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Abstract 

The best known cryptanalytic attack on McEliece's public-key cryptosystem 

based on algebraic coding theory is to repeatedly select k bits at random from an 

n-bit ciphertext vector, which is corrupted by at most f errors, in hope that none 

of the selected k bits are in error until the cryptanalyst recovers the correct 

message. The method of determining whether the recovered message is the 

correct one has not been throughly investigated. In this paper, we suggest a 

systematic method of checking, and describe a generalized version of the 

cryptanalytic attack which reduces the work factor sigdicantly (factor of 211 for 

the commonly used example of n=1024 Goppa code case). Some more 

improvements are also given. We also note that these cryptanalytic algorithms 

can be viewed as generalized probabilistic decoding algorithms for any linear error 

correcting codes. 

I. Introduction 

McEliece [l] introduced a public-key cryptosystem based on algebraic coding 

theory. Specifically, an ( n , k )  binary Goppa code [2]  was chosen for this purpose since 

the error correction capability grows linearly with its dimension for a given code rate k / n .  

The correctable number of errors f for an (n  , k )  Goppa code with n = 2' is given by : 

f 2 (n-k) /I. (1) 
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The vectors, matrices and operations in the following discussion are all binary. 

The next section describes McEliece’s cryptosystem and the following section 

explains the best known cryptanalytic attack. After describing a systematic method of 

checking whether the recovered message is correct or not, we will suggest a generalization 

of the attack. Our analysis will show that the factor of improvement will be significant. 

Further improvements will also be discussed and conclusions and other discussions will 

follow. 

II. Description of McEliece’s Public-Key Cryptosystem 

McEliece’s system works as follows: The system user (receiver) secretly constructs 

a linear t e r ro r  correcting Goppa code with kXn code generator matrix G ,  a kXk 

scrambler matrix S that has an inverse over GF(2),  and an nXn permutation matrix P .  

Then he computes 

G = S G P  (2) 
which is also a linear code (but supposedly hard-to-decode) with the same rate and error 

correction capability as the original code generated by G .  He publishes G as his public 

encryption key. The sender encrypts a k-bit message vector m into an n-bit ciphertext 

vector c as 

c = m G + e  (3) 
where e is a random n -bit error vector of weight less than or equal to t . The receiver 

computes c P-’ = (m S) G + e P-’ and uses the decoding algorithm for the original 

code with G to get rid of e P-‘. Finally to get m he descrambles m S by multiplying 

s-l. 

III. The Best Known Cryptanalytic Attack 

There have been several methods proposed for attacking McEliece’s system, El], 

[3], [4], etc. Among them, the best attack with least complexity is to repeatedly select k 

bits at random from the n-bit ciphertext vector c to form ck in hope that none of the 

selected k bits are in error. If there is no error in them, then ck GL1 is equal to m 

where G k  is the kXk matrix obtained by choosing k columns of G according to the same 

selection of c k  . 
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The work factor for the matrix inversion is O(k') for some 7 between 2 and 3. 

However, ail of the known algorithms for 7 < 2.7 have enormous constants that make 

them infeasible for matrices of a reasonable size. Perhaps the Winograd algorithm ( [5] ,  p. 

481) with 7 =: 2.8 might be the best for these matrices of size between 500 and 1oOO. 

However, for the following analysis, we will use as in [4] the elementary algorithm with 

7 = 3 and small constant a. 

The probability that there is no error in randomly selected k bits, among n bits 

with r errors, is (nk') / (E). Therefore, the total expected work factor for this attack is ; 

[31, [41 

w = a k 3  (E) / (",') . (4) 

Originally, in [l], the values of Z=10 and t=50 (or n=1024, k=524 ) were suggested, 

which result in the work factor of approximately 280.7 (with a = 1). More recently, in [4], 

the optimum value of t that maximizes the work factor for n=1024 was shown to be 37 

(or equivalently, k 4 5 4 )  providing W = 284.'. 

Iv. Systematic Method of Checking ck Gpl 

Notice that the work factors for checking whether the obtained ck Gcl is really m 

was not discussed in [l] and [4]. While, [3] just suggested that the validity of ck Gc' may 

be determined by the redundancy in m , which might not be practical. 

Here, we provide a systematic and practical method of checking whether the 

obtained ck Gcl is rn or  not. Since G is also a code generator matrix having 

minimum distance larger than 2, if ck crl is not the true m ,  then m G + Ck GF1 G 
must have weight at least 2 t .  Hence if c + ck crl G has weight less than or equal to t , 

then the cryptanalyst can claim that ck cr' = m . 

