An Incremental Linear Time Algorithm for
Digital Line and Plane Recognition Using a
Linear Incremental Feasibility Problem

Lilian Buzer

LLAIC, Université Clermont 1, IUT département Informatique, B.P. 86, 63172
AUBIERE cedex, FRANCE, Buzer@llaic.u-clermontl.fr

Abstract. We present a new linear incremental method for digital
hyperplaneEl recognition. The first linear incremental algorithm was
given for 8-connected planar lines in [DR95]. Our method recognizes
any subset of line in the plane or plane in the space. We present the
Megiddo linear programming (LP) algorithm in linear time and describe
its adaptation to our problem. Then we explain its improvement toward
a linear incremental method.

Keywords: digital line recognition, digital plane recognition, feasibility
problem, incremental, linear time.

Conference Topic: Models for Discrete Geometry.

Type of Presentation: oral presentation.

1 Introduction

We study digital line and plane recognition. The seminal definition of these
objects was given by Reveilles in [Revdl]. A set of points P of Z¢ is a digital
hyperplane if it verifies:

d
I(ai)i<i<a € Z¥,3y € Z,Yx € P, we have: v < Zai.xi <y+|lals (1)
i=1

where ||.|| denotes infinite norm equal to Sup{|a;|1<i<a}. We present a new
algorithm which recognizes any set of points. Our technique is based on LP
algorithm, more precisely the linear Megiddo method which is described in Sec-
tion 2. In Section 3, we transform our recognition problem into a feasibility
problem solvable by Megiddo algorithm. The improvement to linear incremental
complexity is then presented in Section 4.

! By extension of the notion of an euclidian hyperplane in a d-dimensional vector-
space. We remind that this object refers to a (d — 1)-dimensional affine subspace.

A. Braquelaire, J.-O. Lachaud, and A. Vialard (Eds.): DGCI 2002, LNCS 2301, pp. 372-[381] 2002.
© Springer-Verlag Berlin Heidelberg 2002

An Incremental Linear Time Algorithm 373

2 Megiddo Algorithm in R? and R3

2.1 Preliminaries

Our digital line and plane recognition algorithm requires to solve LP problems in
two and three dimensions. For this, we will use Megiddo linear-time algorithm.

History. Working in the field of computational geometry, Megiddo gave the
first deterministic algorithm for LP whose running time is linear in the number
of constraints when the dimension is fixed. The decimation technique was first
introduced in [Meg83] for the two and three-dimensional cases. Later, in [Meg84]
he extended his method to develop an O(22d .n) time algorithm for LP in R%. The
factor in d was improved by Clarkson to 3.d? (see [Cla86]). In recent years, no
progress has been made on this front, nevertheless new developments occured in
randomized and parallel algorithms for linear programming. Numerous simpler
and more practical randomized algorithms have been given (see [Clad8/Sei91]).
An introduction can be read in [BKOS00] and a comprehensive summary of this
field can be found in [AS98]. We will hereafter present Megiddo’s technique. Note
that randomized methods are unusable in the incremental approach.

Summary of the prune and search technique of linear programming.
We know that a limited number of constraints are tight at an optimal solution
of a LP problem. This method tries to eliminate input constraints that do not
affect the optimum value. At each step, a constant fraction of n constraints
is eliminated from the current set in O(n) time. Therefore after a logarithmic
number of steps, the size of the problem becomes constant. By using any strongly
polynomial LP algorithm, we solve our remaining set of constraints in constant
time. Because of this decimation, the global cost remains bounded by the cost
of the first pruning step.

Problem posing. We want to find the optimum value of a d-dimensional LP
problem of n constraints. We can always transform the gradient function into
(0,...,0,1) by rotation. For presentation convenience, we only consider con-
straints that have a strictly positive coefficient associated to x4 (wlog). We want
to solve:

Minimize x4

-1 : (2)
So that xq > XiT a2 +b; (i=1,...,n)

Deletion criterion. The core of the technique consists in coupling constraints.
Under the previous assumption, if we take two non-parallel constraints, there
exists a vertical hyperplane passing through their intersection, that divides the
space into two half spaces. Such a hyperplane is called a separating line (SL) or
a separating plane (SP). If optimal solutions are located in a certain half space,
then we may discard one of the two constraints.

374

L. Buzer

2.2 The Two-Dimensional Case

We give an overview of Megiddo two-dimensional algorithm described in [Meg83].
A comprehensive description of this method is given in [PS85] and in [Ede87] .

We

hereafter describe its inner loop in four steps (see Fig. [I).

The algorithm steps.

1.

Coupling: we create couples of constraints (except for one at most) and their
associated SL. Under the assumption of 2.1, if two inequalities are parallel,
one of them is redundant and can be immediately suppressed.

Selection of a test line : vertical SL have horizontal coordinates. We compute
in linear time the median of these values. We select the test line to be the
particular SL that corresponds to this median.

Testing a line: we want to know on which side of the test line are the optima
located. For this, we first compute the optimum of the LP problem restricted
to this line. We determine the right and left slopes given by the constraints
passing through this point. By convex properties of the feasibility polyhe-
dron, if a decreasing slope exists, optima will be located on its side. Else this
point is a minimum and the problem is solved.

Pruning: As the test line is a median for the SL set, we deduce the optima
location relative to one half of the SL. We then apply the deletion criteria
to each couple of constraints associated to these SL. After this, we iterate
as long as the number of constraints is above a fixed constant.

— = Separating line

- = = Test line

1. Coupling. 2. Selection of a test line.
! I
I | Suppressed
< < constraint
w l
~ 1 |
T ‘?é/’ B :

3. Testing a line. 4. Prunning.

Fig. 1. Steps of Megiddo two-dimensional algorithm.

An Incremental Linear Time Algorithm 375

> @

A

Fig. 3. Point location.

Fig. 2. Testing a plane.

Global complexity. One quarter of the inequalities are rejected from the cur-
rent set. Each of the four steps has a linear time complexity in the number
of constraints. This implies that the runtime T'(n) of our algorithm satisfies
T(n) = O(n) + T(3.n). Therefore this algorithm solves a linear program in two
variables and n constraints in O(n) time.

2.3 The Three-Dimensional Case

We keep the technique described in the two-dimensional method. We test par-
ticular planes which enable us to drop a constant fraction of inequalities. After
this, we iterate. We precisely describe steps 2 and 3 in the next sections.

Step 2: Selection of testing planes. As the separating planes (SP) are all
vertical, we represent them by lines in the O, plane. Our problem also becomes
a two-dimensional search problem. Megiddo describes a technique to solve it
effectively in [Meg83] and in [Meg84]. Readers can refer to [Ede87|. Suppose we
have two planar lines of opposite slopes, let I denote their intersection. If we
know the position of a point relative to the vertical and horizontal lines passing
trough I, we can determine the location of this point relative to at least one of
the two given lines (see Fig. B)). The trick consists in finding in linear time the
median of all present slopes. To shorten explanations, we consider the median
direction to be vertical. We can also couple lines (except for one of them at
most) and create couples of opposite slopes. So we use the previous remark and
we obtain a set of vertical lines. We compute their median line and test it. We
know the optimum position relative to one half of the vertical lines. We select
the horizontal lines coupled with these vertical lines, take their median and test
1

it. We also determine the optima position relative to g of SP and we can also

delete %6 of constraints. All these steps are shown in Fig. @

Step 3: Testing a plane. We want to know on which side of a plane P
lies the optima (see Fig. B). We first solve our LP problem restricted to this

376 L. Buzer

plane and obtain a minimum called M. If this problem is unbounded the three-
dimensional problem is unbounded too. Now, we have to test both sides of P.
Let C denote the set of constraints passing through M. Because of the finite
number of inequalities, there is a neighbouring ball of radius r» around M where
no other constraint can interfere, so the local decrease around M only depends
on constraints in C'. Without loss of generality, we can assume that P is O,
and M is the origin. Let P; and P, denote the solutions of the two following
systems:

(3)

If one solution is better than M, it indicates the optima location. If both are
worse, M is a solution of our problem. Because of the convexity of the feasibility
polyhedron, we cannot have two better solutions. These two LP problems are
linear in the number of constraints as we saw in the previous section.

Minimize z, under C' [Minimize z, under C'
with y; = r with y; = —r

Remark 1. By definition of C, we do not have to determine a value for r. We
can also choose 7 equal to 1.

(oY \L
P S A
ot =
XX% h/o?i. N X

Og

1. Coupling and creation of SPs. 2. Test of the vertical median line.

e A

><T

3. Test of the horizontal median line. 4. Optima location relative to two SPs.

Fig. 4. Solving the search problem.

3 Digital Line and Plane Recognition

We know we have to solve diophantine equations of the form: ~ <
N.P(z1,...,24) < v+ ||N|lco- Each point P is linked to two inequalities. We

An Incremental Linear Time Algorithm 377

cannot solve integer programming with LP method. I hereafter describe my
rewriting of the three-dimensional problem that allows to use LP. As the normal
vector is nonzero, the following transform is always possible:

N;.x;
Ty o T 4 (4)

We now have a set of linear inequalities with d variables at most. For in-
stance, in the three-dimensional case, we can solve this system using three-
dimensional Megiddo algorithm. We will hereafter only consider the case when
|N(u,v,w)||,, = w. We are not concerned with negative values of w because N
is valid iff —IV is. We have:

TSNP@y,2) <y + [Nl o [5G
||N(u,v,w)||oo =w <1

=+

Yy+z<I+1
f (

v
% 5)

u |L
w Y lw

Linear programming consists in optimizing linear function. Nevertheless, our
recognition problem only requires to solve a feasibility problem:

Find (a,b,h)

a.x; + by, —h>—z2; (6)
So that a.x; +by, —h<—z+1 (i=1,...,n)

la] <1,p] <1

Remark 2. This transform is equivalent to a linear separability problem. Let .S
be a set of points, we want to find a plane passing between S and a virtual set
of forbidden points S + e,. If such a plane exists, the convex hull of S and the
convex hull of S+e do not intersect, see [PS85] for details. The vertical distance
between these two convex hulls is in]0, 1[. This implies that S is lying in a band
of vertical thickness less than 1. By definition, S is a subset of a digital plane.

Strict and large inequalities in a same system may cause problems. Let P’ denote
the polyhedron defined with inequalities of () transformed into large inequalities
and P the polyhedron associated to (@). The difference between P and P’ is equal
to the superior border of P denoted I'*“?. From this observation, (@) is equivalent
to this problem:

Find (a,b,h) ¢ =

a.x; + by, —h>—z2; (7)
So that { a.x; +by, —h<—z+1 (i=1,...,n)
la| <1,[b] <1

Remark 3. *) requires just a modification in the algorithm. In the two-
dimensional problem, when we cut by a vertical line, we only have to keep
the highest and lowest feasible points on the cut and check if they are different.
Otherwise, no solution lies on this cut. The three-dimensional problem calls the
two-dimensional algorithm and uses its improvement.

378 L. Buzer

4 The Incremental Problem

We are able to recognize digital lines and planes in linear time using Megiddo’s
technique. Nevertheless the incremental algorithm is quadratic. I adapt our fea-
sibility problem to create a linear time incremental method. The core of this
method uses the following lemma:

Lemma 1. Let H be a separating hyperplane associated to a couple of con-
straints. If the set of feasible solutions lying on H is included in a hyperplane of
H then one of the two constraints is inactive.

Remark 4. An inactive constraint supports no face of the polyhedron and its
suppression does not affect the polyhedron.

