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Abstract. We describe surface area measurements based on local esti-
mates of isosurfaces originating from a marching cubes representation.
We show how improved precision and accuracy are obtained by opti-
mizing the area contribution for one of the cases in this representation.
The computations are performed on large sets (approximately 200,000
3D objects) of computer generated spheres, cubes, and cylinders.
The synthetic objects are generated over a continuous range of sizes
with randomized alignment in the digitization grid. Sphericity, a scale
invariant measure of compactness, allows us, in combination with the
improved surface area estimate, to distinguish among the test sets.

Keywords: shape analysis, marching cubes, isoperimetric inequality, ac-
curacy, rotation invariance

1 Introduction

In quantitative shape analysis, it is important to know the precision and accuracy
of the measurement, and if there are any restrictions on the input domain where
the reliability of the measure does not hold. One aim of this paper was to study
how 3D shape can be measured in terms of compactness. In 2D image analysis,
P 2/A is a commonly used measure of compactness which may be derived from
the classical isoperimetric inequality [2]. An “inverse” to compactness is the
circularity of objects. This concept is extendable to higher dimensions. Hence,
in 3D image analysis, one feature of interest when distinguishing among different
classes of objects is sphericity . We define this as a dimensionless ratio between
enclosed volume and surface area.

The problem that arises is that, in image analysis, we are given only a digi-
tized version of the original continuous object. Under these conditions how reli-
able is our measure? Note that there is a difference in measuring digital objects
and measuring digitized objects. The former class of objects exists solely in the
digital world, and exact measures can be calculated. The latter represents the
digitization of continuous original objects. The aim of the measure is not to find
properties of the digital version, but rather to estimate properties of the contin-
uous original. in the methods applied. Also, the measurement on the digitized
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object can never become more than an estimate, as information is irreversibly
lost in the digitization process.

This paper focuses on how the surface area can be measured by an approx-
imating isosurface generated by the Marching Cubes approach [13]. Our aim is
to find a way to obtain accurate estimates with high precision based on local
computations, avoiding strong assumptions about the object of study. We also
verify the robustness of the sphericity measurement for small to large convex
objects with randomized alignment in the digitization process.

2 Surface Area of 3D Objects

In 2D image analysis, perimeter has been, and sometimes still is, measured in
terms of cumulative distance from pixel centre to pixel centre. This is straight-
forward to accomplish using the Freeman chain code [5], but results in incorrect
measurements. Note that the weights 1 for horizontal and vertical steps and

√
2

for diagonal steps are not optimal when measuring digitized line segments [6].
By assigning optimized weights [17,1,3] to the steps, more accurate perimeter
measurements are obtained. If the boundary is represented by the pixel edges
between object and background, steps can be taken from pixel edge to pixel
edge, taking advantage of optimized weights, with promising results [12]. This
corresponds to Marching Squares, a 2D equivalent of Marching Cubes.

In 3D image analysis, when measuring surface area, an analogous first ap-
proach would be to connect voxel centre to voxel centre and add the resulting
areas. This is not simple and would, as in the 2D case, produce incorrect mea-
surements. In a second approach, where the surface is represented by the faces
of the voxels at the boundary between object and background [15], the number
of faces gives an efficient and simple estimation of the surface area, but this
is an overestimate [14]. By approximating the boundary between object and
background with a triangular representation, e.g., the one obtained from the
marching cubes algorithm, more correct surface area estimates are obtained.

There exist recent publications [7,9] that have studied the problem of surface
area estimation. Our approach is different in that we exploit the simplicity of
working in small neighbourhoods and base our estimates on local computations,
still sacrificing neither precision nor accuracy.

3 Triangular Isosurface Representation

The voxel representation of object and background has a close relation to polyg-
onal representations; a digital surface can be transformed directly into a trian-
gulated isosurface [10,11]. An m-cube (short for Marching Cube), is the cube
bounded by the eight voxels in a 2 × 2 × 2 neighbourhood. Hence, each corner
of the m-cube corresponds to a voxel.

If object and background are considered, the possible number of configu-
rations of the eight voxels is 256. Each configuration consists of zero to four
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(a) Case 0 (b) Case 0 (c) Case 1 (d) Case 1

(e) Case 2 (f) Case 2 (g) Case 8 (h) Case 9

Fig. 1. m-cubes of 2× 2× 2 voxels, where voxels denoted by a • are inside the object
and the other voxels are outside. The isosurfaces for the configurations consist of zero
to four triangles.

triangles constituting the isosurface through the specific m-cube. The configu-
rations are often grouped into symmetry and complementary cases, resulting in
14 (or 15) cases [13,16]. See Figures 1 and 2 for examples. Two of these con-
figurations do not represent a boundary situation and have no triangles. These
correspond to the case when the m-cube is placed completely outside or com-
pletely inside the object (Figures 1(a) and 1(b), respectively). We number the
cases according to previous literature [13], except for cases 11 and 14 which we
group into one case 11. Some of the cases can be triangulated in different ways,
e.g., case 11, which is illustrated in Figures 2(a) and 2(b). We use the more
symmetric triangulation in Figure 2(b).

The approximated isosurface in the m-cube is computed from some inter-
polation of the voxel values. The interpolation results in intersection points on
the edges of the m-cube for the triangle vertices. In the following, we will use
the simplest case, where the intersection points are positioned midway along the
m-cube edges.

The correct connection among intersection points is ambiguous for some con-
figurations of voxels. See Figures 2(c) and 2(d) for an example. This classical
problem in the original marching cubes algorithm was pointed out by Dürst in
1988 [4]. The problem requires a careful consideration when a closed surface is
desired. It has been examined and solved (e.g., [16,8]). For this study it should
be sufficient to assign a contributing area for each configuration.
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(a) Case 11 (b) Case 11 (c) Case 3 (d) Case 3

Fig. 2. (a), (b): Some m-cubes can be triangulated in different ways (vertices moved
from the midpoint for visibility reasons). We use the more symmetric version (b).
(c), (d): Shown are the triangles we use for these ambiguous m-cube configurations.

4 Sphericity

In 2D image analysis, P 2/A is a commonly used measure for compactness, or cir-
cularity, of objects. The concept behind this dimensionless ratio is extendable to
higher dimensions. In 3D image analysis, a feature of interest when distinguish-
ing among different classes of objects would, hence, be the dimensionless ratio
of surface area to volume of an object. For a consistent and natural definition of
this class of ratios, we choose the following for the 2D case and correspondingly
for the 3D case:

Circularity, C: perimeter of a circle, enclosing the same area A as the object,
divided by the perimeter P of the object.

C =
√
4πA
P

(1)

Sphericity, S: surface area of a sphere, enclosing the same volume V as the
object, divided by the surface area A of the object.

S =
3
√
36πV 2

A
(2)

In the continuous case, these measures are in the range [0, 1] given by the
isoperimetric inequality. The upper bound is reached only by the ball of
the corresponding dimension. For the nD case, the dimension of the ra-
tio is lengthn−1/lengthn−1. An alternative would be to define the ratio as
lengthn/lengthn, but we choose the one formulated above as it more closely
reflects the dimension of the predominant part of the measurement.1 The reason
for inverting the P 2/A expression is that circularity should reach its maximum
for a true circle.
1 The measure P 2/A suffers from the fact that the perimeter has a more predominant
effect on the measure than the area.
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5 Experiments

We have generated sets of synthetic convex objects. Each set consists of a certain
shape digitized in different sizes, rotations, and positions, with respect to the
digitization grid. The objects are generated in the continuous space and then
discretized using Gauss centre point digitization, where the digitized object is
defined to be the set of all grid points (voxel centres) contained in the continuous
set. All units are given with respect to the sampling grid, i.e., edge length, face
area, and volume of voxels are all equal to 1.

