Deriving Genetic Programming Fitness
Properties by Static Analysis

Colin G. Johnson

Computing Laboratory.
University of Kent at Canterbury.
Canterbury, Kent, CT2 7NF, England.
Email: C.G.Johnson@Qukc.ac.uk

Abstract. The aim of this paper is to introduce the idea of using static
analysis of computer programs as a way of measuring fitness in genetic
programming. Such techniques extract information about the programs
without explicitly running them, and in particular they infer properties
which hold across the whole of the input space of a program. This can
be applied to measure fitness, and has a number of advantages over mea-
suring fitness by running members of the population on test cases. The
most important advantage is that if a solution is found then it is possible
to formally trust that solution to be correct across all inputs. This paper
introduces these ideas, discusses various ways in which they could be
applied, discusses the type of problems for which they are appropriate,
and ends by giving a simple test example and some questions for future
research.

1 Introduction

Genetic programming (GP) [2, 11] is concerned with the application of evolution-
ary algorithms to the evolution of program code. In order to apply evolutionary
methods a notion of solution quality (fitness) is needed. Traditionally GP and
related techniques have used performance measures on sets of test data as a way
of measuring the quality of solutions. However this leads to a number of prob-
lems, in particular programs can become overspecialized to their training set and
they cannot be (formally) trusted to perform correctly beyond that training set.

This paper discusses the prospects for applying various kinds of static pro-
gram analysis techniques to this problem. A background section describes these
ideas and gives some motivating examples, then two further sections outline rea-
sons why these techniques are potentially useful in genetic programming, and
how they can be so applied. A simple example is implemented, and the paper
concludes by summarizing these ideas and suggesting a number of questions for
future research.

2 Background

Static analysis [16] is a set of techniques which provide information about a
program and how it will behave once run, without actually running the program.



In particular static analysis techniques are able to provide information about
program behaviour across the whole of the input space of the program, rather
than providing information for a particular test case. A number of different kinds
of information can be gained by carrying out different kinds of static analysis,

e.g.

constraint information about relationships between variables [6]
information about the extreme values which a variable could possibly take
at each point in the execution of a program [4]

usage information about whether facts vital to the solution of a problem
have been used

complexity information, e.g. the number of potential paths through a piece
of code [15]

— performance information [17, 21]

As a toy example consider the following fragment of pseudocode (all variables
are integers):

x = 0;
read y;
z = y+20;
if (y<10)
for (i=0;i<y;i++)
X += 2;

At the end of the first line it can be seen that x must equal 0. By the end of the
fragment, it must be at least 0 and at most 20. The variable z must be greater
than y by the end of line 3. All this information can be inferred by systematically
tracking the extreme values that variables can possibly take at each line in the
program. This process can be automated.

3 Why should we apply static analysis to genetic
programming?

GP has proven to be a powerful technique for the solution of problems from a
large number of domains. However there are a number of difficulties with GP, in
particular relating to the measurement of fitness. The power of GP comes from
being able to produce programs which are able to solve a parameterized space
of problems. In order to assess the fitness of a member of the population, it is
traditional to run the program on a number of test cases, and use the accuracy
of the output as the fitness measure.

The first problem with this method of measuring fitness is that it gives no
formal assurance that the program will operate on data outside of the test set.
Moreover the programs generated by GP are typically incomprehensible to hu-
man programmers, so informal post hoc analysis of the programs is impossible.
Measures of fitness derived from static analysis could be used to ensure that the
results will be applicable across the whole of the input space.



Also this may lead to new kinds of fitness measures which make specific use
of static features of the program which cannot be discovered simply by running
the program. An example of this would be the use of cyclomatic complexity [15]
as a component of a fitness measure, which measures the complexity of programs
by calculating the number of routes through the code.

Another important problem with GP is that the programs generated can
be overfitted to the training data used. Experimental evidence for this is given
e.g. by Paterson and Livesey [20]. If the fitness of members of the population is
created using measures which apply to the whole of the input space, this problem
is removed.

There are also ways in which these techniques could improve the performance
of GP itself as well as eliminating problems with existing GP techniques, for
example it may be the case that a static analysis may be quicker to perform
than running a complex program on many test cases.

