Skip to main content

Multiple-Robot Motion Planning = Parallel Processing + Geometry

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2238))

Abstract

We present two problems in multiple-robot motion planning that can be quite naturally solved using techniques from the parallel processing community to dictate how the robots interact with each other and techniques from computational geometry to apply these techniques in the geometric environment in which the robots operate. The first problem we consider is a load-balancing problem in which a pool of work must be divided among a set of processors in order to minimize the amount of time required to complete all the work. We describe a simple polygon partitioning algorithm that allows techniques from parallel processor scheduling to be applied in the multiple-robot setting in order to achieve a good balance of the work. The second problem is that of collision avoidance, where one must avoid that two (or more) processors occupy the same resource at the same time. For this problem, we describe a procedure for robot interaction that is derived from procedures used in shared-memory computers along with a geometric data structure that can efficiently determine when there are potential robot collisions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Alani, F. Robert, F. Ingrand, and S. Suzuki. Multi-robot cooperation through incremental planmerging. In Proceedings 1995 IEEE International Conference on Robotics and Automation, pages 2573–2578, 1995.

    Google Scholar 

  2. E. M. Arkin, S. P. Fekete, and J. S. B. Mitchell. Approximation algorithms for lawn mowing and milling. Technical report, Mathematisches Institut, Universität zu Köln, 1997.

    Google Scholar 

  3. H. Bast and S. Hert. The area partitioning problem. In Proceedings of the 12th Annual Canadian Conference on Computational Geometry, pages 163–172, 2000.

    Google Scholar 

  4. K. F. Böhringer, B. R. Donald, and D. Halperin. On the area bisectors of a polygon. Discrete Computational Geometery, 22:269–285, 1999.

    Article  MATH  Google Scholar 

  5. P. Bose, J. Czyzowicz, E. Kranakis, D. Krizanc, and D. Lessard. Near-optimal partitioning of rectangles and prisms. In Proceedings 11th Canadian Conference on Computational Geometry, pages 162–165, 1999.

    Google Scholar 

  6. S. Buckley. Fast motion planning for multiple moving robots. In Proceedings 1989 IEEE International Conference on Robotics and Automation, pages 322–326, May 1989.

    Google Scholar 

  7. M. Díaz and J. O’Rourke. Ham-sandwich sectioning of polygons. In Proceedings 2nd Canadian Conference on Computational Geometry, pages 282–286, 1991.

    Google Scholar 

  8. M. Erdmann and T. Lozano-Pérez. On multiple moving objects. Algorithmica, 2:477–521, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. H. Greene. The decomposition of polygons into convex parts. In F. P. Preparata, editor, Computational Geometry, volume 1 of Advances in Computing Research, pages 235–259. JAI Press, London, England, 1983.

    Google Scholar 

  10. R. Guàrdia and F. Hurtado. On the equipartitions of convex bodies and convex polygons. In Proceedings 16th European Workshop on Computational Geometry, pages 47–50, 2000.

    Google Scholar 

  11. S. Hert and V. Lumelsky. Polygon area decomposition for multiple-robot workspace division. International Journal of Computational Geometry and Applications, 8(4):437–466, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Hert, S. Tiwari, and V. Lumelsky. A terrain-covering algorithm for an AUV. Journal of Autonomous Robots, 3:91–119, 1996.

    Article  Google Scholar 

  13. S. Hertel and K. Mehlhorn. Fast triangulation of simple polygons. In Proceedings of Conference on Foundations of Computation Theory, pages 207–218, New York, 1983. Springer-Verlag.

    Google Scholar 

  14. S. F. Hummel, E. Schonberg, and E. L. Flynn. Factoring: A method for scheduling parallel loops. Communications of the ACM, 35(8):90–101, 1992.

    Article  Google Scholar 

  15. K. Kant and S. W. Zucker. Toward efficient trajectory planning: the path-velocity decomposition. International Journal of Robotics Research, 5(3):72–89, 1986.