The surface area contribution for each of the 256 marching cube configura-
tions, AMC(i), i = 0..255, is precomputed by summing the areas of the included
triangles and stored in a lookup table [14]. The histogram describing the number
of each of the 256 configurations, ni, is computed for each digitized object. The
surface area of the specific object is then calculated as

A =
255∑
i=0

niAMC(i) (3)

Of interest is to plot the ratio of estimated area to true area versus the size
of the object. The variance within a given size, for different rotations and place-
ment of that object, should capture digitization effects. We are also interested
in the sphericity, computed as described in Section 4. In a recent publication,
the enclosed volume is computed for the marching cubes representation in an
incremental fashion from the surface [14]. How this would affect the sphericity
estimate needs further studies. Here, the volume V is computed as a simple voxel
count of the object, which is a good estimate for large objects.

5.1 Bias

Our main assumption is that, on a local scale, objects are fairly flat. The surface
of a large sphere is a good sampling of planes in all directions. Therefore, our
first test object is a Euclidean sphere. This also happens to be the object with
maximal sphericity. The digitization of a sphere centered at (x0, y0, z0) ∈ R

3 of
radius r ∈ R is generated by the following equation

f(x, y, z) =
{
1 if (x− x0)2 + (y − y0)2 + (z − z0)2 � r2

0 otherwise , (x, y, z) ∈ Z
3 (4)

See Figure 3 for sphere examples, where r is 4, 10, and 25, respectively,
presented as renditions of their marching cubes triangulations. Figure 4 shows
three surface area estimates for digitized spheres of increasing radius. The func-
tion describes the mean value for a given radius and the error bars indicate the
corresponding smallest and largest estimates, where the surface area is computed
according to Eq. (3). If the surface area is computed with the triangle configura-
tion of Figures 5(a) and 5(b) for case 5 (area contribution of 5flat = 1.150), this
gives the largest overestimate (8.8%). From now on, we instead use the triangle
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(a) radius 4 (b) radius 10 (c) radius 25

Fig. 3. Three spheres presented as renditions of their marching cubes triangulations.
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Fig. 4. Three surface area estimates divided by the true surface area, for 27,000
digitized spheres of increasing radius.

(a) Case 5 (b) Case 5 (c) Case 5 (d) Case 5

Fig. 5. The triangular representations in (a) and (b) may seem as the simplest for
this configuration and is possibly the most commonly used. The representations in (c)
and (d) approximate a smoother surface. (Third • not visible in (a) and (c).)
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(a) side 4 (b) side 10 (c) side 40

Fig. 6. Three cubes of different sizes presented as renditions of their marching cubes
triangulations. (a) is aligned with the digitization grid. (b) and (c) have the same
orientation, rotated (15◦,−20◦, 25◦), but represent different sizes.

configuration of Figures 5(c) and 5(d) for case 5 (area contribution of 5slanted
= 1.122), for which the overestimate is slightly reduced (8.0%).

To obtain an unbiased estimate for randomly aligned planar surfaces, we
choose to divide the area by the average overestimate for large digitized spheres.
Using 5slanted the bias term ξ becomes 1.080 (supposed convergence value from
Figure 4). This also gives good convergence to the true surface area.

5.2 Alignment Invariance

If we wish to study the behaviour of specifically aligned planar surfaces, the
sphere is not useful as it represents every alignment. We seek alignment invari-
ance for large planar surfaces, which here is represented by cubes, rotated and
positioned in different ways. When applying the same surface area estimator for
cubes, the results divided by the bias term ξ = 1.080 are (on average) an under-
estimate of the true surface area. This is due to the cutting of corners and edges.
The cube in Figure 6(a), aligned with the axes of the digitization grid, is small
enough to illustrate this effect. For large objects the effect can be neglected,
though.

The area measurements for the cubes also contain a large variance. This is
due to the different alignments of the faces of the cube. The surface area becomes
too large when the cube is rotated in some direction that is not well captured
by the triangles of the marching cubes triangulation, e.g., as in Figures 6(b)
and 6(c). The increased variance can be seen in Figure 7. The approach of a
simple scaling by the bias term is not sufficient for good convergence.

We wish to reduce the variance of the estimate. Our approach is to iden-
tify the cases for which the area estimate is extreme and to correct for these
errors. Therefore, we study the relative frequency of the m-cube configurations
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Fig. 7. Two surface area estimates divided by the true surface area, for 80,000 digitized
cubes of increasing size.

for cubes of side 100 with different alignment, and examine the situations giving
rise to the largest under- and overestimates, respectively. From Figure 8(a), we
interpret that some of the m-cube configurations, e.g., case 5, have not been as-
signed a value agreeing well with the truth. We have already noted two possible
triangulations for case 5 (Figure 5), none of which approximates a flat isosurface
through the m-cube.

By plotting the relative maximum error against a scale factor used on m-
cube case 5 (Figure 8(b)), we see that there is an optimum for the scale factor
0.892. The sum of the three triangle areas of m-cube configuration case 5 equals
1.122. If we, instead of assigning this triangle area contribution, assign the value
1.122 ∗ 0.892 = 1.001 to case 5, we reduce the relative maximum error from
7.1% to 4.3% and the coefficient of variation (CV, standard deviation divided by
mean) from 1.6% to 1.2%. Note, however, that the scale factor 0.892 is optimal
only if case 5 solely is allowed to vary, but the scale factor will change if other
cases are also scaled to further improve the surface area estimate.

5.3 Results

Our surface area estimator can be summarized in the following: Starting with
the surface area from the marching cubes triangulation, we assign to case 5 area
contribution 1.001 and divide by the overall bias term ξ = 1.046. The change
of area contribution assigned to case 5 requires a change of the bias term, to
acquire an unbiased estimate for randomly aligned planar surfaces as described
in Section 5.1.

To verify our surface area estimates, we will study objects of other shape than
spheres and cubes. Here, we choose cylinders with the same height as diameter, a
shape resembling the other two, but which still should be possible to distinguish
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Fig. 8. (a) Relative frequency of the different m-cube cases for 30,000 digitized cubes,
of size 100 × 100 × 100, of random position and orientation. (b) Maximum error and
coefficient of variation for the estimated area of digitized cubes and cylinders, for
different scale factors for the area contribution of m-cube case 5.

as different. As done previously, the cylinders are generated in a continuous range
of sizes with randomized alignment in the digitization grid. For the surface area
estimate of cylinders (radius 50), the relative maximum error is reduced from
3.8% to 2.7%, and the CV from 1.1% to 0.8% (Figure 8(b)), using the described
method.

Surface area, volume, and sphericity for the three test sets are presented in
Figure 9. The plots compare well with expectations. There is still a fair amount
of variance in the surface area measurements, but the estimation performance
has significantly improved compared to the uncorrected marching cubes area
estimate. The volume estimate is robust and show no surprises. The sphericity
agrees well, at least for objects down to radius 5, with the sphericity in the
continuous case, where a sphere, a cube, and the described cylinder have values
1, 0.806, and 0.874, respectively. The sphericity measure manages to totally
separate the three test sets.

6 Discussion and Conclusions

This paper describes surface area measurements based on local estimates of
isosurfaces originating from a marching cubes representation. We show how im-
proved precision and accuracy can be obtained by optimizing the area contri-
bution for one of the cases in this representation. Our results indicate improved
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Fig. 9. Measurements for digitized spheres, cubes, and cylinders of increasing size.
Top: Surface area estimates divided by the true surface area. Middle: Volume estimates
divided by the true volume. Bottom: Sphericity estimates.
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robustness when measuring compactness, or sphericity, to distinguish classes of
objects. Non-convex and more natural shapes should be studied in further work.

Another future challenge is to analyze all of the m-cube configurations and
assign proper weights to them in order to obtain accurate measurements with
high precision. This would be an optimization process in 13 dimensions; there
are 13 cases of area contributions.

Our surface area computations are performed for a binary marching cubes
representation, where the isosurface intersects the marching cube midway be-
tween the corners. Further studies on a grey-level marching cubes representa-
tion, where the isosurface is approximated according to some interpolation of
the grey-level values of the boundary voxels, seems worth pursuing after the
promising results for the binary case.
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