol. 12, pp. 189-195, no. 2, 1974.
[12] P.Filipponi:"On the Divisibility of Certain Generalized Fibonacci Numbers by Their Subscripts", Proc. XIII Congresso Unione Matematica Italiana, Torino, Sept. 1987, Sezione VII-18.
[13] Jin-Zai Lee, Jia-Sheng Lee, "Some Properties of the Sequence $\left\{W_{n}(a, b ; p, q)\right\}$ ", The Fibonacci Quarterly, vol. 25, pp. 268-278, 283, no. 3, 1987.
[14] R.Solovay, V.Strassen, "A Fast Monte-Carlo Test for Primality", SIAM Journal on Comput., vol. 6, pp. 84-85, no.1, 1977.

[^0]: Work carried out in the framework of the Agreement between the Italian PT Administration and the Fondazione "Ugo Bordoni".

