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Abstract. Two approaches to providing an abstract theoretical foun-
dation to the geometry of digital spaces are presented and illustrated.
They are critically compared and the possibility of combining them into
a single theory is discussed. Such a theory allows us to state and prove
results regarding geometrical concepts as they occur in a digital environ-
ment independently of the specifics of that environment. In particular,
versions of the Jordan Curve Theorem are discussed in this general dig-
ital setting.

1 Introduction

One kind of digitization of (three-dimensional) space is obtained by tessellat-
ing it into cubes. Then there are natural notions of adjacencies between cubes
determined, for example, by the sharing of a single face. However, the adjacen-
cies may also be defined using edges and/or vertices. Tessellations of arbitrary-
dimensional spaces into arbitrary polyhedra similarly give rise to various notions
of adjacencies of these polyhedra. Alternatively, we may study a grid of points in
an N-dimensional space and consider certain points adjacent by whatever crite-
rion seems desirable to us. If we view such models as appropriate for capturing
the notion of a digital (as opposed to continuous) space, then we see that the
suitable underlying mathematical concept is a (possibly infinite) graph, which is
a collection of vertices - corresponding to the above-mentioned spatial elements
(spels, for short) - some pairs of which are considered adjacent. Our aim is to
introduce geometrical concepts at this very general level, so that we get away
from the specific consequences of the choices of tessellations and adjacencies. If
we can prove nontrivial theorems in such a general setting, then these theorems
will have nontrivial corollaries in all the specific manifestations of the general
theory.

Certain continuous geometrical concepts have an immediate natural equiv-
alent in a digital space. If p denotes the adjacency, then a p-path is a finite
sequence of spels each but the last of which is p-adjacent to the one following it.
A p-connected set S can then be defined as one in which for any pair of spels in
S there is a p-path entirely in S from one to the other. A simple closed p-curve
C is a nonempty finite p-connected set such that for each element in C' there are
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exactly two other elements in C' p-adjacent to it. Other notions are more difficult
to capture in a natural way. For example, the digital equivalent of the continuous
notion of a simply connected set (one in which every simple closed curve can
be continuously deformed into a point) is not so obviously definable: we need
somehow to capture the digital correspondent of “continuously deformed.”

In this article we discuss two (somewhat related) attempts at providing such
abstract theoretical foundation to the geometry of digital spaces. We give a
concise, but rigorous, description of both, including samples of theorems that
have been proved. We follow this up with a discussion of the differences between
the two approaches and speculate on a possible synthesis into a single theory.
Finally we mention where we see the interesting open problems.

2 Digital Spaces

The material in this section is based on the approach presented in [I]. There a
digital space is defined as a pair (V,7), with V' an arbitrary nonempty set (of
spels) and 7 a symmetric binary relation (called the proto-adjacency) on V such
that V' is 7w-connected.

A trivial example is when V consists of all the cubes into which space is
tessellated and two cubes are in the relation 7 if, and only if, they share a single
face. In mathematical notation, this is the digital space (Z2, w3) defined, more
generally for any positive integer N (the number of dimensions), by

ZN = {(c1,+en) | e € Z, for 1 <n < N}, (1)

with Z being the set of integers, and wy the binary relation on ZV satisfying

N
(;d)€wn & D len—dn| =1. (2)

n=1

This trivial example illuminates the thinking underlying [1]: 7 has the alternative
interpretation to just being an adjacency, a (c¢,d) in 7 can also be thought to
represent the surface element (surfel, for short) facing from the spel ¢ to the
spel d. Thus any nonempty subset of 7 is referred to as a surface in (V, 7). The
boundary between subsets O and @ of V, defined as

0(0,Q) ={(c¢,d) | (¢,d) e, ce O and d € Q}, (3)

is a surface provided that it is not empty.
The fact that 7 is a set of ordered pairs allows us to define, for any surface
S, its immediate interior I1(S) and its immediate exterior IE(S):

I1(S) ={c| (c,d) € S for some d in V'}, (4)

IE(S)={d| (¢,d) € S for some ¢ in V}. (5)

We say that a m-path <c(0), .- ~,C(K)> crosses S if there is a k, 1 < k < K,
such that either (c*=1 c¢®)) ¢ § or (c®), ck=1)) € S. The surface S is said
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to be near-Jordan if every m-path from an element of I7(S) to an element of
TE(S) crosses S and it is said to be Jordan if it is near-Jordan and no nonempty
proper subset of it is near-Jordan. This terminology is justified by the following
theorem, which makes use of the notions of interior I(S) and exterior E(S) of
S defined by

I(S) = {c € V| there is a m — path connecting ¢ to
an element of I7(S) which does not cross S}, (6)

E(S) ={c €V | there is a m — path connecting ¢ to
an element of TE(S) which does not cross S}. (7)

Theorem 1. A Jordan surface S in a digital space (V,7) has the following
properties.

1. S=09(1(S),E(S)).

2. I(S)UE(S)=V and I(S)N E(S) = 0.

3. Both I(S) and E(S) are w-connected.

4. BEvery m-path from an element of I(S) to an element of E(S) crosses S.

This theorem, which is Corollary 3.3.6 of [I], says that a Jordan surface S
has properties reminiscent of those indicated by the Jordan Curve Theorem for
simple closed curves in the plane: S is the boundary between its interior and
its exterior, which do not intersect but contain all the spels between them, they
are both m-connected, but one cannot get from the interior to the exterior by
a m-path without crossing S. It is worthy of note that near-Jordanness is quite
powerful by itself: with the possible exception of the third one, a near-Jordan
surface has all the properties listed in Theorem [I] (as can be seen from Lemmas
3.2.1 and 3.2.2 of [1]). While it is quite impressive that such powerful-looking
results can be stated (and proved) after only just a very few definitions, their
practical usefulness is limited by the fact that it maybe very difficult (if not
impossible) to check for an arbitrary surface whether or not it is near-Jordan.
For this reason, [I] introduces a more desirable “local” property which under
some circumstances implies near-Jordanness.

A surfel (c,d) is said to cross S if exactly one of (¢,d) € S or (d,c) € S. The
surface S is said to be N-locally-Jordan (where N is a positive integer) if, for any
m-path P = <c(0), . ~,c(K)> such that (c(o),c(K)) € Sand 2 < K < N +1, the
number of surfels among (¢, cM), -.. (cBE=D HK)) that cross S is odd. N-
locally-Jordanness does not by itself imply near-Jordanness; we need to introduce
two further conditions: one on the digital spaces (they have to be in some sense
simply connected) and one on the surfaces (they have to be certain kinds of
boundaries). We now discuss both of these conditions.

If

p— <c<1>,---,c<m>,d<°>,-~-,d<”>,e<1>,---,e<l>> (8)

and
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P = <c<1>7...,c(m>7f<o>7 y .7f<k>,e<1>7...,e<z>> 9)
are m-paths such that
FO =g ) — g™ and1<k+n<N+2, (10)

then P and P’ are said to be elementarily N-equivalent. The digital space is said
to be N-simply connected if, for any m-path <c(0), e C(K)> such that (%) = ¢(0),
there is a sequence of w-paths Py, -+, Py, (L > 0) such that Py :<C(O), e ,C(K)>,
P = <c(0)> and, for 1 <! < L, P,_; and P, are elementarily N-equivalent. This
is a useful concept, as indicated by Theorem 6.3.5 of [1]:

Theorem 2. For any positive integer N, (ZN,wy) is 2-simply connected.

The kind of boundaries in which we are particularly interested appear in
binary pictures over the digital space (V, m). These are defined as triples (V, 7, f),
with f a function mapping V into {0,1}. Those spels which map into 0 are
called 0-spels and those which map into 1 are called I-spels. In order to give
the intuitively desired interpretation to objects in binary pictures, we are forced
to consider simultaneously more than one adjacency. For example, in the two
binary pictures shown below (in which the spels are from Z2), the 1-spels form
a letter O and a letter C respectively.

0{0/0{0{0|0|0{0 0{0{0|0{0|0{0{0
0|0|0{1{1|0|0(0 0|0{0|1{1|0|0(0
0{0/1{0{0|1|0{0 0{0{1|0{0|1|0{0
0{1/0{0{0|0{1{0 0{1{0|0{0|0|0{0
0{1/0{0{0|0|1{0 0{1{0|0|0|0|0(0
0{1/0{0{0|0{1{0 0{1{0|0{0|0{0{0
0|0/1{0{0|1|0{0 0{0{1|0{0|1|0{0
0|0|0{1{1|0|0(0 0|0{0|1{1|0|0(0
0(0/0{0{0|0|0{0 0{0{0|0]0|0|0{0

Note that neither the O nor the C forms an ws-connected set. On the other
hand, if we define the binary relation  on ZV by

N
(c,d) e oy & <O<Z|cn—dn|§2and, for1 <n <N, |cn—dn|§1>7

n=1

(11)
then both the O and the C are do-connected, but the inside of the O is also ds-
connected to its outside. For such reasons, it is customary and useful to consider

different adjacencies for the O-spels and for the 1-spels.
In [I] a symmetric binary relation p on V' is called a spel-adjacency if m C p.
If kK and \ are spel-adjacencies, then a surface S is called a kKA-boundary in the
binary picture (V, 7, f) if there is k-component O of 1-spels and a A-component
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Q of 0-spels, such that S = 9(0, Q). In the previously-presented binary pictures
over the digital space (Z2,ws), the letter O forms a single d2-component and
its inside and outside each forms a single wo-component. Hence there are two
dowa-boundaries in the binary picture on the left. On the other hand, there is
only one dswo-boundary in the binary picture on the right.

For reasons explained quite in detail in early chapters of [I] (they have to do
with being able to prove that certain computer procedures for multidimensional
image processing perform as desired), it is useful to choose spel-adjacencies so
that every non-empty skA-boundary is kA-Jordan, in the sense that it is near-
Jordan, its interior is k-connected and its exterior is A-connected. (Note that in
view of Theorem [1], a Jordan surface is always a ww-Jordan.) For this we need
the concept of a tight spel-adjacency p, which is defined as having the property
that, for all (¢,d) in p, there exists a m-path <c(0), e ,c(K)> from ¢ to d such
that, for 0 < k < K, either (¢(9),c¢®)) € p or (¢®,c5)) € p (or possibly both).
Clearly, both wy and dy are tight spel-adjacencies in (ZV,wy). The following
is Theorem 6.2.7 of [1], it holds for all positive integers N.

Theorem 3. Let k and \ be tight spel-adjacencies in an N-simply connected
digital space (V7). A rX-boundary is in a binary picture over (V) is KA-
Jordan if, and only if, it is N-locally Jordan.

The advantage of this theorem as compared to Theorem[is that the desirable
property of being xkA-Jordan follows from the property of being N-locally Jordan,
which appears to be a condition that is easier to check than the condition of being
near-Jordan. We now show that under some circumstances this appearance very
much corresponds to reality.

We call a w-path <c(0),c(l),c(2),c(3),c(0)> a unit square if both ¢(© # ¢2)
and ¢ # ¢®). An unordered pair {x, A} of spel-adjacencies in a digital space is
said to be a normal pair if, for any unit square (¢(®, (), ¢ 3 ) we have
(O, c(z)) € K or (c(l), c(3)) € X or both. It is easy to prove that, for any positive
integer N, {0, wn} is a normal pair in (ZV,wy) (Theorem 6.3.8 of [1]).

Theorem 4. If {k, A} is a normal pair of spel-adjacencies in a digital space and
S is a kA-boundary in a binary picture over the digital space, then S is 2-locally
Jordan.

This result (which is Lemma 6.3.3 of [1]) together with Theorems 2] and Bl
implies that, for any positive integer N, every dywpy-boundary in any binary
picture over (ZV, wy) is dywy-Jordan. To emphasize what this means in the
special case of tessellating space into cubes, we spell out in full its consequences
in that space (Corollary 6.3.9 of []).

Theorem 5. Let A be a nonempty proper subset of Z>. Let O be a §3-component
of A and Q be an wz-component of Z3\ A, such that (0, Q) is not empty. Then
there exists two uniquely defined subsets I and E of Z3 with the following prop-
erties.
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.OCI and Q CE.

. 0(0,Q)=0(I,F).

IUE=23and INE = 0.

. I is a 53-connected subset of Z3 and E is an ws-connected subset of Z3.

. Bvery ws-path connecting an element of I to an element of E crosses 9(0, Q).

Gr i o o~

From the point of view of our discussion here, the important aspect of this
theorem is not what it says but rather the fact that the general results discussed
earlier immediately yield similar theorems for other tessellations of three and
other dimensional spaces and even for digital spaces which are obtained by means
other than tessellating a Euclidean space. Many specific examples of this are
presented in [1].

3 Generic Axiomatized Digital Surface-Structures

The material in this section is based on the approach presented in [2]. That
paper aims at providing an axiomatic foundation of digital topology; it succeeds
in this only partially inasmuch that it deals only with discrete structures which
model subsets of the Euclidean plane and of other surfaces. Its main advan-
tage over the approach of the previous section is its treatment of the digital
version of “continuously deformed”: instead of having the awkward hierarchy of
elementary N-equivalences, the allowable deformations are embedded into the
very definitions of the structures, in the form of some “loops.”

A basic difference between the conventions of [I] and [2] is that in the latter
adjacencies are represented by unordered pairs. In order to accommodate the
terminology of [2], we define a proto-edge in a digital space to be any two-element
set {c¢,d} such that (c,d) is a surfel.

A 2D digital complex is defined as a triple (V,7,£), where (V, ) is a digital
space and L is a set of simple closed m-curves (its elements are called loops) such
that the following conditions hold:

1. V contains more than one spel and if (¢,d) € 7, then ¢ # d.

2. For any two distinct loops L1 and Lo, Ly N Ly is either empty, or consists of
a single spel, or is a proto-edge.

3. No proto-edge is included in more than two loops.

4. Each spel belongs to only a finite number of proto-edges.

If Loy is the set of all {0(0)7 M 2, 0(3)} such that <c(0), EONCONCN c(0)>
is a unit square in (Z2,wsy), then (Z2%,ws,Lax2) is a 2D digital complex. Now we
see why we use the term 2D digital complex: if we tried to do the same for
the space (Z3,ws3) we would violate Condition 3 of the definition, since each
proto-edge would be included in four loops.

For an arbitrary spel-adjacency p in (V, ), let the P in (8) and the P’ in (@)
be two p-paths. They are said to be elementarily loop-equivalent in (V,7,L) if

1. either there is a proto-edge {c,d} such that one of <d(0), cee d(”)> and
<f(0), . f(k)> is (¢) and the other is (¢, d, ),
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2. or fO =g fk) = 3™ and there is a loop which contains d©, - ., d("™
and f© ... fk)

A ppath (@ .. )} such that ¢ = O is said to be p-
reducible in (V,x,L) if there is a sequence of p-paths Py,---, Py such that
Py :<c(0), . ',C(K)>, P = <c(0)> and, for 1 <[ < L, P,_1 and P, are ele-
mentarily loop-equivalent in (V,7,£). The 2D digital complex (V,w,L) is said
to be simply connected if every m-path <c(0), cee c(K)> such that (&) = ¢ ig
m-reducible in it.

A spel ¢ of (V,7,L) is called interior if every proto-edge that contains ¢ is
included in two loops. A 2D digital complex is called a pseudomanifold if all its
spels are interior. (Trivially, every proto-edge of a pseudomanifold is included in
exactly two loops.) It is easy to see that (Z2,ws,Lax2) is a pseudomanifold.

Two loops L and L' of a 2D digital complex are said to be adjacent if LN L’
is a proto-edge. A subset £’ of L is said to be strongly connected if, for any two
loops L and L’ of L', there exists a sequence L, -- -, Lx of loops in £’ such that
Lo=L,Lg =1L and, for1 <k < K, Lp_; and L, are adjacent. The 2D digital
complex (V,m L) is said to be strongly connected if L is strongly connected. A
spel c¢ is said to be a singularity of a 2D digital complex if the set of all loops
that contain c is not strongly connected. The following is Proposition 3.7 of [2].

Theorem 6. A 2D digital complex that is both simply connected and strongly
connected has no singularities.

For an arbitrary spel-adjacency p in (V,7), let C be a simple closed p-curve.
A p-path <c(0), S c(‘C|)>, where |C| denotes the number of elements in C, which
is such that ¢(I€D = ¢ and C = {c(l), e ,c(|c|)} is called a p-parameterization
of C. (Note that this exists.) We say that in this parameterization c(*~1)
c® and ¢® follows ¢*=V, for 1 < k < |C.
Let L and L' be two adjacent loops of a 2D digital complex and let {c,d} € LN
L'. We say that a w-parameterization of L is coherent with a m-parameterization
of L' if ¢ precedes d in one of the m-parameterizations and ¢ follows d in the other.
A 2D digital complex (V,7,L) is said to be orientable if there is a function {2
with domain £ such that:
1. For each loop L in £, 2(L) is a m-parameterization of L.
2. For all pairs of adjacent loops L and L', £2(L) is coherent with 2(L’).

precedes

It is easily seen that (Z2,wq,Lax2) is orientable.

A generic aziomatized digital surface-structure (or GADS, for short) is a pair
G =({(V,m,L),(k,N), where (V,m,L) is a 2D digital complex (called the complex
of G, whose spels, proto-edges and loops are also referred to as the spels, proto-
edges and loops of G) and k and X are spel-adjacencies in (V) 7) that satisfy:

Axiom 1. If (¢,d) € KU\, then ¢ # d.
Axiom 2. If (¢,d) € (kU A) \ 7, then some loop contains both ¢ and d.
Axiom 3. If {c,d} is a subset of a loop L, but it is not a proto-edge, then
(a) (¢,d) € N if, and only if, L\ {¢, d} is not k-connected and
(b) (¢,d) € k if, and only if, L\ {c,d} is not A-connected.
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(Note that if in the underlying complex it is the case that, for every unit square
<c(0), RONCNCN c(o)>, {c(o), D ), c(?’)} is a loop, then Axiom 3 implies that
{k, A} is a normal pair of spel-adjacencies.) The following is Theorem 6.1 of [2].

Theorem 7. Let C be a simple closed (kN \)-curve contained in a loop L of a
GADS ((V,m,L),(k,A)). Then C has one of the following properties:

1. For all distinct ¢ and d in C, (c,d) € k.
2. For all distinct ¢ and d in C, (c,d) € A.

A GADS ((V,m,L),(k,N)) is a subGADS of a GADS ((V',n',L"), (', X)) if:

1. VCV', nCx’ and LCL'.
2. Forall Lel, kNL?=x'NL?and ANL?= X N L? where L? denotes the
set of ordered pairs of elements of L.

(It is a consequence of this definition and Axiom 2 that if ((V,7,L), (k,A)) is a
subGADS of ((V',#",L"), (', \)), then K C k" and A C \.)

A GADS assumes the properties of its complex; thus a GADS is said to
be simply connected, strongly connected or orientable if its complex is simply
connected, strongly connected or orientable, respectively. Thus we can state the
following, which is Proposition 5.1 of [2].

Theorem 8. A subGADS of a simply connected GADS is orientable.

We are now ready to state Theorem 8.1 of [2], which is a very general version
of the Jordan Curve Theorem for GADS. In it we make use of the concept of a
pGADS, which is a GADS whose complex is a pseudomanifold.

Theorem 9. Let ((V,m,L),(k,\)) be a GADS that is a subGADS of an ori-
entable pGADS ((V',n',L"), (k', X)) whose complex has no singularities. Let P
be a k-parameterization of a simple closed k-curve C' in V' such that:

1. C is not included in any loop in L.
2. Every spel in C is an interior spel of (V,7,L).
3. P is k'-reducible in (V' , 7' ,L").

Then V' \ C has exactly two A-components and, for each spel ¢ in C, Nx(c) (the
set of all spels A-adjacent to c¢) intersects both of these A-components.

To illustrate the applicability of this theorem, we discuss its implication for
((Z%,w2,La%2), (62,ws)), which is easily checked to be a GADS. Based on pre-
viously made remarks, we see that it is in fact an orientable pGADS and it is
easy to see that its complex has no singularities. In this application of Theorem
we can use this same GADS for the two GADS mentioned in that theorem.
Furthermore, it is not difficult to prove (similarly how our Theorem [2 is proved
in [I]) that every da-path is da-reducible in (Z2,ws,Lax2). Recognizing that a
simple closed ds-curve in Z2 which contains at least four spels cannot be con-
tained in an element of Loo and that every spel of a pGADS is interior, all this
proves the following (which is purposely stated to resemble Theorem B):
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Theorem 10. Let C be a simple closed do-curve in Z2 which contains at least
four spels. Then there exists two uniquely defined nonempty subsets I and E of
Z? with the following properties.

ICZ?\C and EC Z?\C.

For every c in C, both I N N,,(c) and EN N,,(c) are nonempty.

IUEUC =2Z% and INE = 1.

Both I and E are wy-connected subsets of Z2.

Every wo-path connecting an element of I to an element of E contains an
element of C.

Guds Lo o =

Again, the important aspect of such a theorem is that it is just one example
of many similar theorems that can be derived from Theorem [J for a variety of
GADS. Some examples of interesting GADS are given in [2].

4 Discussion

Although the approaches of the two previous sections are clearly related, there
are many differences between them. An inessential one is expressed by Condition
1 of the definition of a 2D digital complex; such restrictions are not made in the
definition of a digital space. However, nothing interesting can be said without
this restriction which cannot be said in its presence and so there is no harm in
restricting our study of digital spaces to those which satisfy Condition 1.

A more interesting difference is due to the use of proto-edges rather than
surfels. The concept of surfel is not even mentioned in [2], everything there is
developed in terms of proto-edges. That material has been rewritten for Section
Bl so as to make it notationally consistent with the previous section. However,
there is more than notation at stake here. The use of surfels allowed us to define
in a natural way the concept of a surface. The corresponding concept in GADS
is a simple closed curve, which is a very different sort of animal: surfaces in
digital spaces are sets of surfels, while curves in GADS are sets of spels. The
consequences of this difference in approach become evident when comparing
Theorems Bl and [[0l Since both approaches have been utilized in the literature,
it seems desirable to develop a theory capable to deal with them simultaneously.

To investigate this, let us start with a situation in which all the conditions of
Theorem [ are satisfied (as a specific illustration consider Theorem [0 and the
letter O on the left of the previously shown figure as the simple closed da-curve
(). Creating a binary picture in which the 1-spels are elements of C' (which is
k-connected), we see that there are exactly two kA-boundaries, namely 9(C, Q1)
and 9(C, Q2) with @1 and Q2 being the two A-components of V'\ C. Under what
additional conditions on the GADS in Theorem [@ are these two boundaries
guaranteed to be xkA-Jordan? (That they can indeed be such is illustrated by
the corresponding boundaries of the O in the figure; see also the more general
statement after Theorem [4.) If they were, then we would have a way of going
from C to surfaces which approximate it and have desirable properties.
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On the other hand suppose that we have a kA-Jordan surface S in the digital
space of the underlying complex of a GADS. Under what conditions is I7(S)
a simple closed k-curve? If it is and if the other conditions of Theorem [ are
also satisfied, then one of the A\-components of V' \ II(S) implied by Theorem
has to be E(S) and the other has to be I(S) \ II(S). (This implies that I(S)
itself is A-connected, in addition to being k-connected, giving us one necessary
condition.) Symmetrical conditions would be obtained for insuring that IFE(S)
is a simple closed A-curve. One might even investigate the circumstances under
which IE(S) is a simple closed k-curve, but this seem less likely to lead to useful
results for a kA-Jordan surface S.

A major disadvantage of the GADS-based approach is its restriction to 2D
digital complexes and consequently (in that approach) to curves to play the role
of “surfaces which separate space into two components.” An attempt has been
made in [I] to introduce more general structures to fulfill such a role. In any
digital space (V, ), a nonempty subset of P of V is called a spel-manifold if it
satisfies the following three conditions:

1. P is m-connected.

2. For each ¢ € P, N;(c) \ P has two m-components,

3. For each ¢ € P and for each d € N, (c)NP, N, (d) has a nonempty intersection
with both m-components of N, (c)\ P.

This definition is half satisfactory in the sense that it is the case that [I] Theorem
7.3.1] if P is a spel-manifold in a digital space (V, 7), then V'\ P has at most two
m-components, but it is not guaranteed to have more than one m-component,
even if we restrict ourselves to rather special digital spaces [1I Theorem 7.3.2].
It appears desirable to find some nice conditions on a set of spels which would
guarantee that it is a kA-manifold in the sense that it is xk-connected and its
complement has exactly two Ad-components.

Another intriguing approach is to generalize the notion of a 2D digital com-
plex to N dimensions. Even though it is not too difficult to envision how to do
this satisfactorily (an inductive definition is a possibility), it is less clear how such
a generalization can be combined with spel-adjacencies; in particular, Axiom 3
seems to be very anchored to the two-dimensional environment.

In summary, the previous two sections have illustrated that powerful results
can be proven in an abstract framework; these results have immediate conse-
quences in the many specific theories that have been put forward to study ge-
ometry in a digital framework. However, as discussed in this final section, not
all aspect of such a theoretical foundation have yet been satisfactorily resolved.
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