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Abstract. We examine the derivation of consistent concurrency rela-
tions in uncertain geometry. This work extends previous work on par-
allelism and collinearity. We introduce the concept of a metadomain,
which is defined as the set of parameter vectors of lines passing through
two domains, where a domain is defined as the uncertainty region of
the parameter vector of a line segment. The intersection graph of the
metadomains is introduced as the primary tool to derive concurrency
relations.

1 Introduction

We consider the concurrency of digital line segments within the framework of
uncertain geometry, a geometric theory introduced to model the uncertainty of
positions as well as geometric properties of objects in a digital image. In un-
certain geometry points are equipped with uncertainty regions. The notion of
an uncertainty region coincides with the use of a structuring element in the
discretization by dilation scheme developed by Heijmans and Toet [1]. The def-
inition of concurrency was introduced previously together with definitions for
digital collinearity and parallelism [2].

One of the main characteristics of uncertain geometry is that properties such
as parallelism, collinearity and concurrency are not necessarily consistent in the
same way they are consistent in Euclidean geometry, and that somehow we must
restore this consistency wherever it is needed in an application. In uncertain
geometry when the line A is parallel with B, and B with C, then this does
not necessarily imply that A is also parallel with C [2,3]. Thus, for the sake
of consistency, after establishing a set of geometric relations between objects in
uncertain geometry, we must repartition the objects, discard some relations as
well as add new ones to obtain a consistent set of relations. This repartitioning
can be accomplished by an optimal grouping process as was done for collinearity
and parallelism in previous work [3,4,5]. As for parallelism, for example, the
grouping process led to consistency by extracting cliques from an interval graph,
in which each interval represented the uncertainty about the slope of a line
segment.

Since concurrency concerns triples of lines, a direct approach to optimal
grouping would involve the extraction of cliques from a hypergraph, where
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the hyperedges represent concurrent triples [6]. Here, to simplify the group-
ing process, we reduce the conditions imposed on concurrency, similar to the
way collinearity was replaced by the concept of weak collinearity to simplify the
extraction of collinear groups of line segments [5].

What we propose in this paper is one approach to geometric reasoning when
the position and parameter vectors are unprecise or uncertain. Also in robotics,
mechanical design and computer vision, there is a need to deal with uncertainty.
The models proposed there include the use of finite precision arithmetic [7], the
use of probability density functions [8,9], the use of tolerance zones for mechan-
ical parts [10], and significance measures for geometric relations [11]. However,
these methods have not yet been integrated into a larger mathematical frame-
work, what this work is aimed at.

In Section 2 we briefly sketch how we derive concurrency relations. In Section
3 we give more details on the computation of a metadomain. Section 4 examines
the extraction of consistent relations. We conclude the paper in Section 4.

2 Concurrency and Line Transversals

During discretization the precise knowledge about the position of geometric ob-
jects is lost. We model this uncertainty by an uncertainty region that we asso-
ciate with each point. The discretization process that coincides naturally with
this notion of uncertainty is the discretization by dilation scheme developed by
Heijmans and Toet [1]. The structuring element Ap used in this scheme coincides
with our notion of an uncertainty region associated with a point p.

Furthermore, to keep the complexity of the computations acceptable, as
model for the uncertainty of the position of a digital point p = (x, y), we of-
ten use a very simple uncertainty region, i.e, the vertical line segment Cp(τ),
which comprises all points (x, b) ∈ IR2 that satisfy y − τ/2 ≤ b < y + τ/2. Here
τ is a positive real number, which controls the uncertainty. Also to simplify the
exposition, we restrict ourselves to the concurrency of straight lines of the form
y = αx+ β, where the slope α satisfies −1 < α < 1. We assume that each set S
contains at least two points with distinct x-coordinates. We shall also not discuss
how to deal with lines of slope |α| ≥ 1, which can be done along the same lines
as discussed in [2,4] for parallelism.

Definition 1. A finite digital set S ⊂ Z2 is digitally straight if there is a Eu-
clidean straight line that cuts all uncertainty segments Cp(τ), p ∈ S. We call
such a set also a digital line segment.

