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ABSTRACT

In this paper, the properties, structures and translation equivalence relations
of linear recurring m—arrays are systematically studied. The number of linear recurr-—

ing m-arrays is given.

1. Intrduction

Reed and Steward [11], Spann [5] and [2] have studied the arrays of so-called
perfact maps. This has led to research on various types of window properties for
arrays(see [2]-[11]).

In this paper, we make a systematic study of the linear recurring m—arrays of
dimension 2. We characterize their structure, discuss their properties of translation
- addition, pseudo-random and sampling. We also give the number of linear recurring
m-arrays.

All the results in this paper are obtained over the finite field GF(2). One can

easily generalize the results to any finite field GF(q).

2. Basic concepts

Let A=(a, ). . be 2 r . A ix A(i,j)= fAi
137120, 30 e an array n mxn submatrix A(i,j) (aij>O$i<m,Osj<n o is
called an mxn window of A at (i,j). E(i,j) is the row vector (a ) of dimension
£ 0gtgmn
mn, where atzai+i',j+j" i'=the integer part [t/n] of t/n, and j'=(t/n)=t-nlt/n].

Definition 2.1: Let A be an array of period rxs. If all mxn windows in a period
of A are exactly all non-zero mxn matrices over GF(2), then we call A an mxnth order

m-array of period rxs or (r,s;m,n) m-array in short.
Corollary 2.1.1: There exists an (r,s;m,n) m-array only if rs=2""11.

Definition 2.2: Let A=(a. .). . be an arra m and n are two positive integers.
137130, 30 i P g
If there exist two mnxmn matrices T, and T -as in (2.2) such that

K(i,j)Thzi(i,j+1)

- . . 11,3 2.1)
X(l,J)Tvz*(1+1,\) for al ,i20 (

and
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00...0%0...0%...0...0% [ 00...0% LE
10...0%0...0%...0...0% 30...0% x
Ol...0%0...0%...0...0% :
00...1%0...0%...0...0% .
00...0%0...0%...0...0% T,= | 00...0% L.
00...0%1...0%...0...0% 10...0%  L..%
Ty= oo v cee o e o 0t...0% . ..* (2.2)
00...0%0...1%...0...0%
00...0%0...0%...0...0% Loo...1% ...%
00...0%0...0%...1...0%
00...0%0...0%...0...1% |

where the entries at *s' positions are elements in F then we say A is an LR array

20
of order mxn. The window A(0,0) (or K(0,0)) is called the initial state of A.
Definition 2.3: If an LR array of order mxn is alsc zn m-array of order mxn, then

we call it an LR m—array of order mxn.

Definition 2.4: Let A:(aij)iaO,j;O’ Bz(bij)i}O,j)O Se two periodic arravs. If
there exist two non-negative integers p, q such that

b, .=a. A for all i20, j»0
1) 1+p,]1+q 2

then B is called (p,q)-translation of A, denoted by B=A
Obviously, the translation relation is an equivalence relation.

Proposition 2.1: Given T,, Tv as in (2.2), let G(Th,Tv) be the set of all LR arrays
with linear recurring relations (2.1) and let A,B EG(TH'IV)' Then
1) Ap’qe<3(Th,Tv) for any integers p,q3z0.
2} Define 1*¥A=A, 0%A=0. Then G(Th‘Tv) is a vector space over GF(2).

3) If there exists one LR m-array of order mxn in G(T Tv), then every one in

R’

G(T_,T ) is an LR m-array of order mxn. Futhermere T T =T T, and T, ,T  arc
h’ v v v v

h h h

non-degenerate.
Definition 2.5: We call an array A non-degenerate, I (2.1) holds for some non-

degenerate matrices Th and T as in (2.2).
Corollary 2.5.1: 4 non-degenerate LR array must be ceriodic.

Since we are interested in studying LR m-arrays, frcm now on, we alwavs assume

that Th,TV are non-degenerate and that they commute.

3. ®B-Array

We call an array A:(aij)iaO,j>O of-array it its component aij=L(GlﬁJ7 for all i,
j30, where &, B€GF(q), L is a linear function on GF(q) over GF(2){GF(2)CGF{q)).
In this section, we will mainly study linear recurring relations of ®&B-arrays

and the necessary and sufficient condition for an af-array to be an m-array. We will
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also compute the number of equivalence classes of «B-m-arrays.

Lemma 3.1: Let rs=2""-1, (r,s)=1, o(2? mod r)=m(i.e. the order of 2 oz is m) or

is+ir,

0{2 mod s)=n and let A=(a, ) , where aij:L(Y ) for all i»0, j»0, L is a

137130, i30 -
non-zero linear function on GF(2 ) over GF(2), ¥ is a primitive element of GF(27).
Then A is an (r,s;m,n) LR m-array.

Proof: See [13].

