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Abstract. Among the different discretization schemes that have been
proposed and studied in the literature, the supercover is a very natural
one, and furthermore presents some interesting properties. On the other
hand, an important structural property does not hold for the supercover
in the classical framework: the supercover of a straight line (resp. a
plane) is not a discrete curve (resp. surface) in general.
We follow another approach based on a different, heterogenous discrete
space which is an order, or a discrete topological space in the sense of
Paul S. Alexandroff. Generalizing the supercover discretization scheme
to such a space, we prove that the discretization of a plane in R

3 is a
discrete surface, and we prove that the discretization of the boundary of
a “regular” set X (in a sense that will be precisely defined) is equal to
the boundary of the discretization of X. This property has an immediate
corollary for half-spaces and planes, and for convex sets.

Keywords: discretization, topology, orders, supercover, discrete surfaces

1 Introduction

An abundant literature is devoted to the study of discretization schemes. Let E
be an “Euclidean” space, and let D be a “discrete” space related to E . Typically,
one can take E = R

n and D = Z
n (n = 2, 3), but we do not limit ourselves to this

case. A discretization scheme associates, to each subset X of E , a subset D(X) of
D which is called the discretization of X. Different discretization schemes have
been proposed and compared with respect to some fundamental geometrical,
topological and structural properties. We may, for example, ask the following
questions: if X ′ ⊆ E is the image of X by a symmetry, is D(X ′) the image of
D(X) by the same symmetry ? If X is connected, is D(X) connected (in some
sense) ? And if X is a curve, is D(X) a curve (in some sense) ?

In this paper, we consider the discretization scheme called supercover, and
we focus on some structural properties. Consider E = R

2, for simplicity, and
let D be the set of all closed squares in E with side 1 and the vertices of which
have integer coordinates (the elements of D are often called pixels). Let X be a
subset of E , the supercover of X is the set of all the pixels that have a non-empty
intersection with X.

The supercover has many interesting properties, which have been studied
by several authors [9,10,2,1,8,21,22]. In particular, Andrès [1] proposed an an-
alytical characterization of the supercover of straight lines, and more generally
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for hyperplanes and for simplices in higher dimensions. Also, Ronse and Tajine
showed that the supercover is a particular case of Hausdorff discretization [21,
22].

But the supercover has also a drawback for thin objects such as straight lines.
If a straight line δ in R

2 goes through a point with integer coordinates, then the
supercover of δ contains the four pixels that cover this point - this configuration
is called a “bubble” (Fig. 1(a)). An extreme case is when δ is horizontal or
vertical, and hits elements of Z

2 (Fig. 1(b)): the supercover of such a line is
2-pixel thick. Thus, the supercover of a straight line cannot be seen as a discrete
curve.

(a) (b)
Fig. 1. (a): A straight line segment and its supercover (shaded), which contains a
“bubble” (set of four pixels sharing a common vertex). (b): A horizontal line segment
that has a 2-pixel thick supercover.

Another popular discretization scheme for lines, called grid intersection dig-
itization [17,23], does guarantee that the discretization of a straight line δ is
a digital curve, in the sense of the digital topology [16]. A proof of this prop-
erty can be found in [15]. The drawback of this discretization scheme is its lack
of symmetry: for any intersection of δ with a pixel boundary, the pixel vertex
which is closest to this intersection is chosen as an element of the discretization
of δ, and if the intersection is at equal distance between two vertices, then an
arbitrary choice is made (for example, the rightmost or upmost vertex). This
drawback is shared by other discrete models for straight lines and planes, the
Bresenham’s model [7], the naive model [20] and the standard model [1]. On the
other hand, the supercover does not suffer from this lack of symmetry.

An attempt to solve the problem of “bubbles”, which seems to be the price
payed for symmetry, has been made in [8] with the notion of minimal cover.
Let X be a subset of R

2. Any set S of pixels, such that X is included in the
union of the elements of S, is called a cover of X. Let S be a cover of X, we
say that S is a minimal cover of X if there is no other cover of X which is a
proper subset of S. We see in Fig. 2 that the minimal cover of certain straight
lines is “thinner” than the supercover, but we see also that the minimal cover is
not unique in general.