V. Generalization of the Above Attack 

The above cryptanalysis can be generalized by allowing a very small number of 

errors in the selected ck . The following describes the algorithm : 



Algorithm j : 

Step 1) Randomly choose k bits from an n-bit ciphertext c (denoted as ck) .  Let Gk 
be the k x k  matrix obtained by choosing the corresponding columns of G. 
Calculate GL' G and c + ck (GL' G). 

Step 2) Choose an unused k-bit error pattern ek with less than or equal to j ones. If 

(C -I- Ck Gr' G )  4- e k  (GL' G) has weight I or less, then stop (rn = c k  GLl). 

Step 3) If there are no more unused k-bit error patterns with less than or equal to i 
ones, go to Step (1). Otherwise, go to Step (2).  

Notice that Algorithm 0 is the attack discussed in Section I11 including our 

systematic checking of ck GL'. 

Let Qi be the probability that there are exactly i errors among the randomly 

chosen k-bit vector c k .  It can be shown that 

( 5 )  t n-f 
Qi = (i> (k-i) / . 

Hence, the probability that the algorithm completes successfully is CiLoQi. Therefore, 

the expected number of executions of Step l), T j ,  is 

Tj = 1 / CiLoQj . (6) 

Let N ,  be the number of k-bit error patterns with less than or equal to j ones. 

Then, 

(7) 
k Nj = Cji, (i). 

Hence, N j  is the number of executions of Step 2 )  for a given choice of ck with more than 

j errors in it. 

The work factor involved in Step 1) is approximately a k 3  with small Q when 

k>n/2.  The work factor involved in Step 2)  is approximately p k with small p since 

we can just update the vector ek (G;' G )  for each choice of f?k which differs in at 

most two positions from the previous choice of e k .  Therefore, the average overall work 

factor for Algorithm j ,  W, , is 

Wj =T; ( a k 3 + N ;  p k ) .  (8) 
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Notice that W = Wo. Also notice that for any reasonable value of Q and ,8, Wj 
decreases and then increases as j increases. With CY = 0, we can show that the optimum 

j which minimizes the work factor is 2 for all values of useful code parameters. With 

CY = ,8 = 1, the minimum work factor W ,  273.4 for the case of n = 1024 and t = 37, 

which is a factor of 2'l reduction as compared to W,. For n = 1024 case, the value of 1 

which maximizes W2 is 38 (k=644), for which W 2  is also approximately 273.4. 

VI. Further Improvements 

Instead of calculating the vector (c + ck G r l  G) + e k  (Gcl G )  ( = e ) first 

and then checking whether F has weight t or less in Step 2) ,  one can calculate one bit 

by one bit of the vector if and check the accumulated weight until it exceeds t .  When 

we assume that the vector F has average weight n/2 for incorrect cases, we can expect 

that the number of bits to be tested in this improved Step 2)' is 2t in average. Hence, 

the work factor for Step 2)' is less than that of Step 2) by a factor of k / 2 t  in average. 

For the previous example, this is a factor of 10 improvement. 

For each Step 1) the new ck is selected randomly. However, one can just 

randomly update only one bit of ck each time. The work factor in this Step 1)' is then 

reduced to a' k2  for updating (GL' G). In this case, however, we could nat  find the 

expected number of excutions of Step 1)' before success, Ti' .  If one assumes that Ti' is 

the same as T j ,  it can be shown that the optimum j which minimizes Wj' is 1 when 

CY' = p (with Step 2) ). And for the previous example of I = 10, the value of t that 

maximize the W,' is also 38 resulting W,' = 269.6. And, together with Step 2 ) ' ,  we can 

improve another factor of 10. 

W. Conclusions and Discussion 

In conclusion, we have described a systematic method of checking the validity of 

the recovered cleartext. And we suggested an improved crytanalytic attack which is a 

factor of 211 more efficient than the previously known best attack. We also suggested 

some more improvements over the new attack. 
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In [6], it was shown that the syndrome decoding of general linear algebraic code is 

an NP-complete problem and the running time for the syndrome decoding is an 

exponential function of its input dimension k ,  and it is claimed that the discovery of an 

algorithm which runs significantly faster than this would be an important achievement. 

The cryptanalytic attack of [l] described in Section I11 and our generalizations are 

general probabilistic decoding algorithms for any general linear error correction code 

which can run more efficiently (although still in exponential time) than the syndrome 

decoding of a general code when the number of errors in a code word seldom exceeds its 

error correcting capability. 
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