4.1 The Starting Point

To apply Megiddo’s technique in Z% (d = 2 or 3 in our study), we must suppose
that the i*" coefficient of each possible normal is equal to its infinite norm. In
other words, we want to know if all the possible hyperplanes can be written as a
function of the same d — 1 coordinates. The two-dimensional case is quite easy.
Suppose the first inserted point M is the origin. If the next point P(z,y) verifies
lyl < |z|, (resp. >), all the possible normals N (u,v) will verify |u| > |v| (resp.
<). In the three-dimensional case, we do not have the same property. Therefore
we have to run a recognition for each direction.

R Test line

1. Lack of feasible points on the test line 2. Pruning phase.
after the insertion of three new constraints.

Fig. 5. Three added constraints before the pruning step.

4.2 The Two-Dimensional Case

We now work with constraints oriented in any direction. We couple inequalities
of the same form z > a;.x + b;.x + ¢; or z < a;.x + b;.x + ¢; for instance. At

An Incremental Linear Time Algorithm 379

most two inequalities are not treated. We begin as in Megiddo algorithm and
stop before the pruning step. We are cutting by a vertical line and we can have
three different cases:

1. We have no feasible point on the test line, the condition of Lemma 1 is
fulfilled. We can thus go on with Megiddo’s method.

2. There is only one point on the test line. As the line is vertical, this point lies
on the superior border of the polyhedron. According to Remark 3] it cannot
be a solution for the global problem (7). This case is equivalent to case 1.

3. There is a segment of feasible points lying on the test line. The point of
lowest ordinate is a solution. We do not enter the pruning phase and store
new constraints in a waiting set. All the core of the incremental method is
here. At once, Megiddo algorithm is frozen. For each new constraint we only
update the segment of feasible points. While the result is a segment, its point
of lowest ordinate is a solution, otherwise we are in case 1 or 2. We wait for
new constraints to reject all the feasible points on the test line (see Fig. ().
After this, we can unfreeze Megiddo algorithm. As Lemma 1 is verified, the
pruning step suppresses inactive constraints among the previously coupled
constraints. Before the next iteration, we add all the inequalities from the
waiting set to the current set of constraints.

4.3 The Three-Dimensional Case

We use the same retarded Megiddo approach (see Fig. [Bl). We freeze Megiddo
algorithm when we want to test SPs. To cut with the first SP, we apply the
two-dimensional linear incremental technique. If we have a feasible point, we en-
ter a three-dimensional frozen phase (new constraints are not coupled and they
are collected in a waiting set). Adding new constraints in the two-dimensional
problem, we obtain new feasible points until there is no more solution. We then
test the plane and determine on which side a feasible region may exist. We also
cut with a second SP and launch a two-dimensional linear incremental problem
with inequalities from coupled constraints and from the constraints of the wait-
ing set. We are in the frozen phase and so next constraints will be added to
the waiting set. New constraints bring new solutions. When there are no more
feasible points on the cut, we test it. We now know that the final polyhedron lies
at most by one edge on each cut. It implies that all the constraints that have
to be suppressed verify Lemma 1. Therefore the pruning phase will only delete
inactive constraints. We can also leave the frozen phase and enter the following
step. Before the next iteration, the remaining constraints are united with the
constraints of the waiting set.

4.4 Complexity of the Incremental Algorithm

We summarize all the different steps of a three-dimensional sequence in Fig.[7l As
O(m+k+k') ~ O(m)+O(k+k'), the complexity is equivalent to the linear time
Megiddo algorithm complexity. More precisely, when we have less than a fixed

Fig. 6. Frozen phase of the three-dimensional incremental algorithm.

number of constraints, we use a strongly polynomial LP method (SPM) to obtain
a feasible solution in constant time. For instance, we suppose that k frozen phases
(FP) are executed. We denote by (a;)1<;< the number of constraints added in
each FP (it can be zero) and by ag the number of constraints at the beginning.
Let n; = Z;;E a; and m; denote the number of previously entered constraints

and the number of present (coupled) constraints when we enter the ‘" FP. We
denote by a.n + § the decimation function. It allows to bound the number of
kept constraints when we apply the pruning technique to n constraints. We then
deduce according to the previous definitions:

T(n;) <T(nj-1) +O0(mj—1+a;) +a;.I'spu (8)

As we define mj 1 < (a.m; + 3) + a;, we establish:

mjy1 < 2ai.aji + % (9)

Using (B) and (@), we finally obtain_:
T(n) = ; O(i(ai.ajli + %)) + zk: O(a;) (10)
Tn) =00 5)+ 0(n) = O(n) (1)

5 Conclusion

We have presented a new linear incremental algorithm for line and plane recog-
nition. It may suffer from an important linearity coefficient and from a quite
difficult implementation. Nevertheless it provides not only linear incremental
complexity, but also a robust and exact method for recognition of any set of
points.