We follow another approach based on a different, heterogenous discrete space
which is an order, or a discrete topological space in the sense of Paul S. Alexan-
droff [3]. Such spaces have been the subject of intensive research in the recent
past, not only from the topology point of view [13,18,11,5], but also in relation
with discretization and geometrical models [14,25]. The discrete space D that
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(a) (b)
Fig. 2. (a): A straight line segment and its minimal cover (shaded). (b): A horizontal
line segment and one of its possible minimal covers.

we will consider is a partition of the Euclidean space E , composed (in the case of
E = R

2) of open unit squares, unit line segments and singletons. The fact that
D is a partition of E leads to a fundamental property: for any subset X of E ,
the supercover of X (relative to D) is the unique minimal cover of X. We will
focus on this discretization scheme, and discuss only the 3D case in the sequel
(corresponding results in 2D are particular cases).

The two main contributions of this paper are the following results. (i) We
prove that the discretization of a plane in R

3 is a discrete surface. (ii) We prove
that the discretization of the boundary of a “regular” set X (in a sense that will
be precisely defined) is equal to the boundary of the discretization of X. This
property has an immediate corollary for half-spaces and planes, and for convex
sets.

2 Basic Notions on Orders

In this section, we recall some basic notions relative to orders (see also [13,5,6]).
If X is a set, P(X) denotes the set composed of all subsets of X, if S is a

subset of X, S denotes the complement of S in X. If S is a subset of T , we write
S ⊆ T , the notation S ⊂ T means that S is a proper subset of T , i.e. S ⊆ T
and S �= T . If γ is a map from P(X) to P(X), the dual of γ is the map ∗γ from
P(X) to P(X) such that, for each S ⊆ X, ∗γ(S) = γ(S). Let δ be a binary
relation on X, i.e., a subset of X ×X. We also denote by δ the map from X to
P(X) such that, for each x of X, δ(x) = {y ∈ X, (x, y) ∈ δ}. We define δ� as
the binary relation δ� = δ \ {(x, x);x ∈ X}.

An order is a pair (X,α) where X is a set and α is a reflexive, antisymmetric,
and transitive binary relation on X. An element of X is also called a point. The
set α(x) is called the α-adherence of x, if y ∈ α(x) we say that y is α-adherent
to x.

We illustrate these general notions on orders with the example of Fig. 3,
which is composed of the following elements : two triangles t1, t2; five edges e1,
e2, e3, e4, e5; and four vertices v1, v2, v3, v4. Here, we define the order relation α
by: α(t1) = {t1, e1, e2, e3, v1, v2, v3}; α(t2) = {t2, e2, e4, e5, v2, v3, v4}; α(e1) =
{e1, v1, v2}; α(e2) = {e2, v2, v3}; α(e3) = {e3, v1, v3}; α(e4) = {e4, v3, v4};
α(e5) = {e5, v2, v4}; and for i = 1 . . . 4, α(vi) = {vi}.

Let (X,α) be an order. We denote by α the map from P(X) to P(X) such
that, for each subset S of X, α(S) = ∪{α(x); x ∈ S}, α(S) is called the α-
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Fig. 3. An example for the basic notions on orders.

closure of S, ∗α(S) is called the α-interior of S. A subset S of X is α-closed if
S = α(S), S is α-open if S = ∗α(S).

In our example of Fig. 3, let S be the set {t1, e1, e5, v2}. We see that
α(S) = {t1, e1, e2, e3, e5, v1, v2, v3, v4} �= S, thus S is not α-closed. We can also
see that ∗α(S) = {t1, e1} �= S, thus S is not α-open. On the opposite, α(t1),
{e2, e5, v2, v3, v4}, {v1} for example are α-closed, and {t1}, {t1, t2, e2} for exam-
ple are α-open.

Let (X,α) be an order. We denote by β the relation β = {(x, y); (y, x) ∈ α},
β is the inverse of the relation α. We denote by θ the relation θ = α ∪ β. The
dual of the order (X,α) is the order (X,β).
Notice that ∗α(S) = {x ∈ S; β(x) ⊆ S}, and ∗β(S) = {x ∈ S; α(x) ⊆ S}.

In our example of Fig. 3, β(v2) = θ(v2) = {v2, e1, e2, e5, t1, t2}; β(e2) =
{e2, t1, t2}; θ(e2) = {v2, v3, e2, t1, t2}; β(t1) = θ(t1) = {t1}.

The set composed of all α-open subsets of X satisfies the conditions for the
family of open subsets of a topology, the same result holds for the set composed
of all β-open subsets of X. These topologies are P.S. Alexandroff topologies, i.e.,
topologies such that every intersection of open sets is open [3].

An order (X,α) is countable if X is countable, it is locally finite if, for each
x ∈ X, θ(x) is a finite set. A CF-order is a countable locally finite order.

Let (X,α) be a CF-order. Let x0 and xk be two points of X. A path from x0
to xk is a sequence x0, x1, ..., xk of elements of X such that xi ∈ θ(xi−1), with
i = 1, ..., k. A CF-order (X,α) is connected if for all x, y in X, there is a path
from x to y.

If (X,α) is an order and S is a subset of X, the order relative to S is the
order |S| = (S, α ∩ (S × S)).

We will use a general definition for curves and surfaces which has been used
in several works (see e.g. [11,6]). This notion is close to the notion of manifold
used by Kovalevsky [18]; nevertheless it does not involve the necessity to attach
a notion of dimension to each element of X, which allows to have a simpler
definition (in particular, no use of isomorphism is made).

Let |X| = (X,α) be a non-empty CF-order.
- The order |X| is a 0-surface if X is composed exactly of two points x and y
such that y �∈ α(x) and x �∈ α(y).
- The order |X| is an n-surface, n > 0, if |X| is connected and if, for each x in
X, the order |θ�(x)| is an (n− 1)-surface.
- A curve is a 1-surface, a surface is a 2-surface.
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In our example of Fig. 3, the orders relative to the following sets: {v1, e1, v2,
e5, v4, e4, v3, e3} and {v1, e1, v2, t2, v3, e3}, are both curves. Conversely, the order
depicted in Fig. 3 is not a surface, since for example, θ�(v1) = {e1, t1, e3} is not
a curve.

3 An Order Associated to R
n

Let R be the set of real numbers. We consider the families of subsets of R

named G10 , G11 and G1 such that:

G10 = {{p+ 1
2}, p ∈ Z},

G11 = {]p− 1
2 , p+

1
2 [, p ∈ Z},

G1 = G10 ∪ G11 .

A subset R of R
n which is the cartesian product of exactly m elements of G11

and n−m elements of G10 is called an m-gel of R
n.

For a given integer m, we denote by Gnm the set of all m-gels of R
n, and we

denote by Gn the union of all the sets Gnm, for all m = 0 . . . n. An element of Gn
is called a gel.

For example, with n = 2, a 0-gel is a singleton (a set containing a single
point), a 1-gel is a line segment which does not contain its extremities (either
of the form {p+ 1

2}×]q − 1
2 , q +

1
2 [ or ]p− 1

2 , p+
1
2 [×{q + 1

2}), and a 2-gel is an
open square.

We remark that, according to the “standard” topology of R
n, only the n-gels

are open subsets of R
n (they are open hypercubes), and that only the 0-gels are

closed subsets of R
n (they are singletons). For 0 < m < n, an m-gel is neither

open nor closed.
On the opposite, all pixels (see section 1) are closed subsets of R

2. Notice
also that Gn is a partition of R

n, this is not the case with the covering of R
2

with pixels.
Let x be a gel, we denote by cl(x) the closure of x (according to the “stan-

dard” topology of R
n).

We consider the order (Gn, α) defined by: ∀x, y ∈ Gn, y ∈ α(x) if y ⊆
cl(x). For example, with n = 2, let x be an open square (a 2-gel). Then, α(x)
is composed of x itself, of the four line segments that border x (without the
vertices), and of the four singletons containing each a vertex of cl(x).

Notice that these orders are equivalent to those obtained in the framework
of connected ordered topological spaces introduced by E.D. Khalimsky [12]. As
far as we know, the first mention of (Gn, α) as a discrete topological space can
be found in the classical topology textbook by P.S. Alexandroff and H. Hopf [4],
as one of the first examples used to illustrate the notion of a topological space.
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4 Generalized Covers and Supercovers

Let F be a family of subsets of R
n (n ≥ 1). We say that the family F covers

R
n if R

n is equal to the union of all the elements of F . In the following, we will
consider the families Gn and Gnn . Notice that Gn does cover R

n, but Gnn does not.
Let R be any subset of R

n, we say that a subset S of F is an F−cover of R,
if R is included in the union of all the elements of S (this definition generalizes
the notion of cover in [8], but is different from the notion of cover discretization
in [22]).

Let F be a family of subsets of R
n, and let R be any subset of R

n. We
consider the hit and miss transforms as defined in [24]. The hit of R in F ,
denoted by F(R), is the set of all the elements of F which intersect R: F(R) =
{x ∈ F , x ∩ R �= ∅}. In a dual way, we may consider the set ∗F(R) composed
of all elements of F which are included in R. If F is a family that covers R

n,
then F(R) is called the F−supercover of R. The F−supercover is obviously a
particular case of F−cover, and is uniquely defined for any given R.

If we choose n = 2 and F equals the set of all pixels, we retrieve the notion
of supercover presented in the introduction.

In this paper, we focus on supercovers based on the family Gn. The fact that
Gn is a partition of R

n leads to several interesting properties. Furthermore:

Property 1 Let F be a family of sets covering R
n. Then, the two following

propositions are equivalent:
(i) for any subset R of R

n, the F-supercover of R
is the unique minimal F-cover of R.

(ii) F is a partition of R
n.

This property is a direct consequence of Prop. 2, which is stated in the more
general framework of binary relations.

Let A,B be two sets. A relation Γ from A to B is a subset of the cartesian
product A×B. If (a, b) ∈ Γ , we also write that (b, a) ∈ Γ−1, that b ∈ Γ (a) and
that a ∈ Γ−1(b), and we say that b is a successor of a and that a is a predecessor
of b. We say that the relation Γ is surjective if each b in B has at least one
predecessor, and Γ is a map from A to B if each a in A has a unique successor.
Let R be a subset of A, we write Γ (R) = ∪a∈RΓ (a).

Let A,B be two sets, let Γ be a relation from A to B. We say that Γ defines
a covering of A by B if both Γ and Γ−1 are surjective, i.e. if each element of A
has at least one successor and each element of B has at least one predecessor.

Let A,B be two sets, let Γ be a relation defining a covering of A by B. Let
R be a subset of A. We say that S ⊆ B is a Γ -cover of R if R ⊆ Γ−1(S).
Furthermore, we say that the Γ -cover S is minimal if there is no other Γ -cover
of R strictly included in S. The set Γ (R) is called the Γ -supercover of R. It
is obviously a Γ -cover of R, which is uniquely defined for any given R, but in
general it is not a minimal Γ -cover of R.

For example, if we take A = R
n and choose for B a family of sets covering

R
n, and define Γ (x) as the set of elements of B which hit x, then we retrieve
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the notions and the results of the beginning of this section. In particular, the
following property generalizes Prop. 1.

Property 2 Let A,B be two sets, let Γ be a relation defining a covering of A
by B. Then, the two following propositions are equivalent:

(i) for any subset R of A, the Γ -supercover of R
is the unique minimal Γ -cover of R.

(ii) Γ is a map from A to B.

Proof: (ii) ⇒ (i). Let S = Γ (R). Is S minimal ? Suppose that there exists
another Γ -cover S′ strictly included in S, and let s be an element of S \S′. Since
S = Γ (R), there exists an x in R such that s ∈ Γ (x), and since Γ is a map,
we have Γ (x) = {s}. Thus there is an element x of R which has no successor in
S′, a contradiction. Is S the unique minimal Γ -cover ? Suppose that there exists
another minimal Γ -cover S′ �= S. Since both S and S′ are minimal, there must
exist at least an element s in S \ S′ and an element s′ in S′ \ S. This leads to
the same contradiction.
(i)⇒ (ii). Suppose that (i) and that Γ is not a map. Then, there exists an element
x of A that has either 0 or more than two successors. As Γ−1 is a surjection,
x has at least one successor. Let y, z be two distinct successors of x, and let us
consider the set R = {x}. The set {y} is a strict subset of Γ (R) which is also a
Γ -cover of R, a contradiction. �

The following properties can also be easily proved. They are mentioned in [9]
for the particular case of R

2 and a covering with pixels. Notice that the condition
that the relation Γ is a map is not required.

Property 3 Let A,B be two sets, let Γ be a relation defining a covering of A
by B. Then, ∀R,S ⊆ A we have:

(i) Γ (R ∪ S) = Γ (R) ∪ Γ (S)
(ii) Γ (R ∩ S) ⊆ Γ (R) ∩ Γ (S)
(iii) R ⊆ S ⇒ Γ (R) ⊆ Γ (S)

Furthermore, if Γ is a map defining a covering of A by B, then the cardinality
of Γ (R) is less or equal to the cardinality of R, for any R subset of A.

5 Properties

This section contains the main results of the paper. We first show that an analytic
characterization of G3-supercovers of planes can be given, by adapting the result
of Andrès for the “classical” supercover. Such an analytical characterization is
essential to design fast algorithms that generate discrete planar objects.

We consider the plane π defined by:
π = {(x, y, z) ∈ R

3/ax+ by + cz + d = 0}, where a, b, c, d belong to R.
The following result, adapted from Andrès ([1], Th. 18) gives us an analytical

characterization of the elements of G33(π).
Remind that G33(π) is the set of the elements (open cubes) of G33 that have a

non-empty intersection with π.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o)
Fig. 4. The fifteen ways for a plane to hit a 3-gel and its θ-neighborhood. The 1-gels
and 0-gels that are hit by the plane are highlighted. The 2-gels (squares) that are hit by
the plane have not been highlighted, in order to preserve the readability of the figure.

Property 4 Let a, b, c, d ∈ R, ab �= 0 or bc �= 0 or ac �= 0, let π = {(x, y, z) ∈
R
3/ax + by + cz + d = 0}. Let (p, q, r) ∈ Z

3, we denote by Gpqr the 3-gel
]p− 1

2 , p+
1
2 [ × ]q − 1

2 , q +
1
2 [ × ]r − 1

2 , r +
1
2 [. Then,

G33(π) = {Gpqr ∈ G33 , − |a|+|b|+|c|2 < ap+ bq + cr + d < |a|+|b|+|c|
2 }.

Let x0 ∈ R, let π = {(x, y, z) ∈ R
3/x = x0}. If x0 − 1

2 ∈ Z, then G33(π) = ∅,
else G33(π) = {Gpqr ∈ G33 , |p− x0| ≤ 1

2}. For planes defined by y = y0 or z = z0,
a similar statement holds.

In order to have a complete characterization of the elements of G3(π), we
must characterize also the elements of G32(π), of G31(π) and those of G30(π).

Let s = {(p, q, r)} be an element of G30 . We denote by π(s) the index which
characterizes the position of s relative to π:

π(s) =



−1 if ap+ bq + cr + d < 0,
0 if ap+ bq + cr + d = 0,
+1 if ap+ bq + cr + d > 0

Property 5 Let a, b, c, d ∈ R, let π = {(x, y, z) ∈ R
3/ax+ by + cz + d = 0}.

a) If b = c = 0 and d
a − 1

2 ∈ Z, then:

G30(π) = {{(−da , q + 1
2 , r +

1
2 )}, q, r ∈ Z}, and

G31(π) = {{−da } × ]q − 1
2 , q + 1

2 [ × {r + 1
2}, q, r ∈ Z} ∪ {{−da } × {q + 1

2} ×
]r − 1

2 , r +
1
2 [, q, r ∈ Z} and
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o)
Fig. 5. Neighborhoods of a 3-gel (open cube)

(a) (b) (c) (d) (e)
Fig. 6. Neighborhoods of a 2-gel (square)

G32(π) = {{−da } × ]q − 1
2 , q +

1
2 [ × ]r − 1

2 , r +
1
2 [, q, r ∈ Z}.

Similar characterizations are obtained for the cases a = b = 0 and a = c = 0.
b) Other cases: let v ∈ G30 , let i ∈ G31 , with α(i) = {v1, v2}, and let s ∈ G32 . Then:
v ∈ G30(π) iff π(v) = 0,
i ∈ G31(π) iff (π(v1) = π(v2) = 0) or (π(v1).π(v2) < 0),
s ∈ G32(π) iff at least two vertices of s have different non-null indices.

Now we are ready to state the first main result of this paper. It says that
the discretization of a plane is a surface, in the sense defined in section 2. This
result can be easily transposed in 2D, where it states that the discretization of
a straight line is a curve.

Property 6 Let a, b, c, d ∈ R, let π = {(x, y, z) ∈ R
3/ax+ by + cz + d = 0}.

The order |G3(π)| is a surface.

The proof of Prop. 6 involves the examination of the different configurations
of a plane π hitting an open cube, a square, a line segment and a single point, and
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(a) (b) (c) (d) (e) (f)
Fig. 7. (a,b,c): neighborhoods of a 1-gel (segment), (d,e,f): neighborhoods of a 0-gel
(singleton)

their respective θ-neighborhoods. For the open cube, these configurations (up to
rotations and symmetries) are only 15, they are depicted in Fig. 4. We can easily
check (see Fig. 5) that for each of these configurations, the θ�-neighborhood of
any 3-cube in G3(π) is a curve. For the cases of a single point, a line segment and a
square, the numbers of possible configurations (up to rotations and symmetries)
are respectively 3, 3 and 5. Figs. 6 and 7 shows the θ�-neighborhood of such an
element in each possible configuration, again we can verify that it forms a curve.

Our second main result states that, for any “regular” object (in a sense that
will be defined below), the boundary operator commutes with the discretization
operator.

Let (O,α) be an order, and let P be a subset of O. We define the θ−boundary
of P in O (or simply the boundary of P ) as the set B(P ) of elements p of P
such that θ(p) ∩ P �= ∅.

Let X be a subset of R
3. Let C0 be the unit closed cube centered at the

origin: C0 = [− 12 , 12 ]3. Let Cu be the translation of C0 by the vector u of R
3.

The set X is morphologically open by the structuring element C0 if X is equal
to the union of all the translations Cu of C0 which are included in X (see [24]).
Notice that this notion is close to the notion of a par(r,+)-regular set defined by
Latecki in the continuous plane[19]. The (topological) closure of X is denoted
by cl(X), and the boundary of X is defined by b(X) = cl(X) ∩ cl(X).

Property 7 If X is a closed subset of R
3, then B(G3(X)) ⊆ G3(b(X)).

Furthermore, if cl(X) is morphologically open by C0, then the boundary of the
discretization of X is equal to the discretization of the boundary of X, in other
words, B(G3(X)) = G3(b(X)).

A corollary can be immediately derived from this property, concerning planes
and half-spaces. We consider the closed half-space γ = {(x, y, z) ∈ R

3/ax+ by+
cz + d ≥ 0}, where a, b, c, d belong to R. The boundary of γ is the plane π
defined by: π = {(x, y, z) ∈ R

3/ax+ by + cz + d = 0}. Then we have:

Corollary 8 G3(b(γ)) = G3(π) = B(G3(γ))
From this, we can easily deduce a more general corollary which holds for any

convex and closed set:

Corollary 9 If X is a convex closed subset of R
3, then B(G3(X)) = G3(b(X)).

Fig. 8 illustrates these properties in 2D.
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Fig. 8. Illustration of Prop. 7 and Cor. 9 in 2D. We see the discretizations of three ob-
jects : a disc, a convex polygon and a third convex set. The boundaries of these objects
appear as continuous solid lines. The discretizations of the boundaries, which coincide
with the boundaries of the discretizations, are represented by light gray squares, black
segments and black dots.
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Université de Poitiers (France), 2000.

2. E. Andrès, C. Sibata, R. Acharya, “Supercover 3D polygon”, Conf. on Discrete
Geom. for Comp. Imag., Vol. 1176, Lect. Notes in Comp. Science, Springer Verlag,
pp. 237-242, 1996.
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