Definition 2. Let S1, . . . , Sn be a finite collection of digital line segments. We
define the following properties:

– The sets {Si : i = 1, . . . , n} are called digitally collinear if there exists a
common Euclidean straight line A that cuts the uncertainty segments of all
the sets Si;
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– The sets in {Si : i = 1, . . . , n} are called digitally parallel if there exist
n Euclidean straight lines A1, . . . , An that are parallel and such that for
i = 1, . . . , n the line Ai cuts the uncertainty segments of the set Si;

– The sets in {Si : i = 1, . . . , n} are called digitally concurrent if there exist n
Euclidean straight lines A1, . . . , An that meet in a common point and such
that for i = 1, . . . , n the line Ai cuts the uncertainty segments of the set Si;

In the remainder the notions of collinearity, parallelism and concurrency are
used in the sense of Definition 2, unless we specify explicitly that we are using
the Euclidean definition. When the sets S1, . . . , Sn are digitally concurrent we
denote this as conc(S1, . . . , Sn). The parameter vectors of the Euclidean lines
passing through the uncertainty regions of a digital line segment, define a new
kind of uncertainty region, also called the domain of the line segment.

Definition 3. Let S be a finite digital set that contains at least two points with
distinct x-coordinates, and let τ be the uncertainty parameter. Then the domain
of S, denoted as domxS, is the set of all parameter vectors (α, β) ∈ IR2 that
satisfy the following system of inequalities:

− τ/2 ≤ αxi + β − yi ≤ τ/2, (xi, yi) ∈ S. (1)

Note that a domain is defined here as a convex, closed polygon. The prop-
erties of Definition 2 can be reformulated in terms of domains [2]. Two digital
line segments are collinear when their domains intersect. Two line segments are
parallel when the intervals that result from the projection of the domains upon
the α-axis have a none-empty intersection. Finally, three line segments are con-
current if there is a straight Euclidean line passing through their domains.

Attaching uncertainty regions to points and parameter vectors leads to ad-
ditional levels of uncertainty. In fact, the introduction of domains can proceed
indefinitely. Thus, we may consider the uncertainty of the parameter vector of a
Euclidean line passing through two or more domains, and in this way construct
a metadomain. One of the strong points of the use of uncertainty regions is
that on each level the uncertainty depends in a direct way on the uncertainties
introduced at the first level, that is, on positions of image points.

Given a collection of digital line segments and their domains, we shall perform
the following steps to find out whether the line segments are concurrent or not:

1. compute the metadomains for pairs of domains;
2. construct an intersection graph of the metadomains;
3. find a consistent grouping on the vertices of the intersection graph;
4. compute the metadomains for the groups.

We illustrate these steps further in Fig. 1. In Fig. 1(a) we are given a collection
of digital line segments which have been extracted from a digital image by use of
the Ransac method [12]. The domains of these segments are shown in Fig. 1(b),
where each domain corresponds to one line segment in Fig. 1(a). Large line seg-
ments correspond to small domains, because there is less uncertainty regarding
their slope and height. Note, for example, that the domain of line segment G is
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Fig. 1. (a) Scanned image of handmade line drawing, (b) domains, and (c) intersection
graph.

much smaller than the domain of F , because G actually consists of two parts as
shown in Fig. 1(a). Because the line segments were drawn by hand, to be able to
extract at least some geometric relations, we have chosen a relatively large value
for the uncertainty parameter used to compute the domains, i.e, τ = 5. Once
they have been computed, the domains can serve as new uncertainty regions, for
which we want to find line transversals, as line transversals determine concur-
rency relations. Therefore, for each pair of non-parallel digital line segments we
derive a metadomain formed by the parameter vectors of those Euclidean lines
that cut their domains.

Definition 4. Let A and B be two digital line segments with domains domxA
and domxB. In addition assume that A and B are not-parallel, that is, domxA
and domxB can be separated by a Euclidean line parallel to the β-axis. The
metadomain consists of all parameter vectors (p, q) such that the Euclidean line

β − αp− q = 0 (2)

cuts domxA as well as domxB in the αβ-plane.

The points of a metadomain can be identified with the points in the original
image space. In fact, since the Euclidean line (2) cuts both domains, it contains



Concurrency of Line Segments in Uncertain Geometry 293

Fig. 2. Metadomains for pairs of lines.

two points (α1, β1) and (α2, β2) such that (x, y) = (p, q) lies on a line β1 −
α1x − y = 0 which cuts all uncertainty regions of points in A, as well as on
the line β2 − α2x− y = 0 which cuts all uncertainty regions of B. In this sense
the metadomain is the uncertainty region of the intersection point (p, q) of a
Euclidean line passing through the uncertainty regions of A and a Euclidean
line passing through the uncertainty regions of B.

Therefore, the metadomains of the domains in Fig. 1(b) can be superimposed
on the original image, as done in Fig. 2. Next, we construct the intersection graph
of the metadomains, as shown in Fig. 1(c). Each metadomain is represented by
a vertex. When two metadomains intersect, they are joined by an edge. Thus
the existence of an edge refers to the fact that there is a Euclidean line cutting
either three or four domains. The precise number of domains cut depends on
whether the two domain pairs have one domain in common or not. For example,
since the vertices AG and BG are adjacent, there must be a straight line cutting
the domains A, B and G.

Deriving concurrency relations directly from the intersection relations of the
metadomains would almost always lead to inconsistency. Instead, as will be ex-
plained later, we perform a consistent grouping of the vertices of the intersection
graph of the metadomains. We shall prove that we can obtain consistency when
we extract cliques from the graph such that two cliques do not have a com-
mon neighbor. Next, for each clique we compute the common intersection of
the metadomains that correspond to the vertices of the clique. These intersec-
tions are shown in Fig. 3. They form new uncertainty regions, representing the
uncertainty regarding the position of the intersection point of three or more con-
current lines. For example, the region ABF corresponds to the uncertainty of the
intersection point of the three Euclidean lines passing through the uncertainty
regions of A, B and F . Each clique gives rise to a concurrency relation, pro-
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Fig. 3. Uncertainty regions for intersection points.

vided the intersection of the metadomains that are involved is non-empty. The
cliques of the graph in Fig. 1(c) yield the following candidates for the concur-
rency relations: conc(A,B, F ), conc(A,B,G), conc(A,B,H), conc(A,B,D,E),
conc(C,E,H) and conc(C,E,G).

Finally, to improve consistency we may discard illegal cliques that contain
two or more parallel lines. Since C and E are parallel, but not collinear, the only
relations that remain are conc(A,B, F ), conc(A,B,G), conc(A,B,H). They can
coexist since A and B are in fact collinear.

3 Derivation of Convex Metadomains from Domain Pairs

Since the construction of the intersection graph of the metadomains is greatly
simplified when the metadomains are convex, an important question is the follow-
ing: Given two disjoint convex domains, when is their metadomain also convex?

To examine this, given two domains A and B we introduce the lines and
halflines shown in Fig. 4(a). Here V denotes a Euclidean line of minimal slope
cutting A as well as B. Similarly, we let W denote a transversal of maximal
slope. In addition, we choose a point au ∈ (V ∩ A) common to the line V and
the set A, as well as a point bl ∈ (V ∩ B). Let Au denote the halfline starting
at au parallel to the y-axis and extending in the direction of increasing y-values.
Similarly we introduce the points bu, al for the transversal of maximum slope W ,
and the halflines Al, Bu and Bl, as shown in Fig. 4. We then have the following
result.
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Fig. 4. A non-vertical line that does not cut Au, Al, Bu, Bl, must cut A and B.

Lemma 1. Let A and B be two domains that are convex polygons, and let Al,
Au, Bl and Bu be defined as in Figure 4. If there is a transversal cutting either
Bl or Bu then one of the supporting lines of B cuts A.

Proof. Without loss of generality we suppose there is a transversal L of A and
B that cuts the halfline Bu and that does not pass through any of the vertices
of B, as shown in Fig. 4. We choose an arbitrary point p ∈ A∩L, and we define
c as the point c ∈ L ∩ B such that the Euclidean line segment cp has only c in
common with B. Let M denote the supporting line of B that passes through
c. Since B is convex, the slope of M must be smaller than the slope of W , but
larger than the slope of L. Hence M cuts Bu as well as the domain A.

Proposition 1. Let A and B be two domains that are convex polygons. If the
supporting lines of one domain do not cut the other domain then their metado-
main is a convex polygon.

Proof. Let al = (pal, qal), . . . , bu = (pbu, qbu) be the coordinates of the endpoints.
By Lemma 1 if no supporting line of either A or B cuts the other set, then there
is no transversal line cutting one or more of the halflines Al, Au, Bl or Bu. On
the other hand, any line that cuts none of these four halflines is a transversal of
A and B. Therefore the metadomain in the uv parameter space is determined
by the four inequalities 



v − qal − upal > 0
v − qbl − upbl > 0
v − qau − upau < 0
v − qbu − upbu < 0.

(3)

Hence the domain is convex.

Metadomains are not always convex. It is easy to construct a counterexample
as follows. By the identification of the metadomain with the uncertainty region
of an intersection point it follows that the metadomain can also be considered
as the intersection of two collinearity regions as defined in [2]. Furthermore,
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Fig. 5. Non-convex uncertainty region for the intersection point of two lines.

since collinearity regions are not necessarily convex, it is not difficult to find
two collinearity regions whose common intersection is not convex, as shown in
Fig. 5. In [2] a collinearity region of a digital set S is defined as the set consisting
of those points p in IR2 for which there is at least one Euclidean line passing
through p as well as through the uncertainty regions associated with the points
of S. In Fig. 5 the intersection of the two collinearity regions is shown as a gray,
non-convex region.

Since metadomains are not necessarily convex, to construct the intersection
graph of Fig. 1(c), we replace the metadomain by its convex hull, which is done as
follows. First, we compute the parameter vector of each line that passes through
any vertex of the first domain and any vertex of the second domain, next we
take the convex hull of the parameter vectors. This approach overestimates un-
certainty. When the conditions of Proposition 1 are met, however, which for
real lines is often the case, then the metadomain coincides with its convex hull
without any overestimation of uncertainty.

4 Consistency and Grouping

From the metadomains we construct an intersection graph, in which two vertices
are joined by an edge when the two metadomains have a non-empty intersection.
Next, the connectivity of the intersection graph is used to find larger groups of
metadomains that have a common non-empty intersection.

The basic idea is that when two vertices are joined by an edge then this
points to the existence of a line crossing three or four domains, and therefore
also points to a concurrency relation for digital line segments, i.e., the line seg-
ments whose domains have given rise to the metadomains that correspond with
the two vertices. The extension of this idea is to extract cliques from the inter-
section graph, since the vertices of a large clique will often correspond to a large
collection of metadomains that have a common non-empty intersection, and thus
indirectly it will correspond to a concurrency relation that involves a large num-
ber of line segments. There is no guarantee, however, that the metadomains of
clique always have a non-empty intersection. Fig. 6(a) shows an exception, where
we have six line segments, and the metadomains AB, CD and EF which are
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Fig. 6. Clique whose metadomains have no common intersection.

Fig. 7. Minimum clique covering leads to inconsistencies.

shown here as the uncertainty regions of the six line segments. Fig. 6(b) shows a
subgraph of the intersection graph induced by the vertices AB, CD, EF , which
form a clique. Nonetheless, the intersection of the metadomains is empty. Such
cases are rare, however. In fact, they can only occur when the union of the three
metadomains forms a topological torus. In this work, whenever such a situation
occurred we solved this problem by taking the convex hull of the hole of the
torus as the uncertainty region of the intersection point.

A second problem is that most groupings, and therefore cliques also, lead
to inconsistent geometric relations. This is illustrated in Fig. 7. A minimum
clique covering algorithm may propose, for example, the cliques AC−AB−BC
and AD − BD and thus the concurrent relations conc(A,B,C), conc(A,B,D).
Since these two triples share two line segments (A and B), we should also have
conc(A,B,C,D), which is not the case here, because some edges are missing,
and therefore some of the metadomans that are involved do not have a common
non-empty intersection.

Informally we can define a set of relations between digital line segments
as consistent if the set contains no relations that cannot occur in Euclidean
geometry. A further requirement would be that for sufficiently small values of
the uncertainty parameter τ the relations found in uncertain geometry should
coincide with Euclidean geometry. Note, however, that consistency is violated
already at the lowest level, since parallelism and collinearity are not transitive in
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uncertain geometry. It follows that we can only restore consistency upto a certain
degree. For example, even when we restore the usual properties of parallelism,
collinearity and concurrency, more involved properties such as Pappus’ Theorem
may still not hold. As for concurrency, in this work we restrict ourselves to the
removal of the most obvious inconsistencies:

(A ‖ B) ∧ (A �= B) ∧ conc(A,B,C), (4)

(A �‖ B) ∧ (A �‖ C) ∧ (B �‖ C) ∧ conc(A,B,C) ∧ conc(B,C,D) ∧ ¬conc(A,B,D).
(5)

To remove inconsistencies of the form (4) or (5) we shall use the following
result, which gives a sufficient, but not necessary, condition.

Lemma 2. Let G be the intersection graph of the metadomains of a collection
of digital line segments A,B, . . .. Let S be a set of disjoint cliques of G such that
the pathlength between two vertices belonging to distinct cliques in S is always
larger than two. If in the set of concurrency relations implied by the cliques in S
we have two relations of the form conc(A,B,C, . . .) and conc(A,B, P, . . .), then
we have A ‖ B.

Proof. Suppose we have conc(A,B,C, . . .) and conc(A,B, P, . . .). Assume that
A �‖ B. Then AB appears as a vertex in the intersection graph. Since there is
a clique whose vertices imply the relation conc(A,B,C, . . .), either AB must
belong to this clique, or there must be vertices AX and BY in the clique, where
X and Y can even be identical. Since AX and BY are adjacent, there is a
common transversal cutting the four domains A, X, B and Y . Hence, both
AX and BY must also be adjacent to AB. Similarly, in the clique generating
the relation conc(A,B, P, . . .), there must be vertices AU and BV that are also
adjacent to AB. In this case both cliques would have a common neighbor. Since
we exclude such cliques, it follows that the assumption A �‖ B cannot be true. In
fact, two relations of the form conc(A,B,C, . . .) and conc(A,B, P, . . .) can only
arise when AB is not a vertex of the graph, or in other words when A ‖ B. In
particular, A may even be collinear with B.

To find consistent concurrency relations, we use a greedy algorithm which
is based on Lemma 2. First, we extract a maximum clique and remove all its
neighbors as well as the neighbors of these neighbors from the intersection graph
of the metadomains. By proceeding with the next maximum clique in the graph,
we construct thus a list of cliques such that no two cliques share a common
neighbor. Next, from each clique we derive the implied concurrency relation.
For example, a clique with vertices AB, CD, AE implies conc(A,B,C,D,E).
The result is shown in Fig. 3, where we draw the uncertainty regions for the
intersection points of a number of concurrency relations, i.e., the region ABH
for the relation conc(A,B,H). Finally, we remove those concurrency relations
which involve one or more pairs of digital line segments that are parallel but
not collinear. Since C and E are parallel, only conc(A,B, F ), conc(A,B,G),
conc(A,B,H) are left as valid concurrency relations.
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With the above algorithm we can avoid inconsistencies of the form (4) as
well as (5). Suppose, for example, that we have found the concurrency relations
conc(A,B,C) and conc(A,B,D). Because the extracted cliques satisfy the con-
ditions of Lemma 2, it follows that A ‖ B, which excludes an inconsistency of
the form (5). In addition, if A is not collinear with B, then both concurrency
relations will be discarded in the final step of the algorithm where we examine
parallel pairs. This excludes an inconsistency of the form (4). If A and B are
collinear, however, then the concurrency relations will not be discarded because
they can coexist without any contradiction.

5 Concluding Remarks

We presented a method for the derivation of concurrency relations in uncer-
tain geometry. The removal of inconsistencies is a major part in this approach.
Without doubt, there is still no unique decisive procedure that guarantees the
removal of all possible geometric inconsistencies. In this work we have proposed
one approach, which gives satisfactory results on real images, but still has some
shortcomings. In particular, the following important questions have been barely
examined. How can we obtain consistency when we consider distinct types of
relations? For example, if A is collinear with D while A, B and C are concur-
rent, then consistency requires that B, C and D must also be concurrent. Upto
now the consistency of properties such as parallelism, collinearity and concur-
rency have only been examined separately. Furthermore, in real applications we
must combine the extraction of linear structure with other properties such as
proximity and symmetry. Also this question has not been sufficiently examined
yet. Finally, the uncertainty is controlled by the uncertainty parameter τ . When
analyzing relations in a digital image, we often derive geometric relations for dif-
ferent values of τ . It is a natural requirement that these relations should behave
in a consistent way when we increase or decrease τ .
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