Skip to main content

Category, Measure, Inductive Inference: A Triality Theorem and Its Applications

  • Conference paper
  • First Online:
  • 895 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2286))

Abstract

The famous Sierpinski-Erdös Duality Theorem [Sie34b], [Erd43] states, informally, that any theorem about effiective measure 0 and/or first category sets is also true when all occurrences of “effective measure 0” are replaced by “first category” and vice versa. This powerful and nice result shows that “measure” and “category” are equally useful notions neither of which can be preferred to the other one when making formal the intuitive notion “almost all sets.” Effective versions of measure and category are used in recursive function theory and related areas, and resource-bounded versions of the same notions are used in Theory of Computation. Again they are dual in the same sense.

We show that in the world of recursive functions there is a third equipotent notion dual to both measure and category. This new notion is related to learnability (also known as inductive inference or identifiability). We use the term “triality” to describe this three-party duality.

This project was supported by Latvian Science Council Grant No. 01.0354 and Contract IST-1999-11234 from the European Commission

This project was supported by NSF Grant CCR-9732692

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ambainis, R. Freivalds, and C. Smith. General inductive inference types based on linearly ordered sets. In C. Puech and R. Reischuk, editors, Proceedings of the 13th Symposium on the Theoretical Aspects of Computer Science, volume LNCS1046, pages 243–253. Springer, 1996.

    MATH  Google Scholar 

  2. D. Angluin and C. H. Smith. Inductive inference: Theory and methods. Computing Surveys, 15:237–269, 1983.

    Article  MathSciNet  Google Scholar 

  3. K. Ambos-Spies. Resource-bounded genericity. In Proceedings of the 10th Conference on Structure in Complexity Theory, pages 162–181. IEEE Computer Society, 1995.

    Google Scholar 

  4. K. Ambos-Spies, E. Mayordomo, Y. Wang, and X. Zheng. Resourcebounded genericity, stochasticity and weak randomness. In C. Puech and R. Reischuk, editors, Proceedings of the 13th Symposium on the Theoretical Aspects of Computer Science, volume LNCS 1046, pages 63–74. Springer, 1996.

    MATH  Google Scholar 

  5. L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Information and Control, 28:125–155, 1975.

    Article  MathSciNet  Google Scholar 

  6. J. Bārzdiņš, R. Freivalds, and C. Smith. Learning with confidence. In Proceedings of STACS’96, 1996.

    Chapter  Google Scholar 

  7. C.G. Bennet and J. Gill. Relative to a random oracle A, P aNP aco-NP a with probability 1. SIAM Journal of Computer Science, 10:96–113, 1981.

    Article  MathSciNet  Google Scholar 

  8. M. Blum and R. Impagliazzo. Generic oracles and oracle classes. In Proceedings of the 28th Symposium on the Foundations of Computer Science, pages 118–126. IEEE Computer Soceity, 1987.

    Google Scholar 

  9. H. Buhrman and L. Longpré. Compressibility and resource bounded measure. In C. Puech and R. Reischuk, editors, Proceedings of the 13th Symposium on the Theoretical Aspects of Computer Science, volume LNCS1046, pages 13–24. Springer, 1996.

    MATH  Google Scholar 

  10. J. Balcázar and E. Mayordomo. A note on genericity and bi-immunity. In Proceedings of the 10th Conference on Structure in Complexity Theory, pages 193–196. IEEE Computer Society, 1995.

    Google Scholar 

  11. H. Buhrman and E. Mayordomo. An excursion to the Kolmogorov random strings. In Proceedings of the 10th Conference on Structure in Complexity Theory, pages 197–205. IEEE Computer Society, 1995.

    Google Scholar 

  12. E. Borel. Leçons sur les fonctions de variables réeles. Gauthier-Villars, Paris, 1905.

    MATH  Google Scholar 

  13. E. Borel. Leçons sur la théorie des fonctions. Gauthier-Villars, Paris, 1914.

    MATH  Google Scholar 

  14. Richard Chang, Benny Chor, Oded Goldreich, Juris Hartmanis, Johan H∢stad, Desh Ranjan, and Pankaj Rohatgi. The random oracle hypothesis is false. Journal of Computer and System Sciences, 49(1):24–39, August 1994.

    Article  MathSciNet  Google Scholar 

  15. P. Erdös. Some remarks on set theory. Ann. Math, 44(2):643–646, 1943.

    Article  MathSciNet  Google Scholar 

  16. S. