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ABSTRACT 

This contribution describes a coding technique which transforms a stream of mes- 
sage symbols with an arbitrary frequency distribution into a uniquely decodable 
stream of symbols which all have the same fiequency. 

I .  INTRODUCTION 

In a Caesar cipher each letter from the alphabet {a ,b ,  . . . , z }  is replaced by the 
successor of the successor of its successor, i.e. the alphabet is shifted by three: 
{a,b,  . . . , z }  -+ { d ,  e, . . . , c}. In general, there are 26 possible shifts, and we say 
that the cipher defined by these shifts has a key size of logz 26 21 4.7, which is 
very small. If we, however, consider the set of all permutations of the alphabet 
{a ,  b , .  . . , z } ,  we get a cipher with a key size log, 26! 2: 88. This is more than 
one third larger than 56, which is the key size of todays most widely used cipher 
DES. Nevertheless, the cipher described is not secure for the encryption of English 
plaintext. In English the letters from the alphabet occur with the frequencies 
p ,  2~ 0.13, p t  11 0.09, p a  N 0.08, . . . , andp, 1z1 0.001 (see e.g. [l]), and therefore a 
frequency analysis of the cryptogram immediately reveals the chosen permutation. 

In this respect, English is neither an exception amongst the natural languages 
nor amongst the technical data streams like ASCII codes or A-modulated speech. 
All of them show statistical irregularities through unequal probabilities of the 
symbols or correlations between the symbols. The above permutation cipher is 
also not exceptional, it  is the most general block cipher defined on an alphabet of 
26 symbols. 

In order to describe more accurately the weakness discussed, we consider the 
uncertainty of the key, i .e.  of the enciphering permutation, when n symbols or 
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blocks of symbols of the cipher text are known. This uncertainty is quantified by 
the equivocation of the key k E IC given n cipher blocks (CO, c-I,. . . , ~ ( ~ - 1 1 )  E 
cn [2]: 

H(~Ico,c-I, .*.,c-(n-1)). (1) 

The smallest n for which the key is completely determined is called the unicity 
distance d. According to  Shannon [2] and Hellman 131, it is given by 

where T is the length over which the blocks become statistically independent and 
where the basis of the logarithms involved in the definition of H is equal to the 
size C of the cipher alphabet C. For English texts, Hellman [3] has estimated that 

which implies 
d 21 1.5 H ( k ) .  (4) 

In the case of DES, the key is therefore completely specified by the redundancy 
in the text after two cipher blocks of 64 bits each. The only property that has 
prevented so far the design of efficient algorithms to break DES is the mismatch 
between the statistical information and the block structure of DES. 

Even if cryptography is based to  a large extent on the complexity of certain 
computations, unconditionally secure systems are preferable. In the present sit- 
uation, unconditional security can be achieved by a suitable conditioning of the 
message either by reducing its redundancy with a data compression algorithm or 
by increasing its entropy in a randomisation process. The reduction of redundancy 
is more attractive from a theoretical point of view. The data compression algo- 
rithms known today, however, only imply a unicity distance proportional to the 
size of their encoding table, which makes them practically useless for the present 
purpose. 

Amongst the randomisation techniques, homophonic coding seems by far the 
most adequate, as was pointed out by Massey [4]. The basic idea of such a coding 
is to improve the distribution of the symbols in the cipher text alphabet C towards 
equidistribution by introducing a suitable number of representations for each letter 
from the message alphabet JM and by randomly choosing one of the representations 
at each step. Such a coding was already used in 1401 by the Duke of Mantua in 
his correspondence with Simeone de Crema [5] and is also well known through the 
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Beale ciphers [6]. An example which by its simplicity is particularly suitable to 
explain this type of encoding was proposed by Massey [4]. In this example, the 
message stream consists of independent, identically distributed ( i i .  d.) random 
variables from the alphabet M = {a ,b}  with the letter frequencies p a  = 2 and 
pb = i. A homophonic code for this example is defined on the image alphabet 
C = {0,1}* by 

f 00 
01 wi th  probability 1/3 each, a - l , o  

b - { 11 wi th  probability 1, 
( 5 )  

i.e. the message m = a is encoded at random into 00,01,10, with equal prob- 
abilties. As a consequence of this encoding, the message source stays i.i.d. and 
becomes equidistributed, and the unicity distance skips from d = 5.3 H ( k )  to  
infinity if at  least two keys are used. 

A similar approach can in principle be chosen for every rational frequency 
distribution. In general, this will however lead to an enormous data expansion. 
Furthermore, the frequency distribution completely specifies the cipher text alpha- 
bet in this scheme. Both disadvantages are avoided in the systematic approach we 
shall adopt now. 

11. DESCRIPTION OF THE ALGORITHM 

The homophonic code defined in equation (5) contains two essential elements, an 
encoding table, i.e. the association of the symbols 00,Ol and 10 with the letter 
a and the association of the symbol 11 with the letter b, and an encoding rule 
which states that each representation of a letter has to be chosen with equal 
probability. The construction of these two elements are the main steps in the 
universal algorithm. In order to get an idea of the general form of these elements, 
we observe that the following mapping also defines a homophonic code for the 
above example: 

0 with probability 2/3, 
10 with  probability 1/3, 

b ---+ { 11 with  probability 1. 

This mapping causes a smaller data expansion than the previous one. The mapping 
itself is obtained by noting that  the second bit in the strings 00 and 01 of equation 
(5) does neither carry information nor contribute to the equidistribution. The 
mapping can be interpreted as follows: if a 0 is transmitted it is to represent an a, 
if a 1 is transmitted it is not to  represent any letter but just to tell the decoder to 
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wait for the next symbol in order to  determine the information transmitted. With 
this interpretation the encoding table can be rewritten as two tables (see Figure 
1) with ir denoting the prefix symbol, i.e. the symbol which tells the decoder to 
wait and to decode the next symbol according to table T(2)  : 

T (1) T (2) 

Fimre 1: T h e  encoding tables f o r  the example M = { a , b } ,  C = (0, l}, 
3 pa = and pb = 1 4 '  

This form of the encoding table immediatly suggests the association with a bi- 
nary, or more generally with a C-ary representation of the frequency distribution 
{ P , } ~ E M .  And the two objectives of having a number of representations of the 
letters in the encoding tables which is proportional to the probability of that  letter 
and of having at least one letter represented in each table together with the above 
association lead to  the following general construction of the encoding tables: 

Initialisation: 

Cons t ruc t ion  of the i-th table T ( i ) :  

a) The dimension K; of the table T ( i )  is determined by 

b) A number nk') := [C"%ph"-l)] of symbols p?>'), . . . ,pa ( i ,nc) )  E C"; is chosen to 

represent the letter cy in table T( i ) .  

c) The remaining T L ( ~ )  := C". - CaEM nt' symbols c(i,l), . . . , g( i ,n( ' ) )  E C"' are 
chosen as prefix symbols. 
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C o m p u t a t i o n  o f  phi’ and loop control: 

If 
distribution is determined by 

= 0, the construction is completed. If di) # 0, the new probability 

i is incremented by one and the next table is constructed. 

The encoding tables for the slightly more complex example M = {a,b,c}, C = 
{0,1} and p a  = &, P b  = 3 1 and p ,  = $ are shown in Figure 2. 

0 

1 
4 
5 
12 

5 1  -+- 12 4 

3 a 

1 

- 
- 

Fiwre 2: T h e  encoding tables f o r  the example M = { a , b , c } ,  C = {0,1} and 
li, pa = z, p ,  = a. T h e  first table has size C2 = 4 as, due to 

pa < $: Qa E iu, n o  letter can be represented an a table of size c = 2 .  
T h e  symbols in the dark areas represent the letter a .  T h e  symbols in 
the pale areas are prefix symbols which are used in the representation of  
several letters. T h e  codewords 00, 110, 11110, 1111110,. . . all repre- 
s en t  t he  letter a .  

p a  = 1 
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p(rlm=a) c 

The number of tables generated in this example is infinite. However, only three of 
these tables are truly different (T(2") = T ( 2 ) ,  T(2n+1) = T ( 3 ) ,  V n  2 1). The parti- 
tion of the interval [0, 1) induced by the probability distribution (p, ,pb,pc},  which 
is represented in Figure 2, is useful for the construction of the tables themselves 
and also for the formulation of the encoding rule. If an a is to be encoded, the rule 
for the first symbol reads: choose at random a number T in the interval [0, A) ,  if 
T < $ transmit the s_vmbolOO if T 2 $ transmit the s-mbol 11 and encode a using 
the next table. This rule is symbolically represented in Figure 3: 

I I I 

-- a 

b 

C 

00 

01 

10 

11 

FiRure 3: Symbolic representation of the first step in the encoding of a .  A number 

the symbol 00 is transmitted and the encoding ends, else the symbol 11 
is  transmitted and further steps are needed to transmit the letter a to 
the receiver. 

T is  chosen randomly according to the distribution p(r lm = a) .  If r < 5 1 

With these considerations in mind, it is no longer difficult to derive the general 
encoding algorithm: 

a) Read a new symbol a E M from the data stream. 

b) Set i = 1. 

c) Choose a random number T E [O,pb;"-')). 

d) If Cnir 5 nk;', transmit pa (;,rc"ir]) and go to a), 
(i, r+(cRar-nt))l)  

if C X ~ T  > n$, transmit 0 pa , increment i by one and go to c). 

The effect of this algorithm is to combine the message source and the randomness 
from homophonic coding such that all symbols 00, 01, 10 and 11, and a fortiori 
0 and 1, become equally likely. This does not only hold for the first step but for 
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every one, which immediately implies the statistical independence of the output 
stream if the symbols from the source are statistically independent. With these 
remarks, the proof of the following theorem is easy: 

Theorem 1: If a message source generates a sequence of i.i.d. variables but 
with unequal letter probabilities, then the sequence obtained by applying the 
universal homophonic coding algorithm is i.i.d. and has equal letter probabil- 
ities. 

Many sources are modelled more accurately by a hlarkovian process with finite 
memory. For them the following theorem applies: 

Theorem 2: If the message source can be described by a Markovian process 
with finite memory 7, then the sequence obtained by applying the universal 
homophonic coding algorithm, with the probability distribution  EM re- 
placed by the conditional probability distribution 
{pQlp- l  ,..., a- , } c r ;Q- l  ,..., a - , E ~ ,  is i.2.d. and has equal letter probabilities. 

In both cases we thus have perfect statistical properties and therefore an infinite 
unicity distance. 

So far the homophonic coding algorithm has been described without taking its 
practical aspects into consideration. Amongst these, the two most important ones 
are the termination conditions for the table construction and the data expansion. 

111. TERMINATION OF THE TABLE CONSTRUCTION 

Two simple conditions for the termination of the table construction are obtained 
from the observation that the algorithm induces the following representation of 
the probabilities p a  : 

with 
i-1 

j=1 

This is a special form of a C-ary expansion and therefore easily implies: 
Lemma 3 : a. If all probabilities have a finite C-ary expansion, the table 

construction stops. 

tables becomes ultimately periodic. 
b. If all probabilities are rational, the sequence of constructed 

Condition b is a termination condition as only a finite number of tables needs to 
be determined and stored. So in all practical situations the table construction 
terminates, but eventually after a very large number of tables. 
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In applications, a given key is only used for a finite message length and cor- 
respondingly the unicity distance does not need to be larger than this length. 
Therefore, we can tolerate a deviation of the probabilities q7 of the cipher symbol 
y from its ideal value and restrict the algorithm to a maximum of say I + 1 
tables. If this is done by constructing I tables according to the algorithm of Sec- 
tion I1 and by adding one table, which contains a representation for every symbol 
cy E M with p i '  > 0, the probability gr of the symbol y E C is given by: 

where i7 is the frequency of the symbol y in table T('sl), where M is the size of 
the alphabet M ,  where n ~ + ~  is the dimension of that table, and where Xi  is given 
bv 

In this expression, the error gr - 6 converges exponentially to zero for 1 - 00 and 
the Taylor expansion of the entropy 

therefore implies an ezponential increase of the unicity distance with the table size 
1. 

IV . DATA EXPANSION 

From the description in Section I1 it is rather obvious that the algorithm will 
change the data rate. In some singular cases in which the distribution is concen- 
trated on a few symbols, this change can be a lowering of the rate. In the example 
M = (a ,  b,c ,  d } ,  p a  = 4, pb = g, p ,  = Is, p d  = $, and C = {O, 1) the compres- 
sion factor is g. In the generic case this change will, however, be an expansion 
and it is very important to have some information on how large this expansion 
will be. 

Theorem 4 : The ratio X of the output rate divided by the input rate of the 
homophonic coding algorithm is 

3 1 1 
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In this theorem we have taken to our disadvantage the value logc M for the input 
rate (instead of rlogciCI1) in order not to overestimate the mismatch between 
the usual alphabet { a ,  b, . . . , z }  and the technically relevant binary alphabet. For 
M 5 C we have the following general result: 

L e m m a  5 : a. If M 5 C, the data expansion X is bounded by 

X 5 c *log, c. 
b. For Ad = C = 2 or 3, the distribution 

(=V-l C 

1 - (7) c-1 c p j  := 

has a da ta  expansion X = C . log, C. 

The proof of this lemma follows easily from the observation that R; = 1 and 
T Z ( ~ )  5 C- 1 if M 5 C. Lnfortunately, the lemma is too weak for most applications. 

Therefore, we have estimated the average value of A, with the average taken 
over all probability distributions For M 5 C we have obtained 

A Monte Carlo simulation has confirmed this estimate and has provided the fol- 
lowing results for the relevant cases M = 27 (usual alphabet with blank) and 
C = 2,4,8,16,32,64,128,256 : (the error of X is 5 0.1) 

C = 2 4 8 16 32 64 128 256 
(A} = 2.7 2.4 1.9 2.4 1.7 1.7 1.6 1.8 

Finally, we have also computed X for the frequency distribution of letters in English 
texts, as taken from Beker and Piper [ l ] :  (the error of X is 5 0.1) 

C = 2 4 8 16 32 61 128 256 
X = 2.7 2.3 2.0 2.3 1.6 1.5 1.6 1.8 

If we compare this with the above results we see that English is quite typical. 
Furthermore, we note that  a suitable choice of the alphabet size C can considerably 
reduce the data expansion. This indicates that our simple rule for the choice of the 
dimension ~i of table T(*) was not optimal and that it can be further improved. 
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V . CONCLUSION 

In the present contribution we have shown that homophonic coding is an effi- 
cient precoding, suitable to increase the unicity distance of a cipher to any required 
length. Furthermore, even if only the lower order correlations are smoothed out, 
attacks on the higher order dependencies become practically infeasible due to  the 
variable length of the codewords. The additional random data transmitted causes 
a data expansion by a factor of roughly two. It can, however, be used to  further 
strengthen the system by suitably randomising the cipher applied to the precoded 
data. Finally, we note that  the described precoding can, after some s m d  modi- 
fications, be run in an adaptive way. Homophonic coding is thus highly adequate 
to substantially increase the strength of ciphers in most applications. 
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