Also these concepts have the potential to expand the range of problems which
can be tackled using GP. Many problems solved by GP are of the form in which a
small sample of inputs gives results which give us confidence about the remainder
of the input space. Consider the evolution of high-pass and low-pass filter circuits
[3]. In such a problem is it informally reasonable to say if a random sample of
inputs gives a reasonable response, then the response will be reasonable across
the frequency range. Related arguments can be made for problems like evolving
a range of controllers parameterized by a free variable [12]. However in many
applications there are too many variables to do this, or else the relationship
between input and output is too complex to generalize in a simple way, and
these statements will never be rigourously correct.

The kinds of information that can be generated by the static analysis of
programs can be divided into two kinds. The first type is results which say
something about the performance of the program, e.g. its use of cache memory.
Secondly the second type is results which measure the functioning of the program
itself, e.g. results about bounds on output values.

There are a number of potential difficulties with the application of these
techniques. The most significant is that the programmer might not be able to
get the information which is required in order to assess fitness by using a static
measure. This might be for pragmatic reasons (e.g. not being able to write the
fitness function in terms of data which can be obtained from the static analysis
tools available), or it may be because the problem is defined implicitly in terms
of a particular data set. Another problem could be that the time taken to carry
out the analysis may make it impractical; however for most simple analysis
techniques this does not seem to be a problem.

4 Ways in which static analysis can be applied

There are a number of ways in which these ideas might be applied. The appli-
cability of these different techniques is likely to be problem dependent. Three
ideas are detailed in this paper.



4.1 Using multicriterion optimization to combine test-driven and
static fitness aspects

For some problems some characteristics of a good program may be measurable
using static techniques, whilst other characteristics might only be measurable
using testing. This might be because the programmer cannot find an appro-
priate static measure. Alternatively, it may be because the problem is defined
implicitly by data, e.g. certain kinds of function regression problems or the “non-
programmed computation” problems discussed by Partridge [19].

In particular static analysis lends itself to measuring performance aspects of a
solution, e.g. measuring the efficiency of memory usage. Such a static measure of
a performance aspect can be factored into the fitness measure for any program.

Therefore the first way in which the two ideas might be combined would be
to measure some aspects of the program’s fitness statically, and some aspects
using a traditional test-data approach. These results would then be combined
using one of the many techniques which have been developed for multi-criterion
optimization [9]. The simplest such technique is to measure the various fitness
characteristics of the programs separately, and then to create a fitness from a
weighted sum of the measures, where the weights are given by inverse population
averages for that factor, so that the total average contribution for each factor is
the same.

Other, more sophisticated, techniques could be used to carry out this multi-
criterion optimization. An example is Ryan’s [23] “Pygmies and Civil Servants”
algorithms, which takes two parent populations, one of which has been selected
for each of two criteria, and creates children by recombining pairs from each of
the two populations. This could be applied to the situation described above by
creating two rankings on the population, one a statically-derived measure and
one a measure derived from testing.

An example of the kind of performance characteristics which could be mea-
sured statically would be the behaviour of the cache memory (e.g. as described
in [1,7,17,21]), the efficient distribution of tasks between a number of parallel
processors, or the efficiency of garbage collection in a program.

Another example of this would be in evolving solutions to problems where
there is an important safety constraint. Two examples will illustrate this. The
first of these is evolving some behaviours for a mobile robot, where it is desirable
for safety reasons that the robot be not allowed to leave a particular physical
area. A second example is in evolving some control mechanism, where some
critical value (like the temperature of a machine) is not allowed to go outside
a critical range. In both of these examples there are two components to fitness
which need to be combined into a single fitness measure. The first of these is
a measure of the success of the solution on the task at hand, which could be
measured by running the program on test cases. The second is a measure of the
safety of the system, which could be derived from a static analysis of intervals
and inequalities [4, 5] which the critical value takes whilst the program is running.
The inclusion of this second component in the fitness would bias the population



towards those solutions which lie within the safe region, and would provide a
way of knowing when solutions are within the safe region.

4.2 Improving existing programs

A second way in which these ideas could be used is in improving the performance
of existing code whilst maintaining functionality. An example of this would be
improving memory performance of an existing program by applying static mea-
sures of cache performance [1,7,17,21] to the members of the population. The
maintenance of functionality would be by ensuring that the only operations per-
formed on the program are the interchange of basic blocks [13] within a program
(as a kind of mutation operator), functionality preserving exchanges within those
blocks (such as the unrolling of loops) [10] and the interchange of functionally-
identical basic blocks between programs (as a kind of crossover operator).

4.3 Using only static measures

The ideal application of these ideas would be to problems where the entirety of
the fitness can be derived from static measures. In such a case when solutions
are found they can be trusted to be correct across the whole of the input space.

Clearly the types of problem for which this could be applied depend on the
sort of information that can be obtained via various forms of static analysis. For
certain problems fitness can be defined in terms of variables satisfying certain
inequalities or falling within certain ranges, and it would be possible to extend
this to optimization problems by creating a hierarchy of inequalities. An example
of a problem whose fitness can be defined in this way is a “placement problem”
like those outlined in section 5 below.

One perspective on this is that this process is producing programs by spec-
ifying guidelines, and evolving programs which produce outputs which satisfy
those guidelines. So for example the user creates a list of inequalities which the
various variables in their program must satisfy at the end of the program. The
fitness measure counts the number of these inequalities which are satisfied by the
end of the program, regardless of input values, by techniques such as tracking
the extreme values of intervals and tracking whether changes to variables change
a list of inequalities associated with that value [5].

5 A simple example

The main point of this paper has been to discuss the type of problems which can
be tackled using this approach rather than to give specific examples. However to
finish we shall give a report on some preliminary experiments in which we have
implemented a simple example which illustrates these ideas.

The example is a 2-dimensional “placement problem”. Given a number of
shapes (rectangles for the purposes of this example) and a number of desired
relations between those shapes (e.g. “rectangle A must be completely to the



right of rectangle B”), the aim of the algorithm is to find a placement of those
shapes on a given background region so that the relations are satisfied. The way
in which GP is applied to this problem is to derive a program which will solve that
problem, parameterised by the lengths of the various rectangles, but with the
relationships being fixed. Note that the aim of this is not to apply evolutionary
algorithms to the problem directly (as in e.g. [14]), but to find algorithms which
can solve a large space of such problems. These types of problems occur in
a number of applications: VLSI layout [14], packing problems, and automated
layout of windows on a computer screen [8,22] or widgets within a window. A
sample problem is illustrated in figure 1. For small numbers of constraints the
problem is trivial, but as more constraints and shapes are added it becomes more
difficult.

This problem has been tackled using the GP-like technique of O’Neill and
Ryan known as grammatical evolution [18]. This uses a BNF grammar to trans-
form a bitstring into a valid program in an arbitrary language, which provides a
powerful extension to standard GP. A tableau describing how the grammatical
evolution algorithm is applied to this problem is described in table 1.

It is possible to solve this problem using traditional fitness measures, by
taking a list of sample cases which satisfy the conditions. However there are a
number of problems with this. Firstly there are the problems outlined above;
there can be no certainty that the program will work outside our test set, et
cetera. This is illustrated by attempts to change the size of the space into which
the shapes are placed (this could represent placing shapes on a different sized
screen, but with the same desired spatial relationships). Also it is difficult to
create these test data, so being able to generate the program directly from the
constraints is valuable.

For this problem fitness is derived statically in the following way. For each
line of the function, a set of data is updated containing information about the re-
lationships between the variables. In this example two pieces of data are tracked:
one is the extreme values which the variable values can take, and the other is a
boolean variable which tracks whether a variable must be greater than or equal
to zero at that point, regardless of which route through the program was used to
access that point. The following are examples of the kind of update rules which
are used to update the latter variable (space precludes the inclusion of a full
list):

— If a positive constant is assigned to the variable, then the “known to be
positive or zero” flag for that variable is set to true.

— If the flag is currently true and the variable is incremented by a value (vari-
able or constant) which is itself known to be positive, then the flag remains
true.

— If the variable is decremented by a variable about which nothing is known,
then the flag is set to false. This illustrates the “conservative” nature of the
flag—it is not measuring for certain whether the value is positive/zero at a
particular program point, it is measuring whether, regardless of which route



the program had taken to reach the current point, it is possible to make the
statement at that point.

— If the variable is assigned to a sum of values (constant or variable) which are
known to be positive and values to which the absolute value function has
been applied, then the flag is true.

It would be possible to add more transformations to the list; however the list can
always be finished by saying “in all other cases the value becomes false”, i.e. it
is always possible to say that no statement is being asserted with confidence at
that point. In this way an analyser can be gradually built up by replacing con-
servative approximations with more concrete statements as the analysis program
is improved.

The complete analyser contains a large number of such update rules. At the
end of a run of the analyser on a program, a list of conditions is produced which
the output from the program must satisfy, regardless of input. These can then
be checked for compatibility against the desired conditions. For each condition
which is met, the fitness is incremented. In the implementation described here,
different kinds of conditions are weighted, so that the fitness function is not
swamped by lots of easy-to-satisfy conditions early on.

8) The Ihs of rectangle C must be to the right

of the rhs of rectangle A 9)All ordinates

must be greater
than zero

C

6) The bottom of rectangle C must be at least 30
units above the top of rectangle A.

4) The top of rectangle B has

/ to be below the top of

B rectangle C
5) The bottom of rectangle B
j ~_ 9 :

has to be above the bottom
f of recctangle A
/ 3) The Ihs of rectangle B rhs = right hand side
must be to the right of the lhs = left hand side
1) The x—coordinate of rectangle A ths of rectangle A
must be in the interval [0,20] 7) The Ihs of rectangle B must
2) The y—coordinate of rectangle A be within 20 units of the rhs

must be in the interval [0,20] of rectangle A

Fig. 1. A sample placement problem.

Results from two sample runs of a test example (showing best fitness and
average fitness for a weighted sum of constraints) are presented in figure 2. The
two runs have different mutation probabilities. Clearly evolution is working to
ensure that more conditions are being rigourously satisfied with time. However
three conditions (out of 16) are not satisfied, and these are some of the more
complex conditions. What appears to be happening is that evolution is converg-
ing on a number of rather short programs which satisfy a reasonable number of



Objective.

To find a placement for a number of rectangles, given the length and width of
each rectangle, so that they satisfy a set of conditions stated as intervals and
inequalities.

Terminal op-

The binary operators +, —, X, and the unary operators increment, decrement,

erators absolute value.
Terminal LValues: Position of each rectangle and a number of scratch variables. RValues:
operands Length and width of each rectangle, position of each rectangle, the scratch

variables and a number of fixed constant values.

Fitness cases.

The fitness is not measured by running the program on test cases. Instead it
is measured by keeping track of the extreme values which variables can take,
and keeping track of whether it is possible to say rigourously that variables
are positive or negative at each program point, and using these intervals and
inequalities to compare with the list of required constraint values.

A weighted sum of the number of conditions satisfied by the rectangles in
their final position at the end of program execution. Interval conditions are

Raw fitness. weighted 1, simple inequalities between two variables are weighted 2, and more
complicated inequalities are weighted 5.

Wrapper. C code to transform the list of arithmetic statements into a C function.
Population size = 500, termination after 50 generations, probability of muta-

Parameters. [tion = 0.001 or 0.01 per bit, probability of crossover = 1.0, elitist selection,

one point crossover.

Success predi-
cate

The program can be terminated if all the conditions become satisfied.

Table 1.

Grammatical evolution tableau for a sample placement problem.

30 T T T T T T T T T
Test 2, best
25 e e E
""""""""""""" Test 1, best
,,,,,,,,,,,,,,,,, J— _
20 | Test 1, average 4
12
1%
g
= Test 2, average
w
15 -
10 g
5 1 1 1 1 1 1 1 1 1

Fig. 2. Two fitness results for a placement problem (test 1:

10 15 20 25 50

Generation

30 35 40 45

mutation probability 0.001

per bit, test two mutation probability 0.01 per bit).




conditions, and then crossover cannot work to swap information into these short
programs.

Two strategies are being employed to attempt to alleviate this. Firstly explicit
length information is being factored into the fitness function. Secondly a fitness
function is being developed where the weightings given to each constraint depend
on the comparative rarity of the constraint in the population, and this is being
further emphasized by the use of fitness scaling. Preliminary results from the
latter suggest that this is effective in maintaining diversity of constraints satisfied
in the population.

6 Conclusions and research questions

In this paper we have discussed various ways in which static analysis techniques
can be used in genetic programming and related areas. A simple example has
been given, however the main piece of future work is to apply these ideas to
a broad range of problems and gather detailed information about performance.
Another piece of work which would help in applying these methods would be
to gather together details about the different types of information which can be
gained from different types of static analysis, and bring these together into some
common format so that they can be combined into composite fitness measures.
Once such a structure is in place it will be easier to get a feel for the range of
problems to which these ideas can be applied.
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