Skip to main content

Packing Arrays

  • Conference paper
  • First Online:
LATIN 2002: Theoretical Informatics (LATIN 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2286))

Included in the following conference series:

  • 890 Accesses

Abstract

A packing array is a b×k array of values from a g-ary alphabet such that given any two columns, i and j, and for all ordered pairs of elements from the g-ary alphabet, (g1, g2), there is at most one row, r, such that ar,i = g1 and ar,j = g2. Further, there is a set of at least n rows that pairwise differ in each column: they are disjoint. A central question is to determine, for given g and k, the maximum possible b. We developg eneral direct and recursive constructions and upper bounds on the sizes of packing arrays. We also show the equivalence of the problem to a matching problem on graphs and a class of resolvable pairwise balanced designs. We provide tables of the best known upper and lower bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. A. S. Abdel-Ghaffar. On the number of mutually orthogonal partial latin squares. Ars Combin., 42:259–286, 1996.

    MathSciNet  MATH  Google Scholar 

  2. K. A. S. Abdel-Ghaffar and A. E. Abbadi. Optimal disk allocation for partial match queries. ACM Transactions on Database Systems, 18(1):132–156, Mar. 1993.

    Article  Google Scholar 

  3. P. J. Cameron. Combinatorics: Topics, Techniques, Algorithms. Cambridge University Press, Cambridge, 1994.

    Book  Google Scholar 

  4. C. Colbourn and D. Kreher. Concerning di.erence methods. Des. Codes Cryptogr., 9:61–70, 1996.

    Article  MathSciNet  Google Scholar 

  5. C. Colbourn and S. Zhao. Maximum Kirkman signal sets for synchronous uni-polar multi-user communication systems. Des. Codes Cryptogr., 20:219–227, 2000.

    Article  MathSciNet  Google Scholar 

  6. C. J. Colbourn and J. H. Dinitz, editors. The CRC Handbook of Combinatorial Designs. CRC Press, Boca Raton, 1996.

    MATH  Google Scholar 

  7. P. Danziger, M. Greig, and B. Stevens. Geometrical constructions of classuniformly resolvable structures. Unpublished Manuscript.

    Google Scholar 

  8. P. Danziger and B. Stevens. On class-uniformly resolvable frames. Unpublished Manuscript.

    Google Scholar 

  9. P. Danziger and B. Stevens. On class-uniformly resolvable groupdi visible designs. Discrete Math. (Submitted).

    Google Scholar 

  10. P. Danziger and B. Stevens. Class-uniformly resolvable designs. J. Combin. Des., 9:79–99, 2001.

    Article  MathSciNet  Google Scholar 

  11. E. Lamken, R. Rees, and S. Vanstone. Class-uniformly resolvable pairwise balanced designs with block sizes two and three. Discrete Math., 92:197–209, 1991.

    Article  MathSciNet  Google Scholar 

  12. E. Lucas. Récréations Mathématiques, volume 2. Gauthier-Villars, Paris, 1883.

    MATH  Google Scholar 

  13. N. J. A. Sloane. Covering arrays and intersecting codes. J. Combin. Des., 1:51–63, 1993.

    Article  MathSciNet  Google Scholar 

  14. B. Stevens. Transversal Covers and Packings. Ph.D. thesis, University of Toronto, Toronto, 1998.

    Google Scholar 

  15. B. Stevens, A. Ling, and E. Mendelsohn. A direct construction of transversal covers using groupdi visible designs. Ars Combin. (To Appear).

    Google Scholar 

  16. B. Stevens and E. Mendelsohn. Packing arrays and packing designs. Des. Codes Cryptogr. (To Appear).

    Google Scholar 

  17. B. Stevens and E. Mendelsohn. New recursive methods for transversal covers. J. Combin. Des., 7(3):185–203, 1999.

    Article  MathSciNet  Google Scholar 

  18. B. Stevens, L. Moura, and E. Mendelsohn. Lower bounds for transversal covers. Des. Codes Cryptogr., 15(3):279–299, 1998.

    Article  MathSciNet  Google Scholar 

  19. W. Wallis, editor. Computational and Constructive Design Theory, volume 368 of Mathematics and Its Applications. Kluwer Academic Publishers, Dordrecht, 1996.

    Google Scholar 

  20. D. Wevrick and S. A. Vanstone. Class-uniformly resolvable designs with block sizes 2 and 3. J. Combin. Des., 4:177–202, 1996.

    Article  MathSciNet  Google Scholar 

  21. Richard M. Wilson. Concerning the number of mutually orthogonal Latin squares. Discrete Math., 9:181–198, 1974.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stevens, B., Mendelsohn, E. (2002). Packing Arrays. In: Rajsbaum, S. (eds) LATIN 2002: Theoretical Informatics. LATIN 2002. Lecture Notes in Computer Science, vol 2286. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45995-2_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-45995-2_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43400-9

  • Online ISBN: 978-3-540-45995-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics