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Abstract. In this paper we present a new probabilistic public key cryptosystem. 

The system is polynomially secure. Furthermore, it is highly efficient in that it's 

message expansion is l+(k-l)/l, where k is the security parameter and 1 the length 

of the encrypted message. Finally, the system can be used to sign signatures. 

1. Introduction 

The most important problem in modern cryptography is how to encrypt messages in 

a secure and efficient way. Here two things are of equal importance: security and ef- 

ficiency.Up to now three different notions of security have been proposed: Coldwasser 

and Micali's polynomial security, semantic security [l], and Y-security introduced 

by Yao [ 2 ] .  Micali et al([3]) have pointed out that these three notions are essen- 

tially equivalent. In this paper we'll adopt the notion of polynomial security. AS 

to the efficiency, it usually means the encrypting and decrypting time and the mes- 

sage expansion. 

The earliest public key cryptosystem is RSA [ 4 ] .  RSA is highly efficient be - 
cause it's message expansion is about one (the possiblely least value). However, it's 

security remains to be proven. Actually RSA is a deterministic cryptosystem and Can't 

be Secure according to [l]. In another direction, Goldwasser and Micali [l] presented 

the first probabilistic encryption scheme whose polynomial security is rigorously 

proven. But their scheme is not efficient at all. They encrypt every bit of the mess- 

age independently, so the message expansion is k (the security parameter) and this 

makes the scheme totally unvalued in practice. 

In this paper we concern both security and efficiency. We present a new "rada 
iterative encryption scheme" 

efficiency. The idea is simple: we randomly and iteratively encrypt the plaintext bit 

by bit. In this way we can get a secure public key cryptosystem with a low message 

expansion of l+(k-l)/l, where 1 is the length of the plaintext and k the security Par- 

which can achieve both polynomial security and high 
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ameter. The one more lucky thing is that the new scheme can be used to sign digital 

signatures, which seems impossible in the schemes of [l], [5] and [ 6 ] .  

Remark: Blum and Goldwasser have presented another secure probabilistic encryp- 

tion method with a message expansion of l+k/l. Their method is similar to that of B1- 

urn et a1.([5]), in which it exlusive-or the plaintext with a sequence of the 

length generated by a pseudo-random number generator. For the details see [5] and [ 61  

same 

2 .  Background 

4. 

Let N denote the set of positive integers and n6N. Let Z* ={xi l s x  < n and 
1 (x,n) =1 1 , Z =ix 1 1 d x 4 n  and (x/n)=l) , where (x/n) is the Jacobi symbol Of 

x mod n. The symbol In1 denotes the binary length of n. 

Let Q be a predicate defined on Z1 such that Q (x)=l iff x is a quadratic re- 

sidue mod n .  Let \ denote the set of "hard composite integers", i.e., H ={nln=Pq, 

where p and q are distinct primes such that (pl=]q\=k.). 
k 

The security of our scheme is based on the quadratic residuosity assumption (-)- 

From QRA Goldwasser dMicali have proven the following. 

Lemma 1 ([l]). Under QR4, the predicate Q defined on Z i  is unappoximable by any 

circuit of polynomial size even if some quadratic nonresidue mod n are known. (Recall 

that a circuit C &-approximates a predicate Q:B-+{O,l) if C(x)=Q(x) for at least 

fraction 1/2+E of the xCB.) 

a 

Let J =tx\l&xLn/Z and (x/n)=l}. Lec QRn denote the set of quadratic residues mod 

n. It is easy to prove the following 

Lemma 2 .  Let n=pq where p and q are distinct primes such that p=q=3 mod 4. Then 

each zfQR has exactly one square root that is in Jn and we denote this root by sqr(z) 
is restricted to 1 defined on Zn We point out that Lemma 1 will still hold when Q 

Jn, and we still call the result Lemma 1. 

3 .  The New Encryption Scheme 

Let n=pq as in L e m a  2 .  Let y be a quadratic nonresidue mod n. Now we introduce 
a function E as follows: 

E : Jnx {O,l}-Jn Y {0,1) 

2 

2 

2 En(x,l)=( x y mod n, 0 )  
2 =(-x y mod n, 1) 

if x 2 mod n+n/2, E (x,O)=( xmod n, 0 ) 

otherwise. 

2 if x y mod n<n/2, 

otherwise. 

=( -x  mod n, 1) 

From Lemma 2 we know that En is invertible. The inverse of En is denoted by Dn 
can be specified as follows: 

and 



41 7 

Dn: Jn x {O,lf-bJn x ( 0 , l )  

Dn(z, j)=( sqr(z), 0 )  if j=O and zGQR. 

=( sqr(zy ),1) if j=1 and ztQR. 

=( sqr(-zy ), 1) if j=1 and ziQR. 

=( sqr(-z), 0 ) if j=1 and z4QR. 
1 

-1 

-1 

For convenience we denote the first and second components of E (x,i) by En(x,i) and 

En(x,i) respectively. 2 

For any positive integer 1, E can be generalized as follows: 

En: Jn x ;0,l)'-.Jn x {O,l)' 

En(x,m l...m 1 )=(xl, bl...bl) 

where 

xo =xs 1 x. =E ( x. mi), 
1 ll 1-1' 

b. =E ( x .  mi), 
1 n 1-1' 

i =l,Z, ..., 1. 
The generalized E is also invertible and it's inverse is still denoted by D . n 

Now let k (an even number) be the security parameter. The new probabilistic pub- 

lic key cryptosystem works as follows: 

(1) it randomly selects two distinct primes p and q such that p=q=3 mod 4 and 

\ P I =  Iq i=k/2 ,  
( 2 )  s e t s  n=pq, 

(3) picks y, a quadratic nonresidue mod n, and finally, 

( 4 )  outputs (n,y) and {p,q). 

Some user, say A,  publicizes the pair ( n ,  y) and keeps secret the pair {p,q). 

l"'ml to Encryption: Suppose some user B want to send a binary message m=m 
A. Then he encrypts rn as follows: 

(1) Randomly selects an xCJ and sets z=x. 

( 2 )  Performs step ( 3 )  for i=1,2, ..., 1. 

(3)(z,bi):=En(z,mi). 

( 4 )  Sends A the ciphertext E (x,m)=(z,b l...bl). 
2 Encrypting an 1-bit long message m takes O(lk ) time, and m is transformed into 

an (l+k-1)-bit long ciphertext. So the message expansion is l+(k-l)/l which is much 

less than k (the message expansion of Goldwasser and Micali's scheme). 

Decryption: Upon receiving the ciphertext (z,b l...b ), user A decrypts it as 
1 

follows : 

(1) Performs step ( 2 )  for i=l,1-1, ..., 1. 
( 2 )  (z,mi):=Dn(z,bi). 

(3) Gets the message m=m 
3 l'"ml - 

Recovering m ( I m l = l )  from it's ciphertext takes O(lk ) time. 
IJsing the proof techniques in [3] and [ 6 ] ,  we can prove the following 
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Theorem. The crypcosystem introduced above is polynomially secure. 

Proof. The proof is tedious long and omitted here. 

4 .  AppLications 

To sign a message m, we randomly select an xCJ and forms 

S(m) = ( m, Dn(x,m) ) 

S(m) will be the signature of m. Of course this simple signature is not strong. 

computing E (z,b)=(x,m), the forger can easily forge the signature of an (unpredict- 

able) message m. This is the so-called "chosen signature attack" and can be prevented 

in several ways.0ne way is as follows: randomly select x,ytJn, xty, and let S(m)=(m, 

Dn(x,m), Dn(y,m)). This time forging the signature of even an unpredictable message 

m requires finding w,z€J b,b*E{O,l)*, such that E (w,b)=E (z,b'), and this seems 

impossible. 

By 

n' 

Note that in the above mentioned signature scheme, the signature of ml...mi or 
mi...ml for any i (1Sihl) can be easily obtained when the signature of m l...ml is 

known. But we may avoid this danger by letting, for example, 

S(m l...ml)=(ml...ml, D (x,m l . . . r n l ) ,  Dn(y, mth ... ml m l . . . m t , 2 + ,  ) .  n 
Clearly various signature schemes can be devised based on our new public key crypto- 

system. We leave the open problem of implementing a concrete signature scheme, to- 

gether with a rigorious security proof. 
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