Let L be a non-zero function on the field GF(q) over its prime field GF(p). We
define L” to be an elementwise transformation between vectors or matrices over GF(q)

and those over GF(p) respectively as follows
- »
(at)L :(L(at)) and (aij)L _(L(aij))

where (at) is a row or column vector over GF(q) and (aij) is a finite or infinite

matix over GF(q).

Proposition 2.2: Let &, QG(SF(Zm), o(®)=r, o(B)=s. If re=2"-1 for some m and

: . r
(r,s)=1, then there exists a primitive element ¥ of GF(2™) such that «=9° and B=79 .

Theorem 3.3: Let A:(diﬁj)L' be an &f-array, where L is a non-zero linear function
on Fz(d,ﬁ). Then A is a non-degenerate LR arrays. Furtermore, A is an (r,s;m,n)
m-array if and only if the following conditions are satisfied.

1) o(B)=s, o(at)=r and rs=2""_1.
2) {Piujl 0(i<s,04j<r} is the set of all non-zero elements of GF(Zmn).
3) {aipj! 04igm,0¢j<n} is a basis of GF(2™) over GF(2).

In fact, A is an (r,s;m,n) LR m-array.

Corollary 3.3.1: Let rxs be the period of an ag-m-array. Then (r,s)=1.

m-1i

Let E(x)=x"+ }:?‘1 ex be a monic polynomial of degree m over GF(2). Let

Tz(dij)O‘i<m,05j<n be an mxn matrix over GF(2) and A:(aij)i>0,j;0 an arbitrary array.
If

m
aI+m,j_Zi:1 Ciam+1—i,j
a-1 __n-1 for ail 1,120 (3.1)

a :z
Loden &0 Tio0 9450101, 0e 3

we say A&G(f,T).

Proposition 3.4: Suppose f, T as above. Then there exist T . TV, such rhat

h
— ==
TthﬁTvTh,G(Th,TV)-uxf,T)_

Proposition 3.3: Let f, T be as in prop. 3.4. If all non-zero arrays in S(E,T)

are m—array of order mxn, then f(x) must be irreducible.

Proposition 3.6: Let A¢G(f,T) be an m-array of order mxn and period rxs. Then

r=the period p(f) of f(x) and o{2 mod r)=m.

Proposition 3.7: If m_

rs=2 1, then either o(2 mod r)=mn or o{2 mod s)=mn.
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Proposition 3.8: Ler f, T be as in prop. 3.4, all arrays in G(f,T) be (r,s;m,n)
m-arrays, o(2 mod r)=m and & be a root of f(x). Construct a polynomial g(x) of degree
n over Fz(“)ch(Zm) as follows:

1

_.n n- m-1 L't
glx)=x +Zt:0 zt:’:O d:',tu x

then g(x) is irreducible over Fz(ﬂ) and p(gl=s.

Theorem 3.9: Let A=(L( ﬂ{] o(‘l)) be two ®g-m-arrays of

. 5o
= [« P R

130, j50° B=(L( PZ 2)‘L;O,J>O

period rxs. Then A and B are equivalent if and only if the following statements are

satisfied.
1 «, and ®, are conjugate over GF(2).
ate

i
2) if dl =& (for some io), then 51 and 5; are conjugate over

FZ(G1)=F2(WZ).
Theorem 3.10: The number of equivalence classes of af-m-arrays of period rxs is

f(rs)/logz(rs+l), where ¢ is Euler function.

4. General LR m-Array

In this section, we discuss general LR m-arrays. The main results are about their
structure, enumeration and the necessary and sufficient conditions for existence of

arrays with given period rxs.

Proposition 4.1: Suppose A eG(Th,Tv) is an {(r,s;m,n) LR m-array. Then p(Th)=s,

p(Tv)zr and the order of any eigenvalue of Th(Tvresp.) is s(r resp.).

Proposition 4.2: Suppose A GG(Th,Tv) is an (r,s:;m,n) LR m—array and o(2 mod s)=mn.
Then

1) the characteristic polynomial of Th is irreducible, and both Th and Tv are
similar to a diagonal form under same transformation.
2) the minimal polynomial g(x) of TV is irrecducible and deg(g(x))=m’ if o(2Z mod

r)=m"

Theorem 4.3(Existence): For given positive integars r and s, there exists an

r
m-array with pericd rxs, if and only if (r,s)=1 and rs=2"-1(for some m).

Theorem 4.4(Structure): Any LR m-array must be an &f-m-array.

mn
Remark 4.5: By Prop. 3.2, we know that there is a primitive element Yy in GF(2 )

such that

ALYy (4.1)
-7 LA

Therefore each LR m—array can be determined by a primitive element Yand a linear

function L. We denote A by Ar S( ¥ ,L), where rxs is the period of A. Obviously, for
x

different linear functions, A *S(? ,L)'s are equivalent.
T

Corollary 4.4.1: An {(r,s;m,n) LR m-array is alsc an (r,s;mn,1) or {(r,s:1,mn) LR
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m-array according which one of 0(2 mod r) and o(2 mod s) is mn.

