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Abstract

We investigate structural and semantic distance metrics for linear genetic pro-
grams. Causal connections between changes of the genotype and fitness changes form
a necessary condition for analyzing structural differences between genetic programs
and for the two major objectives of this paper: (i) Distance information between in-
dividuals is used to control structural diversity of population individuals actively by
a two-level tournament selection. (ii) Variation distance of effective code is controlled
for different genetic operators—including an effective variant of the mutation operator
that works closely with the used distance metric. Numerous experiments have been
performed for a regression problem, a classification task, and a Boolean problem.

1 Introduction

A fitness landscape on the search space of programs is defined by a distance metric for
program structures and a fitness function that reflects the quality of program semantics.
The application of a genetic operator corresponds to performing one step on the landscape.
Both the roughness of the fitness landscape and the step size of the operator decide on the
success of the search process to find solutions that are optimal or close to the optimum.
On the one hand, a genetic operator has to allow progress in steps that are small enough.
On the other hand, the steps must be related through a distance measure on the fitness
landscape that is smooth at least in local regions (local strong causality). Otherwise,
evolutionary search may not be more powerful than random search. In a totally rugged
fitness landscape the (structural) neighbors of a search point (program) do not promise a
moderate change in fitness, i.e., program semantics. However, the surface of the fitness
landscape depends not only on the problem but on the configuration of the GP system,
too, especially on the provided set of function operators.

In contrast to other evolutionary search algorithms like evolution strategies (ES), genetic
programming (GP) may fulfill the principle of strong causality, i.e., small variations in
genotype space imply small variations in phenotype space [13], only weakly [15]. Obviously,
changing just a small program component may lead to almost arbitrary changes in program



behavior. However, it can be expected that, on average, smaller variations of the genotype
lead to smaller variations in fitness.

The edit distance, sometimes referred to as Levenshtein distance, [6] between varying
length character strings has been proposed as a metric for representations in genetic pro-
gramming [10, 14]. Such a metric not only permits to analyze genotype diversity within
the population but offers a possibility to investigate the effect (step size) of variation op-
erators. In [8] correlation between edit distance and fitness change of tree programs has
been demonstrated for different variation operators and test problems.

This work introduces efficient structural distance metrics that operate selectively on sub-
structures of the program representation in linear GP (LGP). Correlation between struc-
tural and semantic distance as well as distribution of distances are documented for two dif-
ferent types of variation. One uses recombination while the other one is based on (macro)
mutations only. In the course of these basic experiments the development of structural and
semantic diversity, i.e., the average distance between two (randomly selected) individuals,
is analyzed over a run.

One major objective of this contribution is to apply distance metrics for an explicit control
of diversity within LGP populations. Therefore, we introduce a two-level tournament
selection that selects for fitness on the first level and for diversity on the second level. We
will see that this is less motivated by a better preservation of diversity during run but by a
control of a diversity level that is depending on the configuration of the selection process.
Instead of a premature loss of diversity we observed an inherent increase of structural
diversity with our linear GP approach.

The simplest form of diversity preservation might be to seed randomly created individuals
regularly into the population during runtime. In [10] a more explicit maintenance of
diversity has been proposed by creating and seeding individuals that fill “gaps” of under-
represented areas in genotype space. However, experimental evidence has not been given
for this rather complicated and computationally expensive approach. Until now, explicit
diversity control is a rarely investigated technique in genetic programming. Only recently,
de Jong et al. could improve parsimony pressure through Pareto-selection of fitness and
tree size by adding a (third) diversity objective. In contrast, a more implicit control of
genetic diversity offer semi-isolated sub-population, called demes, that are widely used
in the area of evolutionary computation (see, e.g., [17, 3]). Only a certain percentage
of individuals is allowed here to migrate from a deme into another deme during each
generation.

The second major objective of this paper refers to the structural distance between a par-
ent program and its offspring, i.e., the variation distance induced by a variation operator.
While the effect on the overall program structure may be controlled by designing appropri-
ate genetic operators—as demonstrated in [4] for linear GP—the change of the effective,
i.e., fitness-relevant, part of code has to be measured explicitly. The latter may differ
significantly from the amount of absolute change on structural level. By monitoring the
effective variation distance during runtime variation step sizes may be restricted more
precisely in relation to the change of program semantics. In particular, genetic operations
that disrupt the effective part of program completely may be avoided. We will see that
even strong restrictions of the maximum allowed mutation distance do not restrict freedom
of variation significantly.

Designing variation operators that walk on the fitness landscape in small steps favors the



use of mutations. We apply a variant of linear GP that uses effective mutations exclusively
[4]. These operations reduce the number of neutral variations by concentrating on effective
instructions. In this way, step sizes performed by effective mutations are more closely
related to the effective distance.

2 Basics on Linear GP

Programs in tree-based genetic programming (TGP) denote expressions from a functional
programming language like LISP [11]. In linear genetic programming (LGP) [1], instead,
the program representation consists of variable-length sequences of instructions from an
imperative programming language like machine code [12] or C [3]. An instruction in-
corporates an operator that manipulates variables (registers) and constants and assigns
the result to a destination register, e.g., 7; := r; + 1. The imperative program code is
divided into effective and non-effective instructions while only the effective code may in-
fluence program behavior. The non-effective instructions are referred to as introns. This
separation of instructions results from the linear program structure—not from program
execution—and can be computed efficiently during runtime [3]. In the following program
example only the instructions that are not commented can have an influence on the final
output that is hold in register ro here at the end of execution. pdiv and ppow represent
protected versions of the division and the exponentiation operator that map undefined
input ranges to high penal values.

void gp(r)
double r[5];
{

r[1] = r[4] * r[0];
r[0] = ppow(r[i]l, 2);
// rl4] = r[2] * r[4];
r[4] = pdiv(r[2], r[0]);
// r[0] = r[3] - 1;
// (1] = r[2] * r[4];
// rl1] = r[0] + r[1];
// r[0] = r[3] - 5;
// r[2] = ppow(xr[1], r([0]);
r[2] = r[3] - r[4];
r(4] = r[2] - 1;
r[0] = r[4] * r[3];
// rl4] = r[0] + 2;
// rl[1] = pdiv(z[0], r([31);
// r[1] = r[1] + 9;
// r[4] = ppow(r[4], r[31);
r[3] = r[2] + r[3];
r[4] = pdiv(r[2], 7);
// r[2] = r[2] * r[4];
r[0] = r[0] + r[4];
r[0] = r[0] - r[3];



We distinguish two different variants of linear GP in this work. While the standard
approach applies recombination by crossover to vary program length the other approach
works with mutations exclusively. The linear crossover operator exchanges two arbitrarily
long sub-sequences of instructions between two individuals. If the operation cannot be
executed because one offspring would exceed the maximum length crossover is performed
with equally long sub-sequences. Macro mutations include deletions or insertions of single
(full) instructions here and represent an alternative growth operator to crossover. Micro
mutations change the smallest program components that comprise a single operator, a
register or a constant.

Effective mutations always guarantee that the effective code is altered. This reduces the
probability that a mutation stays neutral in term of a fitness change. If an instruction is
inserted its destination register is chosen in such a way that the instruction is effective at
the corresponding program position.

3 Structural Distance Metrics for Linear Genetic Programs

3.1 Edit Distance

The string edit distance [6] operates on arbitrarily sequences of characters. It measures
the distance between two strings by counting the number of basic operations—including
insertion and exchange of single elements—that are necessary to transform one string into
another. Usually each operation is assigned the same costs (one) independently from the
affected type of element. The string edit distance is calculated in time O(n?) [6] with n
denotes the maximum number of components that are compared between two individual
programs.

We apply the edit distance to measure the structural distance between the effective part
of programs (effective distance) because a difference in effective code may be more directly
related to a difference in program behavior. In contrast to a distance metric regarding full
program code (absolute distance) this includes some information on program semantics.
The relatively high rate of non-effective code—about 50-60% in the experiments below—
that emerges with recombination, makes clear that there is a stronger correlation between
semantic and structural distance when restricting the distance measure to the effective
code only. It is important to realize that the effective distance is not included in the
absolute distance. Actually, two programs can have a small absolute distance while their
effective distance is comparatively large (see Section 6). On the other hand, two equally
effective programs might differ significantly in their non-effective code.

Additionally, we regard the sequence of operators (from the effective instructions) only.
The sequence corresponding to the example program from Section 2 is

(_a+7/7+a*a ) _a/apowa*)'

when starting with the last effective instruction. The distance of effective operator symbols
has proven to be sufficiently precise to differentiate between program structures provided
that the used operator set is not too small. This is due to the observation that in most
cases the modification of an effective instruction changes the effectivity status of at least
one instruction (see Section 8). Note that this is only true for the effective distance of
operators. The absolute operator sequence would not be altered by the exchange of single



registers. Because identical exchanges of program components are avoided updating a
constant within an effective instruction is the only type of variation that is not registered
at all. Actually, a registration of absolutely every structural difference should not be
necessary if we take into account that the correlation between semantic and structural
distance is probabilistic.

Beyond that, less different genotypes are distinguished by this metric that represent the
same phenotype (fitness). By including the program registers into distance calculation the
distance measure would become more ambiguous. This is true because most registers are
used temporarily only during calculation and may be replaced partly by others without
altering the behavior of a program. In fact, only the last assignment to an output register
in (effective) program and all readings of an input register before its contents is overwritten
for the first time are invariable.

Another important motivation for restricting the number of components in compared
programs is that time of distance calculation is reduced significantly. By regarding only
the sequences of effective operators calculation time of edit distance directly depends on
the (average) number n of effective instructions (effective length) only. Depending on the
percentage of non-effective code there are k times more elements to compare if one regards
the full sequence of operators in programs. Extending the distance metric to registers
and constants of instructions, again, results in a factor of 4 maximum. In conclusion,
computational cost of the edit distance would increase by a total factor of (4k)? up to
O(16k? - n?).

3.2 Alternative Distance Metrics

In all experiments of this paper we have applied the edit distance metric as described
above. However, even if a reduction of identifying program elements already accelerates
distance calculation significantly, there are more efficient metrics possible on linear genetic
programs.

One step toward a more efficient distance calculation between two effective programs is
to give up the order of operators and to compare only the numbers of each operator type.
Then program distance may be reduced to the Manhattan distance between two pattern
vectors v and w of equal length n (n = size of operator set). Each vector position v;
represents the frequency of an operator type in the genetic program corresponding to v.
The Manhattan distance is measured along axes at right angles and simply calculates the

n
sum of absolute differences between equal vector positions, i.e., §(v,w) = Y |v; —wj;|. This
i=1

requires runtime O(n) only. Note that n is much smaller here than for the edit distance
(n = maximum program length). Although the accuracy of this structural distance is
definitely lower than edit distance it has proven to be sufficient for an explicit control of
diversity.

Another, more efficient distance metric than edit distance is applicable for controlling
mutation step sizes. If a certain program position is mutated, we may calculate how many
of the depending previous instructions in program have changed their effectivity status.
This is exactly the Hamming distance between the status flags and takes time O(n) only
with n is the maximum program length here. A control of variation distance is possible
with this metric, even if it is more imprecise than edit distance. That is distance zero



occurs more frequently because more variations are not registered. Note that efficiency of
distance calculation is less important for controlling variation distance than for controlling
diversity (see below).

4 Semantic Distance Metrics

The most obvious metric to evaluate the behavior of a genetic program is the fitness
function. This usually calculates the distance of the predicted outputs gp(ix) returned by
a program and the desired outputs given by n fitness cases, i.e., input-output examples
(ig,0r). For example, in Equation 1 this is simply the Manhattan distance between the
two output vectors.

Fitln) = 3 lgp(is) — ox) 0
k=1

Correspondingly, the semantic differences between two genetic programs may be expressed
by their relative fitness distance (Equation 2). In this case, the quality of solving the overall
problem is considered.

dri(gp1, gp2) = | fit(gp1) — fit(gp2)| (2)

Another possibility is to compare the outputs of two programs directly. The same dis-
tance metric as in the fitness function may be used for computing the distance between
the output vectors of programs (see Equation 3). In the following this will be referred
to as output distance. Note that the relative output distance between two programs is
independent from their performance in terms of solving a prediction task. Actually, two
programs may have a similar fitness while their output behavior differs significantly, e.g.,
different subsets of the training data may be approximated with a different accuracy.

Sout(gpr,9p2) = 3 lapa (i) — gpalin) 3)
k=1

Analogously, for discrete problems like classifications where the fitness function calculates
a classification error, i.e., the number of wrongly classified examples, a Boolean output
distance is defined as follows:

dboolout (gp17 9]72) = Z 1 (4)

class(gpy (ig))#class(gpa (i)

[REE)

Function class in Equation 4 hides the classification method that maps the continuous
program outputs to discrete class identifiers. The Boolean output distance may be used
with continuous problems, too. In this case, the distance between non-equal outputs will
be constantly one.
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Figure 1: Two-level selection process.

5 Diversity Selection

The effective edit distance between programs is applied for an active control of genotype
diversity, that is the average structural distance between individuals in population. There-
fore, we introduce the two-level tournament selection shown in Figure 1. On the first level,
individuals are selected by fitness. On the second level, the two individuals with mazimum
distance are chosen among three fitter individuals. While an absolute measure like fitness
may be compared between two individuals selection by a relative measure like distance
or diversity necessarily requires a minimum of three individuals. In general, two out of n
individuals are selected with the largest sum of distances to the n — 1 other individuals.
While selection pressure on the first level depends on the size of fitness tournaments the
pressure of diversity selection on the second level is controlled by the number of these tour-
naments. Additionally, a second control parameter reduces the selection rate on second
level.

The number of fitness calculations and the processing time, respectively, do not increase
with the number of tournaments if the fitness of individuals is saved and is updated
only after variation. However, diversity selection itself becomes more computationally
expensive the more individuals participate in it. Since n individuals require (g) distance
calculations an efficient distance metric is needed all the more.

One advantage of the two-level selection process introduced here over applying fitness
selection or diversity selection independently from each other on the same level is that
the rate of fitness selection is not reduced. The multi-objective selection method prefers
individuals that are fit and diverse in relation to others at the same time. Selecting
individuals only by diversity for a certain probability, instead, does not result in more
different directions among better solutions in the population. Dittrich et al. [5] report on
a spontaneous formation of groups when selecting the most distant of three individuals
that are represented by single real numbers.

Selection for a linear combination of both objectives, fitness and diversity, as this is of-
ten practiced with fitness and length (parsimony pressure), would require an appropriate



weighting. This, however, is rather difficult to find. Another problem is that fitness and
diversity still have the same priority. With the two-level selection, instead, fitness selection
is not only decoupled from diversity selection but has always a higher priority.

An explicit control of structural diversity increases the average distance of individuals.
Graphically, the population spreads more widely over the fitness landscape. Thus, there is
a lower probability that the evolutionary process gets stuck in a local minimum and more
different search directions may be explored in parallel.

While increasing the effective distance in population affects the diversity of problem solu-
tions, the absolute distance reassures a more general diversity including the non-effective
code. Selection for absolute distance has also been practiced but found to improve results
less (undocumented). Apart from the fact that this is more time-consuming it confirms
that the absolute distance measures the effective distance only imprecise (see Section 3).

Increasing the average distance between programs by diversity selection has the side-effect
of accelerating the growth of (effective) program length. In order to avoid that this may
influence results, we select for (effective) edit distance minus distance in effective length.
This is possible because both edit distance and length distance operate on instruction
(operator) level here. By doing so, difference in length is no longer rewarded directly
during selection. As a result, the difference in average effective length with and without
applying diversity selection becomes negligible.

The diversity level can be lowered, too, by a selection for minimum distance. This might
have a positive influence if population diversity is already quite high, i.e., because of a
low fitness selection pressure or a low reproduction rate. In this case, especially crossover
might profit from a reduction of diversity such that variation step sizes become indirectly
smaller. In our experiments, however, selection for minimum distance resulted in the
opposite (negative) effect as selection for maximum distance (undocumented).

Selection for phenotype diversity, i.e., for maximum semantic distance of programs, has
been practiced by comparison. Semantic diversity is controlled by using the output dis-
tance defined in Section 4. A selection for maximum output distance may be implemented
efficiently in both calculation time and memory usage, if only the outputs of individuals
are saved that participate in the current tournament(s).

Selection for fitness distance has been found less suitable, instead. Even if both program
fitness as well as program outputs are related to an absolute optimum, the relative output
distance between programs allows semantic differences in much more detail. Moreover,
increasing relative fitness distance necessarily increases the diversity of fitness values in
population which might promote worse solutions. Finally, selection by fitness distance is
almost without any effect on problems that implicate a rather narrow and discrete fitness
distribution.

6 Control of Variation Distance

One property of program representations in GP is that already smallest variations on struc-
tural level may effect program semantics and fitness heavily. In linear GP these variations
include the exchange of a single operator or register. Several instructions that precede
a varied instruction in a program may become effective or non-effective respectively. In
this way, micro mutations may not only affect the fitness but the flow of data in linear



genetic programs. This is in contrast to tree-based GP where point mutations manipulate
the contents of single nodes but do not change edges of the tree structure. Even if bigger
variations of program behavior are less likely with smaller structural variation steps, this
effect is rather undesirable.

An implicit control of structural variation distance is to impose respective restrictions on
the variation operators [4]. For instance, in linear GP the maximum length of the instruc-
tion segment that is exchanged during recombination may be limited. Alternatively, macro
mutations that insert or delete single instructions may be used exclusively without using
recombination. Moreover, by concentrating variations on the effective code structural vari-
ations become more closely related to semantic variations. This is true because only the
degree of variation on the effective code decides about the difference in fitness. Unfortu-
nately, a variation operator—even if it is operating on the effective code exclusively—can
only guarantee for the absolute program structure that a certain maximum variation step
size is not exceeded. Variation steps on the effective code, instead, may still be much
bigger though appear with a lower probability.

One concern of this contribution is an ezplicit control of variation step size. That means
the structural distance between parent and offspring induced by a variation operator is
measured explicitly in relation to a distance metric. Restrictions of absolute variation
distance can be controlled implicitly from the operator side (as just discussed). Our
interest here is in controlling the effective variation distance. Therefore, the variation of
a parent program is repeated until the measured distance of the offspring falls below a
mazximum threshold.

The following example represents the result of applying a micro mutation to the program
example from Section 2. In instruction number 10 from the top the first operand register
r[3] has been exchanged by register r[2]. As a consequence, five preceding (formerly
non-effective) instructions become effective which corresponds to an effective variation
distance of five.

void gp(r)
double r[5];
{

r(1] = r[4] * r[0];
r[0] = ppow(r[1], 2);
// r(4] = r[2] * r[4];
r[4] = pdiv(r[2], r[0]);
r[0] = r[3] - 1;
r[1] = r[2] * r[4];
r(1] = r[0] + r[1];
r[0] = r[3] - 5;
r[2] = ppow(r[1], r[0]);
r[2] = r[2] - rl4]; <- Effective mutation point
r[4] = r[2] - 1;
r[0] = r[4] * r[3];
// r[4] = r[0] + 2;
// rl1] = pdiv(r[0], r[3]);
// rl1] = r[1] + 9;
// r[4] = ppow(xr[4], r([3]);



r[3] = r[2] + r[3];
r[4] = pdiv(r[2], 7);
// rl2] = r[2] * r[4];
r[0] = r[0] + r[4];
r[0] = r[0] - r[3];

Besides restricting the maximum size of variation steps, we tested a minimum threshold as
well. If small variation steps are avoided or, at least, reduced in frequency, evolutionary
progress might be accelerated. However, this is only true if the minimum step size is not
too large for the evolutionary process to continuously approach good solutions. For a
higher efficiency and for the fact that most variations are macro variations, i.e., operate
on instruction level, we have decided for a distance metric in Section 3 that does not
register every micro variation, i.e., single modification within an instruction. As a result,
depending on the variation operator many variations result in either distance one or are
not even registered at all (distance zero). For that reason and from our experimental
experience (see Section 8) smallest variations are essential here.

Using an explicit control of fitness distance between parent and offspring, instead, requires
an additional fitness calculation for each iteration and can become computationally expen-
sive, especially if a larger number of fitness cases is involved. By comparison, a structural
distance like edit distance has to be re-calculated only once after each repeated variation
while its computational costs do not directly depend on the number of fitness cases. It
is also difficult to find appropriate maximum thresholds for fitness distance because those
are usually problem-specific. Finally, it is not sensible to restrict positive fitness changes
at all.

7 Experimental Setup

All techniques discussed above have been tested with three benchmark problems including
an approximation, a classification, and a Boolean problem. Table 1 summarizes problem
attributes and problem-specific parameter adjustments of our LGP system.

Problem ID sinpoly s 8-parity
Problem type Approximation Classification Boolean function
Problem function sin(x) X x +5 real-world data set even-N-parity (N=8)
Input range [—5, 5] [0,8) {0,1}
Output range [0,7) {0,1,2} {0,1}
Number of inputs 1 4 8

Number of outputs 1 1 1

Number of registers 1+4 442 8+0
Number of examples 100 150 256

Fitness function SSE CE SE

Number of generations 500 500 250
Instruction set {+,—, %, /,a¥} | {+,—, %, /,if >,if <} | {AND, OR, NOT, if}
Set of constants {1,..,9} {1,..,9} {0,1}

Table 1: Problem-specific parameter settings
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The first problem is referred to as sinpoly in the following and denotes an approximation
of the sinus polynom sin(x) x « + 5. The provided set of instructions does not include
any trigonomical functions. Thus, given the facts that the maximum length of genetic
programs is limited and that the sine function is defined by an infinite Taylor-series the
optimum cannot be found. Besides the input register—that is identical to the output
register—there are four additional calculation registers used with this problem. This
additional program memory becomes very important in linear GP if the number of inputs
is low by definition. With only one register calculation potential is too much restricted
in any case. The program fitness is the sum of square errors (SSE) between its predicted
outputs and the given example outputs. 100 fitness cases have been selected uniformly
distributed over input range [—5, 5].

The second problem iris is a popular classification data set that originates from the UCI
Machine Learning Repository [2]. The real-world data contains 3 classes of 50 instances
each, where each class refers to a type of iris plant. Fitness equals the classification error
(CE), i.e. the number of wrongly classified inputs. A program output p(ix) is considered
as correct if the distance to the desired class identifier o, € { 0,1,2} is smaller than 0.1,
i.e. |p(ix) — or| < 0.1. Note that solution finding becomes easier if this error threshold is
extended to the maximum (0.5 here).

Finally, we have tested a parity function of dimension eight (even-8-parity). This function
computes one if the number of set input bits is even, otherwise the output is zero. The
Boolean branch in the instruction set is essential for a high number of successful runs.

General configurations of our linear GP system are given in Table 2. Only one variation
operator is applied at a time. Macro mutations or crossover are always applied for 75%
while micro mutations cover the remaining 25%. Macro mutations include two times
more insertions than deletions here. This explicit growth tendency of the operator has
proven necessary for a sufficient increase of program complexity since only one instruction
is modified at a time. Especially when effective mutations are used programs grow much
more slowly in size [4].

Parameter Setting
Population size 2000 programs
Maximum program length | 200 instructions
Initial program length 2-20 instructions
Maximum fitness 1000

Fitness tournament size 4

Reproduction 100%

Micro mutation 25%

Macro mutation 75%
Instruction deletion 33%
Instruction insertion 67%

Crossover 5%

Table 2: General parameter settings.
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8 Results

8.1 Structural and Semantic Program Distance

First of all, we demonstrate experimentally that there is a causal connection between
the structural distance and the semantic distance (fitness distance) of linear genetic pro-
grams. By doing so, we apply the edit distance metric on sequences of effective instruction
operators as defined in Section 3.

In the first experiment distances of 2000 pairs of randomly selected individuals have been
registered in each generation. Figures 2, 3, and 4 visualize the resulting relation of (effec-
tive) program distance and fitness distance together with the corresponding distributions
of program distances. In case of all test problems there is a clear positive correlation be-
tween program distance and fitness distance for the vast majority of measured distances.
Program distances above a certain maximum fitness distance, however, occur only very
rarely. This is why correlation becomes more irregular. Actually, structural and seman-
tic distance are found negatively correlated in this distance range. In principle similar
phenomena are observed here with the crossover-based and the mutation-based variant of
linear GP (see Section 2).

In a second experiment that is relevant in this context we investigate structural variation
distance, i.e., the distance between parent and child or, more precisely, the distance of
a modified individual from its original state. Let us have a look at Figures 5, 6, and 7.
There is a strong causality between program distance and fitness distance for almost all
meassured variation distances. In general, correlation between structural and semantic
distances has been found even more clearly between parent and offspring than between
arbitrary individuals. Moreover, the distribution range of distances—induced by crossover
or effective mutations—is significantly smaller than in the first experiment, as might be
expected. That means the structural distance between parent and child is smaller, on
average, than between two arbitrary individuals or between two parents. In general,
variation distances occur the more frequently the shorter they are.

In crossover runs a relatively high amount of operations results in effective distance zero,
especially with the two discrete problems iris and 8-parity. This is obviously due to the
much higher intron rate that emerges with this variation operator. As already introduced
in Section 2 effective mutations vary the effective code of programs exclusively. In runs
using (effective) mutations distance zero is mostly caused by effective micro mutations that
affect a single register, operator or constant. Not all exchanges of registers in effective
instructions change the effectivity of instructions and, thus, the sequence of operators
necessarily. The reason is that effectivity is very often guaranteed by more than one
succeeding instruction. However, still many of the 25% micro mutations induce a variation
distance that is larger than zero.

Furthermore, distance distribution Figures 5, 6, and 7 show that almost two thirds of all
effective mutations induce distance one. Interestingly, even though 75% macro mutations
delete or insert full (effective) instructions—including one operator and three registers at
maximum—the effectivity of other (preceding) instructions changes for less than one third
only. Obviously, evolution develops program structures whose effectivity is less fragile
against variations of that kind. When using crossover the proportion of non-effective
instructions in a program acts as a second implicit mechanism that reduces variation

12
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Even exchanging an operator may induce a variation distance that is larger than zero.
If the new operator requires a different number of (register) parameters than the former
operator, registers may be deactivated or reactivated within an instruction. Preceding
instructions in program that depend on such a register parameter may change their effec-
tivity status then. This, in turn, may have an influence on the variation distance. It is a
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feature of linear GP that non-effective code in form of instructions, registers, or constants
remains in a program as, so called, structural introns that may be reactivated later by
evolution. In tree-based GP, by comparison, a sub-tree is lost if the arity of its root node
is reduced because of the constraints of the tree structure.
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8.2 Structural Diversity Selection

We will now report on our results obtained with diversity selection. Table 3 shows average
error rates obtained with and without selecting for structural diversity for the three test
problems introduced in Section 7. Different selection pressures have been tested. For
the minimum number of fitness tournaments (three) that are necessary for a diversity
selection on second-level (see Section 5) we used selection probabilities 50% and 100%.
Higher selection pressures are induced by increasing the number of tournaments up to
four or eight (sinpoly only).

It is conspicuous that in all three test cases linear GP works significantly better by using
(effective) macro mutations instead of crossover. In [4] we have already demonstrated
that the linear program representation, in particular, is much more suitable for being
developed by mutations only, especially if those are directed towards effective instructions.
Nonetheless, the experiments with linear crossover show here that diversity selection is not
depending on a special type of variation. Moreover, the application of this technique is
demonstrated with a population-dependent operator. For each problem and variation
operator performance increases continuously with the influence of diversity selection in
Table 3. The highest selection pressures tested result in a more than two times better
prediction error, on average, than without increasing diversity explicitly.

Variation | Selection sinpoly iris 8-parity
% | #T | mean (std) (%) | mean (std) (%) | mean (std) (%)
Crossover | 0] 2 |3.00(035) | 0 |211(0.10)| O 52 (34) | 0
50| 3 289 (034)| 4 |142(008) | 33 35 (2.4) | 40
00| 3 |277(0.34) | 8 |117(0.07)| 44 27 (2.2) | 53
100 | 4 |1.96(0.22) | 35 |1.09(0.07) | 48 19 (1.8) | 67
100 | 8 |0.69(0.06) | 77 = =
Effective | 0] 2 |045(0.04) | 0 |0.84(0.06)| 0 512 | 0
Mutations | 50 | 3 |0.43(0.03)| 4 |0.63(0.05) | 25 12 (1.0) | 20
100 | 3 |030(002)| 33 |060(005 | 29 10 (1.1) | 33
100 | 4 |023(0.02)| 49 |033(0.04) | 61 7(08) | 53
100 8 |0.17(0.01) | 62 B B

Table 3: Second-level selection for structural diversity with different selection pressures.
Selection pressure controlled by selection probability and number of fitness tournaments
(T). Average error over 200 runs. Statistical standard error in parenthesis. Percental
difference from baseline results.

Diversity of a population is defined as the average distance between two randomly selected
individuals. Figures 810 illustrate the development of structural diversity during run for
different selection pressures. Obviously, the higher the selection pressure is adjusted the
higher is the diversity. We can see that the average effective program distance does not
drop even without applying diversity selection. This is true even with the applied 100
percent reproduction and a selection pressure of four individuals per tournament. On the
contrary, with crossover diversity increases until a certain level and stays rather constant
then. With effective mutations increase is more linear.

Two major reasons can be found to explain this behavior: First, genetic programming
is working with a variable-length representation that grows continuously during a run.
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In linear GP this is especially true for the effective program length which may still grow
even if the absolute length has reached the maximum. The longer effective programs
become the bigger effective distances are possible. Actually, the growth of effective code is
restricted earlier with crossover by the maximum limit because a much higher proportion
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of non-effective code emerges with this operator.

Second, both forms of variation, linear crossover and effective mutation, maintain program
diversity over a run implicitly. This is true even without applying selection for diversity
explicitly. For linear crossover the reason might be in its high variation strength. Addi-
tionally, the higher amount of non-effective code contributes to a preservation of (effective)
code diversity here. The non-effective part of code may differ more strongly between pro-
grams than the effective code because this intron code is independent from fitness and
selection pressure (on fitness), respectively.

By using mutations exclusively, instead, a high degree of innovation is introduced contin-
uously into the population. This leads to a higher diversity than it occurs with crossover.
The stronger it is selected for diversity, however, the more diversity is gaining ground in
crossover runs. Obviously, there is a stronger influence of diversity selection on population
diversity with crossover than with mutations. In comparison to mutations the success of
recombination depends more strongly on the composition (diversity) of the genetic mate-
rial in the population. The more different the recombined solutions are the higher is the
expected innovativity of their offsprings.

8.3 Semantic Diversity Selection

The computational overhead of a structural distance control has been found affordable for
linear genetic programs, especially if the order of instructions is not regarded (see Section
3). In order to justify its usage more generally we test a semantic diversity selection
for comparison. Semantic diversity is defined here as the average output distance of two
individuals that have been randomly selected from the population (see Section 4). For each
problem the same distance metric has been used as in the corresponding fitness function
(see Table 1).

Variation | Selection sinpoly iris 8-parity
% | #T | mean (std) (%) | mean (std) (%) | mean (std) (%)
Crossover 0 2 |3.09(0.23) 0 2.11 (0.10) 0 58 (3.4) 0
50| 3 |240(0.22) | 22 |1.82(0.09) | 14 40 (2.5) | 31
100 3 |351(0.25) | -12 |1.62(0.08) | 23 46 (3.1) | 21
100 | 4 |3.42(025)| -10 |1.80(0.09)| 15 42 (2.8) | 28
Effective 0] 2 |040(0.03)| 0 |084(0.06)| 0 512 | 0
Mutations | 50 | 3 |0.33(0.02) | 18 |0.77 (0.06) | 8 13(1.2) | 13
00| 3 |043(0.03)| -7 |0.68(0.05) | 19 12 (1.1) | 20
100 | 4 |0.49(0.05) | -18 |0.42(0.05) | 50 9(0.9) | 40

Table 4: Second-level selection for semantic diversity with different selection pressures.
Selection pressure controlled by selection probability and number of fitness tournaments
(T). Average error over 200 runs. Statistical standard error in parenthesis. Percental
difference from baseline results.

When comparing results in Table 4 with the results in Table 3, it follows that semantic
diversity selection, in general, has a smaller effect on prediction quality than selection for
structural diversity. Especially the continuous problem sinpoly could not be solved more
successfully by semantic diversity selection. For the two discrete problems we can observe
a higher influence on effective mutation runs than on crossover runs.
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One explanation is that, in contrast to program structure, program semantics is related to
a unique optimum. For the program outputs this is the set of desired outputs given by the
fitness cases. Hence, the number of possibly different output patterns reduces the closer
fitness approaches optimum zero. Compared with this diversity of program structure is
much more independent from fitness.

If we compare the development of semantic diversity over run a decrease is observed with
the two discrete problems, iris and parity (see Figures 12 and 13). That means the outputs
of programs become more similar to the desired outputs. The progression of semantic
diversity, that has been found with the continuous problem sinpoly, is increasing, instead,
(see Figure 11). Obviously, there is no clear convergence of outputs for the majority of
programs in those runs.

Interestingly, with all problems selection for maximum output distance results in a decrease
of semantic diversity. This is the opposite direction of improvements as observed when
selecting for structural diversity (see Figures 8-10). The more different programs are
selected for variation the better solutions and, thus, the more similar program outputs
become, on average. Again this results from the fact that semantic distance, as opposed
to the structural distance, is more dependent on fitness. Although semantic diversity
decreases we may not talk about a “maintenance” of diversity because the level of semantic
diversity is further decreased by the diversity control.

The relative influence on output distance is highest with sinpoly which might be due to
the fact that the average distance increases here over generations. In this case, there is
a higher potential for improvements (reduction) by diversity selection. With the other
problem solutions become semantically much more similar while they adapt to the desired
behavior, i.e., fitness cases. Selection for maximum semantic distance is contrary to this
adaptation process and can only be advantageous to a certain extend.

Selection for smallest output distance has been tried, too, and resulted in exactly the
opposite result. That is lower prediction performance and increase of semantic diversity.

8.4 Diversity and Fitness

Another interesting observation can be made when comparing the progress of best fitness
and population diversity over a single run. First of all, there is no continuous increase of
diversity as one might conclude from the average figures over multiple runs (see Figures 8-
10). The development of structural diversity in Figures 15 and 16 is interrupted by sudden
rapid drops (diversity waves). If a new best program or a program with an innovative
piece of code occurs, that is during periods of fast fitness convergence, diversity decreases
suddenly. This is possible because successful information spreads in the population within
a few generations via reproduction and variation. How quickly program diversity recovers
after such an event depends on how many generations have elapsed so far. The longer the
current average program length is the sharper is the increase. Typical example runs in
Figures 8-10 demonstrate that structural diversity increases on fitness plateaus, i.e., during
periods where the best fitness stagnates. During that time the population individuals
spread over the fitness landscape and explore the search space of programs more widely.
The achieved diversity level depends on both the duration of the stagnation period and
the current number of generations. Comparable runs have been found with both kinds of
macro variations.
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effective mutations (right).

T T T
L 0% (2T) —— | 0% (2T) —— |
140 50% (3T) 140 50% (3T)
100% (3T) - 100% (3T) -
120 100% (4T) i 120 100% (4T)
= 2
@ 100 | @ 100 |
[ o A
= =
S g0 |3 8 gl
T T
2 S
g 60} s 60f
£ £
Q [l
%) n
40 40
20 1 20 1
0 . . . . . . . . . 0 . . . . . . . . .
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Generations Generations

Figure 12: iris: Diversity levels after semantic diversity selection with different selection
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Figure 13: 8-parity: Diversity levels after semantic diversity selection with different selec-
tion pressures. Macro variation by crossover (left) or effective mutations (right).

A different behavior has been observed with the continuous problem (sinpoly). Structural
diversity progresses wave-like, too, but with a higher frequency and a smaller amplitude
(see Figure 14). Similar correlations with best fitness as found with the two other test
problems may exist but are hardly visible here because best fitness improves in smaller
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diversity. Two typical example runs.

steps. This is why fitness plateaus become less wide.

While structural diversity decreases quickly with the discrete problems when best fitness
improves, a sudden increase of semantic diversity, i.e., average fitness distance here, can
be observed. This phenomenon may be explained by a fast propagation of the new best
fitness value in the population again by what semantically divers individuals are selected
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more frequently. During a period where best fitness stays constant the average fitness
distance decreases again. The wider fitness range of the continuous problem, instead,
allows stronger outliers. As a consequence, the average fitness distance developes too
irregularly here (not printed).

It is important to note that the increase of structural diversity on fitness plateaus hap-
pens implicitly, that is without applying an explicit control of diversity. Using diversity
selection increases the structural distance between individuals on fitness plateaus accord-
ingly. Radical drops of diversity, however, as a consequence of sudden accelerations of
convergence speed are just as possible as without diversity selection. This shows that an
active increase of structural diversity does not slow down the global convergence of the
best fitness over run. On the contrary, better prediction results have been observed with
diversity selection (see Table 3).

8.5 Control of Effective Variation Distance

As motivated in Section 6 we are interested in controlling the effective distance between
parent and offspring. Even if this is possible with crossover as well as with (macro) muta-
tions, in principle, we restrict to the latter form of variation here. Concerning the absolute
distance between program structures crossover step sizes are bigger than mutations step
sizes already by definition. This is true for the effective program distance, too, as illus-
trated at the distribution of variation distances in Figures 5-7. By comparing prediction
results obtained with crossover and with effective mutations in Table 3 it becomes obvious
that smaller implicit variation steps yield a better quality of solutions. In consideration of
those arguments, a reduction of crossover steps by checking the induced degree of struc-
tural variation explicitly on the effective program code is rather of minor interest. Instead,
we want to find out if solution quality can be further improved by a further reduction of
effective mutation distances. Therefore, a program is mutated repeatedly until its distance
to the offspring falls below a maximum threshold. Each time a mutation is not accepted
its effect on the program is reversed while the choice of the mutation point is free in every
iteration.

The applied effective distance metric regards instructions (operators) as smallest distance
units (as defined in Section 3) and corresponds to (effective) macro mutations that operate
on instruction level. Recall that the effective distance may be altered by register mutations,
too. The absolute distance becomes one after an operator mutation only and stays zero
otherwise.

In order to guarantee a sufficient growth of programs macro mutations are applied more
frequently than micro mutations. Since, in this way, the average step size is not further
reducible on the operator side, measuring the distance between full effective programs
does not promise a higher precision. This is another reason, besides the arguments given
in Section 3, why (effective) operator sequences represent a sufficient basis for distance
calculation between linear genetic programs.

Table 5 compares average prediction errors for different maximum limits of mutation
distance. The maximum possible distance equals the maximum program length (200
instructions) and imposes no restrictions. Setting maximum effective distance to zero is
not considered. This would not allow programs to grow sufficiently even if it is possible
that inserting an instruction does not change the effective distance.
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Variation | Maximum sinpoly iris 8-parity
Distance | mean (std) (%) | mean (std) (%) | mean (std) (%)
Effective — 0.46 (0.06) 0.90 (0.06) 16 (1.2)
Mutations 10 0.35 (0.04) | 24 | 0.72 (0.06) | 20 13 (1.2) | 19
5 0.33 (0.04) | 28 |0.74 (0.06) | 18 12 (1.2) | 25
2 0.28 (0.03) | 39 |0.68(0.05) | 24 11(1.1) | 31
1 0.26 (0.03) 42 0.54 (0.05) 40 9 (0.9) 44

Table 5: Maximum restriction of effective mutation distance. Average error over 200 runs.
Statistical standard error in parenthesis. Percental difference from baseline results.

For all three benchmark problems best results are obtained with maximum effective dis-
tance one. This is all the more interesting if we consider that a restriction of variation
distance always implies a restriction in variation freedom. That is certain modifications
might not be executed at certain program positions because too many other instructions
would be affected.

In general, measuring effects during multiple repetitions of a variation operator requires
a distance metric that is calculated efficiently. Moreover, it has to be guaranteed that
the restrictions imposed on the range of variation distances may always be fulfilled by the
variation operator for every composition of program. Otherwise, iterations of a variation
must be stopped after a maximum number of trials and variation is executed without or
with less strong restrictions.

Variation | Maximum Iterations
Distance | sinpoly | iris | 8-parity
Effective — 1.00 1.00 1.00
Mutations 10 1.02 1.02 1.02
5 1.06 1.05 1.05
2 1.18 1.12 1.12
1 1.37 1.18 1.20

Table 6: Average number of iterated variations until the respective maximum distance is
met.

As we can see from Table 6 the average number of iterations during run increases only
slightly if the maximum threshold is reduced. Not even one and a half iterations are neces-
sary, on average, with the smallest distance. Besides, the maximum number of iterations
(10) has hardly ever been exceeded. Both aspects emphasize that freedom of variation is
not restricted significantly and that computational costs of this distance control are not
expensive.

The results found here further correspond to the distribution of mutation distances in
Figures 5-7 where only about 20-30% of all measured step sizes are larger than one.
Obviously, larger disruptions of effective code as demonstrated with the example program
in Section 6 occur less likely. Effective programs emerge to be quite robust against bigger
effective mutation steps, obviously because their survival probability is higher then. In
particular, the effectivity of an instruction is depending on more than one succeeding
instruction in program.
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9 Discussion and Future Research

Basically, development of population diversity over run is depending on the following EA
parameters: population size, fitness selection pressure (tournament size), and reproduc-
tion rate. The distance metrics introduced here for linear GP allow a detailed analysis
of such parameter dependencies. In the diversity selection experiments these parameters
have been configured with standard settings. Nonetheless, we experienced that diversity
selection works with very different configurations, too, including smaller and bigger pop-
ulation sizes. The only adaption that might be necessary is a reconfiguration of selection
pressure on diversity. For instance, in significantly bigger populations the influence of
diversity selection might require a higher selection pressure in order to reach the same
gain in performance. Another interesting question that has to be clarified in this context
is whether diversity selection is able to achieve a significant reduction of population size,
in general, without leading to worse performance. In order to answer these questions more
complex analyses are necessary that fall, however, beyond the scope of this paper.

The two-level selection process may also be used with a selection for minimum complexity
(on second level). As mentioned in Section 5 the advantages over a weighted complexity
term in the fitness function are that fitness selection is less influenced and has a higher
priority. Furthermore, a parsimony pressure controlled by a selection probability is more
constant over run and does not depend on how both objective terms develop in size.

The separation of linear genetic programs in effective and non-effective instructions offers
the possibility for a selective complexity selection, i.e., a selection by smallest effective, non-
effective, or absolute program length. Imposing a specific pressure on the effective code,
for instance, does not influence the growth of non-effective code. In this way, solution
size may be punished more specifically while the control function of the intron code for
crossover step sizes is retained.

Diversity and complexity selection can be applied in combination, too. Either a third se-
lection level is added or both objectives are combined into a weighted sum which is selected
for on second level. In the latter case selection priority of diversity and complexity may
be more-or-less the same. In the first case, this may be achieved by using an independent
selection probability for each level, that is selection for minimum length may happen on
third level even if selection for maximum distance is skipped on second level.

10 Conclusion

An explicit control of population diversity was introduced in form of a two-level selection
process. In doing so, we tested different structural and semantic distance metrics for
measuring diversity of linear genetic programs. Especially, structural diversity control
was found to improve solution performance significantly for three different benchmark
problems. In the course of these experiments, we analysed development of diversity over
the generations and showed correlations with fitness progress.

Restricting maximum mutation distance on effective code level turned out to be most
successful if only a single effective instruction is allowed to change its effectivity status.
Thereby the average number of iterated mutations was small that is necessary to keep these
conditions. In general, effective variation distances on linear programs were measured
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much smaller then it might have been expected. Actually, effective program structures
emerged to be quite robust against bigger destruction.
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