An Incremental Linear Time Algorithm 381

feasible point

feasible point

m constraints Entering k
l new constraints OK) |
No more feasible Entering k* Ok’)

Step 1 Coupling O(m) points on the cut new constraints

Projecting O(m) Testing O(m+k) E’&é?é’ giftf}:fggf

Angul dian O
Step 2 [gwar me 1? n_O(m) Second cut O(m+k) Testing O(m+k+k’)

Second coupling O(m)

Selecting cuts ~ O(m)
Step 3 First cut O(m) Frozen phase

15;'67” + k + k' constraints Pruning O(m)

Fig. 7. Modified Megiddo sequence in three dimensions.

Two-dimensional implementation was done and tested. Finding new feasible
points is a low cost operation (cost of computing the intersection of two lines).
The time-consuming part is the Megiddo pruning sequence (the four steps), but
we cannot forget that it allows to limit the number of constraints and so to
achieve linear incremental complexity. We are now studying and optimizing a
specific three-dimensional implementation using rational arithmetics.

References

[AS98] Pankaj K. Agarwal and Micha Sharir (1998). Efficient algorithms for geo-
metric optimization. ACM Comput. Surv., vol. 30, pp. 412-458.

[BKOS00] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf (2000).
Computational Geometry: Algorithms and Applications (2™ ed.). Springer-
Verlag.

[Cla86] K.L. Clarkson (1986). Linear Programming in O(n.23‘d2) time. Inform.
Process. Lett., vol. 22, pp. 21-24.

[Cla9g] K.L. Clarkson (1998). A Las Vegas algorithm for linear programming when
the dimension is small. In Proc. 29th Annu. IEEE Sympos. Found. Comput.
Sci., pp. 452-456.

[DR95] 1. Debled-Rennesson, J.-P. Reveilles (1995). A linear algorithm for segmen-
tation of digital curves. International Journal of Pattern Recognition and
Artificial Intelligence, vol. 9, no. 6, pp. 635-662.

[Ede87] H. Edelsbrunner (1987). Algorithms in Combinatorial Geometry. Springer-
Verlag, New York.

[Meg83] N. Megiddo (1983). Linear-time algorithms for linear programming in R?
and related problems. SIAM J. Comput., vol. 12 | pp. 759-776.

[Meg84] N. Megiddo (1984). Linear programming in linear time when the dimension
is fixed. J. ACM, vol. 31 , pp. 114-127.

[PS85] F.P. Preparata and M.I. Shamos (1985). Computational Geometry: an
Introduction. Springer-Verlag, New York.

[Rev9l] J.P. Reveilles (1991). Géometrie discréte, calculs en nombre entiers et
algorithmique. These d’état, Université Louis Pasteur, Strasbourg.

[Sei9l] R. Seidel (1991). Small-Dimensional Linear Programming and Convex Hulls

Made Easy. Discrete and Computational Geometry, vol. 6, pp. 423-434.

	An Incremental Linear Time Algorithm for Digital Line and Plane Recognition Using a Linear Incremental Feasibility Problem
	Introduction
	Megiddo Algorithm in $@mathbb Â^2 and Â^3
	Preliminaries
	The Two-Dimensional Case
	The Three-Dimensional Case

	Digital Line and Plane Recognition
	The Incremental Problem
	The Starting Point
	The Two-Dimensional Case
	The Three-Dimensional Case
	Complexity of the Incremental Algorithm

	Conclusion
	References