Corollary 4.4.2: The number of equivalence classes of LR m-arrays of period rxs

is ¢(rs)/10g2(rs¢1).

Remark &4.6: By Prop. 3.9, it is easy to prove that, for any two conjugate primi-
tive elements 91 and YZ of GF(2™) with respect to GF(2), Arxs(?l,L) and Arxs(YZ’L)
are equivalent. But the number of conjugate classes of primitive elements of GF(Zmn)
with respect to GF(2) is also ¢(rs)/log2(rs+1), so that there is a 1-1 correspondence
between the equivalence classes of rxs periodic LR m~arrays and the conjugate classes
of primitive elements of GF(2™) (or all primitive polynomials of degree mn over GF(
2))(see Remark 4.5 and Corollary 4.4.2). This map can be obtained by (4.1) of Remark
4.5,

The above correspondence is very powerful in Section 5 for studying the properties
of LR m-arrays. From now on, ers(f) will dencte the set of all the arrays of period

rxs which are corresponded to a primitive polynomial f.

5. Properties of LR m-Arrays

LR m-arrays can be thought of as generalized m-sequences. LR m-arrays have many
good properties, as m-sequences do. In this section, we study the properties of

translation-addition, sampling and correlation.

Proposition 5.1: An infinite matrix A of period rxs is an LR m-array if and only
if
1) (r,s)=t
2) For any given integers 0, either A A =0 or =A for
vy g n integers p,,p,,d,,9,20, e r Pl'q1+ Py, b,q

some p,qz0.

The property given above is a characteristic property of LR m—arrays called the

translation-addition property of LR m-arrays.

Proposition 5.2: For any LR m-array of order mxn, the mn vectors A(i,j){(Ogigm,

0¢j<n) are linearly independent and all &(i,j) can be linearly expressed by them.

Definition 5.1: Let A=(a_ ) (r,s) be a pair of positive integers. We

(r,s) 17120, 3307 (t,t)
11 e - i ' i
call A ( ir,js>i>O,j;0 an (r,s)-sample of A. Especilly, A is called a

diagonal sample of A.
Theorem 5.3: Let A be an LR array with period vaP and (r,s) be a pair of posi-

(r,s) B

tive integers. If (r,PV):lz(s,Ph), then A is again an LR m-array with period

vaPh and any LR m-array of period PVXP are equivalent to some (diagonal) sample of

h P
A. Furthermore, if (f',Pv):(r,Pv):(s',Ph):(s.Ph)=l, then A(r,s) and A(r 3" e
equivalent if and only if
' t m t+mnt’ mn '
r'=r2” mod 2 -1 and s'zs? mod 2 -1 for some t and t
Definition 5.2: Let A=(a. ) be an arrayv of period rxs. The autocorrelation

137130,130



function of A is defined as the function

r-1 s~1
Cuaxt—Z:  C(=F ) ¥io 1457 i, ivd
where q is a function from GF(2) to {1,-1% such that QFQ)zl, q}l):—l.
Difinition 5.3: Let A be a binary array with period r s. If

rs when pz0 modr and q=0 mod s
CA(p,q)= {,—1 others

then we call A a pseudo-random array.

Theorem 5.4: Suppose A is a pseudo-random array with period rxs. Then rs=3 mod &

and the difference between the numbers of 1's and O's in a period of A is 1.
Theorem 5.5: Any LR m-array is a pseudo-random array.

initi S = = f iod rxs.
Definition 5.4: Let A <aij)i30,j>o’ B (bij)izO,j;O be two arrays of peri X

Define their crosscorrelation function as follows:

r-1 s-1
s ZX B = Y
Cp,pt PXE— 2 Cy,plPr @ 20 =0 Q(aij’ q(bi+p,j+q)

where Q is just as in Definmition 5.2.

Theorem 5.6: Sppose Y is a primitive element of GF(27), AU R PR ?u“

(0¢K<2™-1) are the first roots of primitive polynomials fu (x),...,fu (x) respectively,
1 k
n
.o = =2 -~-1. d
U DU, BBy, (r,s)=1, rs=2 -1. Then for any arrays A€ Gr%s(fui)’ B Gers(fuj) an

any t tz)O, we have

1!
n
CA’B (tl,tz) L2 -1-2uk

Theorem 5.7(gold Optimum Pair): Let 9 be a primitive element of cF(2™).

n-1
u1_2 -1
.o { at ez if 2¢n
2 Lt /2 -1 if 2[n but 44n
and (r,s)=1, rs=2"-1. Then for any A€G (f ), BeG (f ) and t_, £, 30, we have:
' rxs u %S u 1 27
(n+1)/2 ! :
c (t .t)= { 2 +1 if Z%n
AB 177277 -+
o (2312 1f 2)n but 4fn
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