ON THE CONSTRUCTION OF RANDOM NUMBER GENERATORS
AND RANDOM FUNCTION GENERATORS

C. P. Schnorr
Universitdt Frankfurt
Fachbereich Mathematik/Informatik
6000 Frankfurt, West Germany

Abstract. Blum, Micali (1982), Yao (1982), Goldreich, Goldwasser and Micali
(1984), and Luby, Rackoff (1986) have constructed random number generators,
random function generators and random permutation generators that are perfect if
certain complexity assumptions hold. We propose random number generators that
pass all statistical tests that depend on a small fraction of the bitstring. This does
not rely on any unproven hypothesis. We propose improved random function
generators with short function names and which minimize the number of
pseudo-random bits that are necessary for the evaluation of pseudo-random

functions. We announce a new very efficient perfect random number generator.

1. Random generators without unproven assumptions

Let I = (0,1)", Hy = I = "the set of all functions f : I, — I,". A random function
generator is an efficient algorithm F that generates from names x € I, a function
Fun,x € Hiy(n) for some function k(m); when given for input m,x,y the algorithm
computes Fp, ,(y). We associate with f € H, a function F, s € Hy, defined by

Fue(l,r) = (r,1 ® £(r)) for all lLir €1,. (1)

The function F, ¢ roughly corresponds to a layer in the DES-algorithm. We consider
F,(f} = Fn,t Fo,r Fpr as a random function generator for the functions Fm in Hy, and
with names f € H,. The functions Ff\s% are permutations, and FS,’} is called a random
permutation generator. Luby and Rackoff have considered the random function
generator Fy ¢y Fyp, Fnp,, where independent random fuactions f,,f3,f3 € Hp are used
at each stage. We observe that the analysis of Luby and Rackoff remain_s valid for
the case that f; = f5 = f3. This yields the following version of the main theorem in
Luby, Rackoff (1986).

. 3
Theorem 1. (Luby, Rackoff (1986)) For random [€ Hp the function FE,} = For Fat

C.G. Guenther (Ed.): Advances in Cryptology - EUROCRYPT ’88, LNCS 330, pp. 225-232, 1988.
© Springer-Verlag Berlin Heidelberg 1988

226

F, ¢ passes all statistical function tests that are restricted to 20(") oracle queries.
The concept of statistical function test has been introduced by Goldreich,
Goldwassex;, Micali (1984). A test T is a probabilistic algorithm with 0,1-output,
which is endowed with an oracle Oy for evaluating the function g at inputs y
computed by the test T; the value g(y) is computed by a single step using the oracle.
One associates the following probabilities to a statistical test T and a random
function generatpor F. Let pf (pi, resp.) be the probability that T with oracle Oy
gives output 1 wﬁen g € H, is chosen at random with uniform probability (g € Hy is
chosen at random from F, resp.). The probability space is the set of all internal coin
tosses of T and of all choices for g. In the proof of Theorem 1 Luby and Rackoff
have shown that the above generator FS,‘%} satisfies
lox - pal = O(m® 27"

for every statistical function test T that is limited to at most m oracle gueries.

One defines that a function generator F passes the function test T if
|an - D§| =0(n"% forall t>0.
A random function genmerator is called perfect if it passes all statistical function

o(1)

tests with polynomial time bound n The functions generated by a perfect

random function generator are called pseudo-random.

Theorem 1 is strong in the sense that there is no time bound for the statistical tests
and the bound 2°®™) on the number of oracle queries is superpolynomial in n. On the
other hand the name f € H, for the function ng} € H,, is 02" bits long whereas
Goldreich, Goldwasser, Micali (1984) construct pseudo-random functions in H, with
names in I,. The proof of Theorem 1 follows from the aralysis of the Luby, Rackoff

{(1986) random permutation generator. The technical proof is quite involved.

A random number generator is an efficient algorithm which transforms short random
seeds into long pseudo-random strings. Every random function generator gives rise
to a corresponding random number generator and vice-versa. There is a natural
bijection ®, : H, — I »™ which maps functions £ € H, into the concatenation &,(f) =

IT £(x) where x ranges over all strings x € I, in alphabetical order. By this
x€Ily

bijection the above function Ff,‘o'} yields a function

Gn I G hnd 1 2n
n2 2n2

(s) .
x = ®p, [Fn,Onl(x)]

We give a more concrete description of the random number generator

Gn:Inzn—olznzzn, G:xw—y.

227

We write the input string x € 1 ,° as concatenation of 2" strings in I, and we
n

n - - . - .
enumerate these 2 substrings of x using indices in I,:

I o3 x = [[x €y

n2 i€l
We likewise partition the output string y € I2 520 :
n
zzn
I 2n @@ Yy =]._[¥i €(I2n)
2n2 i€lgn

For every string y € I3, let L(y), R(y) be the left and right half string in I;:
2
Inn 3 y = L(y) R(y) €(I.)" .

Algorithm for Gp

input x= [x;.
i€ly
1. y? = i for all i€ Iy, .
2. For j=0,1,2 do
o . . .
yith= ROy (L) @ xrgd)) -
output Ys" 11 Yix'
i€lsp

Each iteration step switches the left and right part of y € I3, and adds to the new
right part the substring XR(y) of the input x; here & is the vector addition modulo 2.
According to the bijections ®,,®2, Theorem 1 translates into Theorem 2.

Theorem 2. The random number generator (Gp)lnelN, Gp : I 0 Ihzzn, passes all
n

statistical number tests that depend on at most 2°(n) bits of Ga(x).

A statistical number test T is a probabilistic algorithm which takes for input a
binary string, and gives a 0,1-output (Yao, 1982). One associates with T and a
random number generator G the following probabilities. Let p{ (pf, resp.) be the
probability that T outputs 1 when given for input a random string x € Iy with
uniform distribution (a string y € Iy chosen at random from G, resp.). The number
generator G passes the test if
I} - Sl = O(k™ forall t>0.

A random number generator is called perfect if it passes all polynomial time
statistical number tests. The bit strings generated by a perfect random number

generator are called pseudo-random.

Theorem 2 means that every selection of at most m = 2°8) yits from Ga(x) passes all
statistical number tests T (even tests with arbitrary time bounds) provided that x €
In2" is random with uniform probability. The bit strings G,(x) are, for random seed
X € Inzn’ completely randomized locally. Every statistical number test that

distinguishes the distribution of Gu(x) € I3522® from the uniform distribution on

228
12,22" depends on at least a polynomial fraction of the bit string Gn(x).

So far we have seen that the above number generator G, is based on a powerful
construction principle for local randomization. It is an important question whether
this construction principle also yields good global random properties. We next prove

that all strings that are locally randomized satisfy the law of large numbers.

Theorem 3 Let (GplnelN be a random number generator Gp : I, — I,» such that
Galx), for random x € I, passes all statistical test that depend on at most Zo(n) bits

of Gu(x)}. Then the frequency of ones and zerees in Go(x) is approximately 1/2.

Proof. Consider the statistical test that selects m = 2°(®) jndependent random bits
Yises¥m from the bit string G,(x) and computes #;(y) = "the number of ones in
these bits". These bit strings y pass all statistical tests. By Chebyshev's inequality
this implies

1 -
probl l#y(y)/m - |26l < 1/¢(e*m) + O(m™") forall e> 0 and all t>0.
The probability space is the set of all seeds x € I, and of all possible selections of
substrings y. Note that the expected value of #,(y)/m and of #,(G,(x))/z“ coincide,

Therefore we obtain for e = (1/m)"/* and m = 2°/1°¢ ®

probl l#l(Gn(x))/zn _ %l > 2-n/(slog)] < Z‘n/(slo(n) + o(z-n/log n))

We next show that the upper bound 2°®), limiting the number of oracle queries, in

Theorem 1 is sharp. We associate to f € H, the function generator

F&:) = Fn,f Fn, - Fngt v-times.

Theorem 4. There is a statistical function test that rejects the function generators

F,(,':z for all v € N, using O(Zn) oracle queries.

Proof. We have far all r, 1€ 1, :
Fp(l,r) = (r,1 & f(r))
Frle(Lr) = (r ® £(1),1) .
This implies that for all v > 1

(v+1

Frdan = FviY (e f), 1,
and thus
L F¥le) = R EY¥ (r @ £Q), 1) . (2)
A statistical test for verifying the relation (2) fixes r and) and tries for f(1) € I,
all bit strings y € I,. Once f(l) has been found the relation (2) holds for all r. The

229

statistical test requires at most O(2") oracle queries in order to find f(1); it

evaluates F,(,':z(l,r) and FS,") (r® vy, 1) foralistringsyel,. O

The above statistical test does not reject function generators

Fn.ls Fn,fz Fn,ﬂ
where distinct functions f,, f;, fy are used at each stage.

2. Improved random function generators

Goldreich, Goldwasser and Micali (1984) show that every perfect random number
generator (GplneN, Opn : In — Izn, can be transformed into a pérfect random

function generator (Fp)peN, Fax € Hp with x € I, such that functions Fpx € Hjy

have names x of length n and can be evaluated using O(nz) pseudo-random bits
generated by G,. We improve this construction via the Luby, Rackoff permutation

generator,

Theorem 5. For every ¢ > 0 every perfect random number generator {GplpeN, With
G. : In — lan, can be transformed into a perfect random function generator (?—n)nEN

such that

(1) Fn.x € Hn has names x of length (log n)***.

1+s
)

(2) evaluation of Fpux can be done using O(n(log n) pseudo-random bits generated

from G,.

Sketch of proof. By the construction of Goldreich, Goldwasser, Micali (1984) we
generate, from pseudo-random bits obtained from Gg(x), a pseudo-random function

1+¢ 0(1)'

f € Hm(), m(e) = (log n) ", that passes all function tests with time bound n

. . . 242
These functions f € Hmnm(s) have names in Iy and can be evaluated using (log n) +ae

1+¢
pseudo-random bits. It follows from Theorem 1 and since n° = 2°(leg v}) eor amn ¢

>0 and all e > 0 , that the functions ng‘),f € Hzm(:) pass all statistical function

tests that have time bound nO(I).

In 2 way similar to (1) we associate with f € Hpy a function ?n.f € H, defined by
Fu(By,....Bx) = (Bz,....Bx , By @ f(By)) (3)

for all By,...,Bx € Im(s) with k = n/m(¢). By the same argument that proves Theorem

1, we can show that

Fox:= EPFVeH,

230

o(1)

passes all statistical function tests with time bound n a

3. New efficient and perfect pseudo-random number generators

S. Micali and C.P. Schnorr (1988) introduce new random number generators (RNG)
that are perfect under a reasonable complexity assumption and that are nearly as
efficient as the popular linear congruential generator which is known to be
imperfect.

A RNG is perfect if it passes all polynomial time statistical tests, i.e. the
distribution of output sequences cannot be distinguished, by probabilistic
‘polynomial time algorithms, from the uniform distribution of sequences of the same
length. So far the proofs of perfectness are all based on unproven complexity
assumptions. This is because we cannot prove superpolynomial complexity lower
bounds.

Perfect random number generators have been established for example based on the
discrete logarithm by Blum, Micali (1982), based on quadratic residuosity by Blum,
Blum, Shub (1986), based on one way functions by Yao (1982), based on RSA
encryption and factoring by Alexi, Chor, Goldreich and Schnorr (1984). All these
RNG's are less efficient than the linear <congruential generator. The
RSA/RABIN-generator is the most efficient of these genmerators. It successively

generates log n pseudo-random bits by one modular muitiplication with a modulus N

that is n bits long.

The RSA-generator can be extended and accelerated in various ways. A new
powerful complexity assumptions yields more efficient generators. Let N = pq be
product of two large random primes p and q and let d be a natural number that is
relatively prime to @(N) = (p-1)(q-1). It is conjectured that the following

distributions are indistinguishable by efficient statistical tests:

the distribution of xd (mod N) for random x € [l,Nz/d].
the uniform distribution on [1,N].

This hypothesis is closely related to the security of the RSA-scheme. Under this
hypothesis the transformation

[LN*Y 3 x — x%mod N) & [1,N]

231

stretches short random seeds x € [l,Nzld] into pseudo-random numbers xd(mod N) in
the interval [1,N]. Various random number generators can be built on this
transformation. The sequential polynomial generator generates from random seed x €
[1,Nz/d] a sequence of numbers x = Xx;,X3,...,X3,... € [l,Nz/d]. The n(1-2/d) least
significant bits of the binary representation of x?(mod N) are the output of x; and

the 2n/d most significant bits form the successor x;.q of x;.

It follows from a general argument of Goldreich, Goldwasser, Micali (1984) and the
above hypothesis that all these generators are perfect, i.e. the distribution of output
strings is indistinguishable, by polynomial time statistical tests, from the uniform
distribution of binary strings of the same length. The sequential generator is nearly
as efficient as the linear congruential generator. Using a modulus N, that is n bit
long, it outputs n(1-2/d) pseudo-random bits per iteration step. The costs of an
iteration step x — xd(mod N} with x € [l,Nz/d] corresponds to the costs of about one
full multiplication modulo N. This is because the evaluation of xd(mod N) over
numbers x < Nz/d consists almost entirely of multiplications with small numbers that

do not require modular reduction.

Micali and Schnorr extend the sequential polynomial generator to a parallel

polynomial generator (PPG). The PPG generates from random seed x € [‘l,Nzld

] a
tree. The nodes of this iteration tree are pseudo-random numbers in [1,N2/d] with
outdegree at most d/2. To compute the successor nodes y(1),...,y(s) and the output
string of node y one stretches y into a pseudo-random number yd(mod N) that is n
bits long. Then the successors y(1),...,y(s) of y are obtained by partitioning the most
significant bits of yd(mod N) into s < d/2 bit strings of length]_2n/dJ . The output
of node y consists of the remaining least significant bits of yd(mod N). Any
collection of subtrees of the iteration tree can be independently processed in parallel
once the corresponding roots are given. In this way m parallel processors can speed
the generation of pseudo-random bits by a factor m. These parallel processors need
not to communicate; they are given pseudo-independent input strings and their
output strings are simply concatenated. The concatenated output of all nodes of the
iteration tree is pseudo-random, i.e. the parallel generator is perfect. The PPG
enables fast retrieval of substrings of the pseudo-random output. To access a node
of the iteration tree we follow the path from the root to this node. After retrieving
a bit the subsequent bits in the output can be generated at full speed. Iteration trees
of depth at most 60 are sufficient for practical purposes; they generate
pseudo-random strings of length 102° (for outdegree 2) such that individual bits can

be retrieved within a few seconds.

The parallel generator is based on a method that has been invented by Goldreich,

232

Goldwasser and Micali (1984) for the construction of random functions. Micali and
Schnorr observe that this construction can be applied to speed every perfect random
number generator by a factor m using m parallel processors. Using this principle and
sufficiently many parallel processors we can generate pseundo-random bits with
almost any speed. This important method of parallelization applies to all perfect
random number generators but the RSA-generator is particularly suited for this
method, The method of parallelization does not apply to imperfect random number
generators like the linear congruential generator since this method can further
detoriate a weak generator.

References

Alexi, W., Chor, B., Goldreich, O., and Schonorr, C.P.: RSA and Rabin Functions:
certain parts are as hard as the whole. Proceeding of the 25th Symposium on
Foundations of Computer Science, 1984, pp. 449-457; also: Siam Journal on Comput.,
(1988).

Blum, L., Blum, M. and Shub, M.: A simple unpredictable pseudo-random number
generator. Siam J. on Computing (1986), pp. 364-383.

Blum, M. and Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. Proceedings of the 25th IEEE Symposium on Foundations of
Computer Science, IEEE, New York (1982); also Siam J. Comput. 13 (1984) pp.
850-864.

Goldreich, 0., Goldwasser, S., Micali, S.: How to Construct Random Functions.
Proceedings of the 25th IEEE Symposium on Foundations of Computer Science,
IEEE, New York, (1984); also Journal ACM 33,4 (1986) pp. 792-807.

Luby, M. and Rackeff, Ch.: Pseudo-random permutation generators and
cryptographic composition. Proceedings of the 18th ACM Symposium on the Theory
of Computing, ACM, New York (1986) pp. 356-363.

Micali, S. and Schaorr, C.P.: Efficient, perfect random number generators. preprint
MIT, Universitit Frankfurt 1988.

Yao, A.C.: Theory and applications of trapdoor functions. Proceedings of the 25th
IEEE Symposium on Foundations of Computer Science, IEEE, New York (1982), pp.
80-91.