    Article  Google Scholar 

  16. J. M. Keil. Decomposing a polygon into simpler components. SIAM Journal on Computing, 14:799–817, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  17. S. LaValle and S. Hutchinson. Optimal motion planning for multiple robots having independen t goals. In Proceedings IEEE International Conference on Robotics and Automation, pages 2847–2852, April 1996.

    Google Scholar 

  18. S. Leroy, J.-P. Laumond, and T. Siméon. Multiple path coordination for mobile robots: a geometric algor ithm. In Dean Thomas, editor, Proceedings of the 16th International Joint Conference on Artif icial Intelligence (IJCAI-99-Vol2), pages 1118–1123. Morgan Kaufmann Publishers, 1999.

    Google Scholar 

  19. J. Liu, V. A. Saletore, and T. G. Lewis. Safe self-scheduling: A parallel loop schedule scheme for shared-memory multiprocessors. International Journal of Parallel Programming, 22:589–616, 1994.

    Article  Google Scholar 

  20. P. A. O’Donnell and T. Lozano-Pérez. Deadlock-free and collision-free coordination of two robot manipulators. In Proceedings 1989 IEEE International Conference on Robotics and Automation, pages 484–489, May 1989.

    Google Scholar 

  21. B. J. Oommen, S. S. Iyengar, N. S. V. Rao, and R.L Kashyap. Robot navigation in unknown terrains using learned visibility graphs. Part I: The disjoint convex obstacle case. IEEE Journal of Robotics and Automation, RA-3(6):672–681, 1987.

    Google Scholar 

  22. D. Parsons and J. Canny. A motion planner for multiple mobile robots. In Proceedings 1990 IEEE International Conference on Robotics and Automation, pages 8–13, May 1990.

    Google Scholar 

  23. C. Polychronopoulous and D. J. Kuck. Guided self-scheduling: A practical scheduling scheme for parallel supercomputers. IEEE Transactions on Computers, 36(12):1425–1439, 1987.

    Article  Google Scholar 

  24. N. S. V. Rao, S. S. Iyengar, B. J. Oommen, and R. L. Kashyap. On terrain model acquisition by a point robot amidst polyhedral obs tacles. International Journal of Robotics and Automation, 4(4):450–455, 1988.

    Article  Google Scholar 

  25. N. S. V. Rao, V. Protopopescu, and N Manickam. Cooperative terrain model acquisition by a team of two or three point-robots. In Proceedings 1996 International Conference on Robotics and Automation, volume 2, pages 1427–1433, 1996.

    Google Scholar 

  26. T. C. Shermer. A linear time algorithm for bisecting a polygon. Information Processing Letters, 41:135–140, 1992.

    Article  MATH  Google Scholar 

  27. T. Siméon, S. Leroy, and J. P. Laumond. A collision checker for car-like robots coordination. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA-98), pages 46–51, May 16–20 1998.

    Google Scholar 

  28. J. M. Smith, C. Y. Choo, and N. M. Nasrabadi. Terrain acquisition algorithm for an autonomous mobile robot with finite-range sensors. In Proceedings of SPIE Applications of Arti.cial Intelligence IX, volume 1468, pages 493–501, Orlando, FL, 1991.

    Google Scholar 

  29. I. Stojmenović. Bisections and ham-sandwich cuts of convex polygons and polyhedra. Information Processing Letters, 38:15–21, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  30. S. B. Tor and A. E. Middleditch. Convex decomposition of simple polygons. ACM Transactions on Graphics, 3:244–265, 1984.

    Article  Google Scholar 

  31. C. W. Warren. Multiple robot path coordination using arti.cial potential fields. In Proceedings 1990 International Conference on Robotics and Automation, pages 500–505, May 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hert, S., Richards, B. (2002). Multiple-Robot Motion Planning = Parallel Processing + Geometry. In: Hager, G.D., Christensen, H.I., Bunke, H., Klein, R. (eds) Sensor Based Intelligent Robots. Lecture Notes in Computer Science, vol 2238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45993-6_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-45993-6_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43399-6

  • Online ISBN: 978-3-540-45993-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics