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Abstract We construct and discuss new infinite classes of t-threshold 
schemes with t = 2 and 3 which are based on generalized quadrangles. 
The paper also contains threshold schemes which deal with the case where 
the group of trustees is made up of mutually distrusting parties. 

1 INTRODUCTION 

Any scheme which is to protect information has to be designed with the 
following three main points in mind: possible loss or destruction of the 
information or parts thereof, attack from inside or outside to obtain or 
destroy the information and efficiency. 

One obvious way to guard the information against loss or destruction 
is to make multiple copies of it and distribute them amongst trustworthy 
parties. This has two obvious drawbacks. Too few copies might cause 
the loss of the information while too many copies could lead to  the infor- 
mation falling into wrong hands. Moreover, each trusted party is in the 
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possession of all of the information. 

In 1979 Blakley and Shamir independently introduced what is known 
under the name ”threshold schemes”. In those schemes pieces of informa- 
tion are distributed amongst ”trustees” in such a way that any number 
of trustees which achieve a quorum or threshold can reconstruct the in- 
formation. 
Clearly ”reconstruction of the information” can be replaced by ”gaining 
access’), ”starting a computer program”, ”signing a cheque” or anything 
which is similar to this. A more formal definition reads as follows. 

A t-threshold scheme consists of s >_ t pieces of information, called 

(i) a secret datum X can be retrieved from any t of the s shadows and 
(ii) X cannot be determined from any t - 1 or fewer of the s shadows. 

shadows, such that 

The second condition needs some explanation. First of all, it means 
that the knowledge of t - 1 shadows should suggest every possible da- 
tum with about the same probability. If the number of possible data is 
finite, then one can, of course, guess the correct datum in a finite amount 
of time and the knowledge o f t  - 1 shadows might even reduce the time 
necessary. It should, however, be beyond any reasonable computing time. 

The security considerations depend on the nature of the secret datum 
X. If the value of X is, for instance, the master key of a cryptosystem 
([3], [S]), then a correct guess of X compromises the system. The proba- 
bility to do this might be different to the probability to cheat the system 
by entering ”made-up” shadows. If the knowledge of X is by itself of no 

use, X might be a trigger to start a computer program, then this proba- 
bility determines the security level. The possible difference of these two 
probabilities is illustrated by the schemes given in Section 3.3. 

In the above definition the number s stands for the maximum number 
of shadows one can hand out to the trustees. If s = t ,  the loss of any one 
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shadow is, by definition, equivalent to the loss of the secret datum. This 
is also the case, if s > t but the number of shadows handed out is equal 
to t. Administrative procedures such as a back-up list of all shadows, of 
course, prevent such a break down but impair the security. 

Hence it is advantageous to the designer of a t-threshold scheme, if he 
has some room of manoeuvre between t and s. This allows him to fix the 
number of distributed shadows according to his needs. 

In the present paper we discuss a class of threshold schemes with t = 2 
and 3 which have the property that the level of security and with it the 
number s can be chosen as high and large as desired. They are based on 
so-called generalized quadrangles. These finite incidence structures also 
allow the construction of threshold schemes which cater for the situation 
where the trustees do not trust each other and a threshold has to be 
achieved in each one of a number of distrusting parties. This could, for 
instance, also be useful in a situation which involves not only human be- 
ings but say computer programs as well. We conclude this introduction 
with a definition of such threshold schemes. 

A ( t l ,  . , . , t,)-thTeshoZd scheme is a t-threshold scheme with t = CF=l ti 
where the set of shadows is partitioned into n subsets Bi (i = 1,. . . , n) ,  
with lBil = si, ELl s; = s, and a quorum of ti 5 si is needed in each 
set Bi. If just n thresholds t l ,  . . . ,t, have to be achieved and it does 
not matter in which one of the sets Bi, we call it a ( t l , .  . . ,in)*-threshold 
scheme. 

2 GEOMETRIC BACKGROUND 

An incidence structure is a triple ( P , B , I )  which consists of two non- 
empty and disjoint sets P and B and a subset I C_ P x B. The elements 
of P and B are called points and blocks (or in our context lines), respec- 
tively. I is called the incidence relation. We say that a point x and a 
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Line L are incident with each other and write x I L if and only if the pair 
(2, L )  is an element of I. 

A (finite) generalized quadrangle (GQ) of order ( u , ~ )  is an incidence 
structure which satisfies the following axioms: 

(i) Each point is incident with exactly 1 + 7 lines (7 2 1) and two 
distinct points are incident with at most one line. 

(ii) Each line is incident with exactly 1 + u points (g 2 1) and 
two distict lines are incident with at most one point. 

(iii) For every point x and every line L which are not incident with 
each other, there exists a unique line which is incident with both x 
and a (unique) point on L. 

It follows from this definition that every GQ of order (0, T) has associated 
with it a GQ of order (T,  a) which is obtained by interchanging the rdes 
of the points and lines. We call it the dual GQ. This implies that in any 
definition or theorem the words ”points” and ”lines” and the parameters 
”u” and ”7” may be interchanged. 

The definition allows us to identify each line with the set of points it 
is incident with. This and the obvious geometric structure of a GQ are 
the reasons for expressions such as ”z lies on L”, ”x is contained in L” 
for x I L and ” L  and M intersect each other in the point 2’’ for L I x I M .  

We call two not necessarily distinct points x and y collinear and write 
x - y, if there exists a line which contains both of them. If there is no 
such Line we say that  they are not collinear and write z + y. The set of 

points collinear with a point x is denoted by xL (note that x E xl). 

Axiom (iii) is crucial for understanding most of the arguments in this 
paper. It means that,  except for exactly one line, all the remaining 7 
lines through x do not intersect the line L. So a generalized quadrangle 
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does not contain a "triangle". 

The proof of the following lemma is left to the reader as an easy 
exercise with the exception of (iii) a proof of which can be found in [7]. 

Lemma 1 L e t  (P, B ,  I )  be a generalized quadrangle of order (a, r), t h e n  

(ii) lzL1 = 1 + (T + 1)a for aU points z E P 

(iii) c + T divides ar(a + I)(T + 1). 

The threshold schemes we are going to introduce are based on the  span 
of pointsets. The truce of a pair (z,y) of distinct points is defined to be 
the set zL n y' and is denoted as tr(z,y)=(z,y}l. More generally, one 
can define for A c P,  the set AL = n {zl I z E A } .  The span of two 
distinct points x and y, is defined as s p ( z , y ) = ( ~ , y } ~ ~ = { u  E P I u E 
zL Vz Etr(z,y)). Hence it consists of all points which are collinear with 
every point in the trace of z and y, 

If 2 and y are couinear, then sp(s, y) is the unique line through 3: and 
y and hence Isp(z,y)l = a + 1. 
If x and y are not collinear, then no two of the points of zLn+ marked by 
"0" in the diagram above are collinear. We note that z, y are in sp(z, y), 
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no two points of sp(z, y) are collinear and Isp(z, y)I 5 T + 1. The latter 
follows since the points of sp(z, y) have to be contained in the T + 1 lines 
through any of the points of zL n yl. 

Finally, a triad (of points) is a triple of mutually non-collinear points. 
Given a triad T = (z, y, z ) ,  a centre of T is just a point of T I  =tr(z, y, 2). 

The reader who is interested in finding out more about the theory of 
generalized quadrangles is referred to the book by Payne and Thas [7]. 

3 THESCHEMES 

3.1 The 2-Threshold Schemes 

Let G be a generalized quadrangle of order (m ,  r )  with 0, T > 1, and let x 
and y be two non-collinear points of G. Then the points of sp(z,y) can 
be used as the shadows of a 2-threshold scheme with the secret datum X 
being the span of 2: and y. 

For consider two distinct points w and z of sp(z,y). As points of the 
span they are not collinear but each one of them is collinear with every 
point in z1 f l  yl- Hence zzI n wL=z* n yL and sp(z, w)=sp(z, y)=X. So 
the secret datum is determined by any two of the shadows. 
The probability to  obtain X with the knowledge of no or just one shadow 
depends on the number of shadows in X. This number is subject to the 
structure of G and the particular choice of the span. It is however, never 
greater than r + 1. We obtain the following expression for the possibility 
that the secret datum is revealed by entering a valid shadow and some 
other point. 

s - 1  7- 
Prob = < * (3.1) 

a 2 r + U r + B  - a2r+ar+a  
When setting the security level one has, however, to take into account 
that a trustee knows some finite geometry and for some reason or other 
the lines through his own shadow. This increases his probability of a 
successful attempt to break the system to  
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s - 1  1 
u2r Is2 

5 - (3.2) -- s - 1  Prob = - 
u2r + a7 + 0 - (ur + u) 

as he can rule out the QT + u points which are collinear with his shadow. 
Equation (3.2) implies that the security level only depends on Q or, in 
other words, the number of points on a line, if sp(x,y) contains T + 1 
points. If this is the case, the pair (z,y) is called regular. A point x is 
said to be regular, if for every y, y + x, the pair (z, y) is regular. 

So far we have not said anything about the existence of generalized 
quadrangles. If a point of a GQ is regular then 2 r (see [7]). So the 
smallest case is u = r .  Such generalized quadrangles exist indeed. The 
ones in which all the points are regular are derived from the projective 
geometry PG(3, q). The points of the GQ are just the points of PG(3, g) 

while the lines are the totally isotropic lines with respect to a symplectic 
polarity. For the necessary background in finite geometry the reader is 
referred to [l], [S]. As these geometries exist for every prime power q, we 
have obtained an  infinite class of 2-threshold schemes which admit q + 1 
shadows at a security level of l /q2  and have an implementation size of 
q3 + q2 + q + 1 points and lines. Since these generalized quadrangles are 
coordinatized (see [7]), they can be implemented on a computer. 

Using a regular pair of points for an implementation supplies us with 
at  least r + 1 2 JI. + 1 shadows at a security level of l/u2 since the 
inequalities T~ 2 u 2 r hold (see [7]). Such a number is in nearly all 
cases far beyond anything needed. So the question arises whether one 
should use a non-regular pair of points whose span is sufficiently large. 
A span containing s points increases the security level to (s - 1)/ra2 at 
the same order (a, 7). For instance, the generalized quadrangles derived 
from a non-singular hermitian variety in PG(4, q2) have order (q2 ,  q3) .  
Here the spans consist of q + 1 points. Hence the probability to cheat is 
approximately l /q6 while the above examples attain a security level of 
only l /q4 at the same line-size. This is, however, not the only criterion 
for the magnitude of the implementation. 
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It  should be mentioned that regular pairs have a non-negligible ad- 
vantage when it comes to the actual implementation, since we can make 
use of the following observation. Two points z' and y' belong to sp(z,y) 
if and only if they are collinear with every one of the points in x1 i l  y'. 
Checking this is clearly not feasible. If the pair (z, y) is regular, it sufEces 
to show that x' and y' are collinear with just two of those points. Since 
in this case the trace of a span is equal to the span of the trace. So we 
just have to store two points of the trace and check whether z' and y' are 
collinear with both of them. The amount of computation needed for this 
depends on the number of coordinates and the particular field used for 
the coordinatization. 

3.2 The 3-Threshold Schemes 

The threshold schemes constructed in the preceding section were based 
on pairs of non-collinear points. Now we are going to use triads of points. 
We will see that, when assessing the security of the new systems, it is 
not sufficient to just transfer the considerations made for the 2-threshold 
schemes. The "extension" will provide an attacker with new possibilities. 

Let (5, y, z )  form a triad, and let sp(a, y, z )  = {z, y, z}'~ be the secret 
datum X. It is easy to see that any three points of X uniquely determine 
X. So condition (i) for a 3-threshold scheme is satisfied. 
Two disloyal trustees with i-espective shadows x',y' have a success rate 
of 

(s - 2)/(a2r + a7 + I7 - 1) (3.3) 

in a staight forward attack. If they can rule out the 2a(r + 1) - ( r  + 1) = 
2ar+2u-r-1 points which are collinear with z', y', then their probability 
to break the system is 

s - 2  
Prob = . (3.4) 

g2r - ur - a + r  
So far everything is similar to the case of two non-collinear points. Being 
able to rule out the points of tr(z',y'), however, opens up new ways of 
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breaking the system in this situation as we will see later. 

The number of shadows depends on the underlying GQ. If this is of 
order (a,u2) with a > 1, then tr(z,y,z) = {z,y,z}’ always consists of 
a + 1 points and hence sp(z, y, z )  contains at most a + 1 points. The 
point z is 3-regular, if Isp(z, y,z)I = a + 1 for any triad (z,y,z) through 
z in G. Hence X contains s = cr + 1 shadows. 

Examples of such generalized quadrangles are Q ( 5 ,  q), the elliptic qua- 
drics in PG(5, q), for every prime power q. These give rise to  3-threshold 
schemes with q + 1 shadows. We will discuss the security using the gen- 
eralized quadrangles of order (a ,  u2).  For these Equation (3.4) reads 

c r - l  1 
(3-5) Prob = --. - 

a4-a3+a2-a a3+a 

If the two trustees z‘ and y’ can work out the points of tr(z‘,y’) they 
could make use of this knowledge and the relationship between a trace 
and its span. They take any point u in tr(z,y), choose a Line L through 
this point and a point g # u on L. The probability that u is in tr(z,  y, Z) 

is (a+ l)/(a2+ l), the one for L to intersect sp( t ,  y, z )  in a point different 
to z and y is (a  - l)/(a2 - l), while the probability that g is indeed this 
point is l/a. Assuming that the three events are independent the two 
disloyal trustees succeed in breaking the system with a probability of 

(3.6) 
1 

-, 
a + l  a - 1  1 
a2+1 ( 7 2 - 1  u a3+a 
-.-._- - 

So all this effort has not increased their chances. An improvement of 
this attack can be made if one knows conditions under which a line L 
through z does or does not intersect sp(z,y,z) and the checking of these 
conditions could be done without the system knowing it. Seing able to 
determine a correct line raises the ”success rate” t o  (a  + l)/(a3 + a) .  

Clearly a lot of computing would have to go into such an attack. Any 
decrease in the security level given by (3.4) was based on the assumption 
that the trustees know not only their coordinates but also enough about 
the implementation to work out tr(d,y’). If they can do this it is a h  
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fair to assume that they can determine a point of sp(z’,y’) and feed the 
system this point. As sp(z, y, z )  is contained in sp(z’, y’) the security now 
depends only on the size of sp(z’, 9‘) which is bounded above by a2 + 1. 
This yields a probability of 

a - 1  a - 1  1 
(3.7) -. Prob = >-- - 

Isp(x‘,y’)/ - 0 2 - 1  a f l  
Hence, if the trustees know the underlying implementation, the security 
level depends only on the span of 2‘ and y’ and might be unacceptable. 

There is clearly no need for a trustee to know ”his” shadow but one 
cannot rule out the possibility that he does. There is, however, in this 
scheme a way to prevent the trustee from making use of his knowledge. 
Before the system checks the shadows for their validity it does apply a 
secret coordinate transformation to them. So the secret datum X is not 
the span of the points z,y and z but of their transforms. This renders 
the knowledge of both tr(z‘,y‘) and sp(z’,y’) a useless information and 
increases the security level to the security level given in (3.4). 

3.3 Combined Schemes 

Distinct threshold schemes defined on the same underlying GQ obviously 
give rise to ( t l ,  . . . , t,)-threshold schemes. Using the geometry of the GQ 
allows the construction of more sophisticated schemes. 

Let G be a generalized quadrangle with a > T in which every point is 
regular. To construct a (1,2)*-threshold scheme we choose a triad (z, y, z )  

where z is not coUinear with any point in sp(z,y). The condition a > T 
guarantees the existence of such triads since there are .(a - .)(a - 1) 
points z for every pair (2, y) of non-collinear points. As the secret datum 
X we select an  arbitrary point of tr(z,y). Putting Bl = sp(x,y) and 
B2 = tr(X,z) we obtain a (1,2)*-threshold scheme. 

To verify this we note that ,z is not collinear with X as (z,y) is a 
regular pair. The regularity of all points also implies that every triad has 
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exactly 0,1, or T + 1 centres (see [7]). 

Let d , y ’  be two shadows of B1 and z’ a shadow of B2. If they form 
a triad, then, in view of Axiom(iii), X is the unique centre of this triad. 
If z’ and, say x’ are collinear, then X is the unique point on the line 
through z’ and x* which is collinear with y‘. Now consider the case that 
two shadows are in B2 and one is in B1. The trace T of the two points in 
B2 has exactly one point in common with tr(z,y), namely the point X. 
This is the only point of T which is collinear with the shadow in B1. 

Two non-collinear shadows, whether or not they belong to the same 
class, determine a trace which contains X and T further points. Hence 
their probability to  guess X is 

(3.8). 
1 

T + 1  

Even if all the trustees of one class join their forces they cannot improve 
this probability. If the two shadows are collinear, then X is one of the 
c7 - 1 2 r points on their common line. So this case gives a probability 
of 

1 1 
a - 1 - 7  

< - (3.9). 

We note that there are no non-trivial examples known of generalized 
quadrangles with u = T + 1. Examples which can be used are the duals 
of those mentioned in the preceding section. They are of order ( q 2 , q ) ,  
where q is any prime power. 

Using the same kind of implementation as before one can check that 
the shadows belong to the correct classes. We store three points X,Z 
and w, where w is in tr(z, y). When three points together with their 
respective ”class numbers” are entered, the system checks that they are 
collinear with the appropiate pair of the three stored points. 
So we have joined two 2-threshold schemes to form a (1,2)*-threshold 
scheme. 
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Since the system checks the entered values for the correct class, the 
probability to break the system is smaller then the ones given above, if 
the knowledge of X in itself is not equivalent to  a compromise of the 
system. 
There are several ways to construct a possible third shadow. None of 
these yields a better probability than trying to figure out X first and 
then a "correct" shadow. So the probability in (3.8) has to be multiplied 
by 1/(a - 1) and the one given in (3.9) by l/a. So the chances to enter 
a correct third shadow are about 1/?. 
It should be mentioned that a coordinate transformation will reduce all 
these probababilities to about 1 over the number of points of the GQ. So 
two trustees stand no better chance than two outsiders who just know 
the underlying GQ. 

We conclude this section with an example involving a "supershadow". 

Let (z,y,z) be a triad such that z is not in sp(z,y). Then sp(z,y) 
and sp(z,z) have just the point z in common. We define three classes 
B1 = {z}, B2 = sp(x,y)\{x} and B3 = sp(x,z)\{x}, and let X = 

tr(x,y) U tr(x,z). This yields both a (l,l,l)- and a (0,2,2)-threshold 
scheme with the shadow z being more powerful than the other shad- 
ows. We note that tr(z, y) and tr(z, z )  intersect in a unique point u, say. 
So, if every point is regular, we only need to store u and a further point in 
each trace. We leave it to the reader to work out the various probabilities 
to cheat the system. 
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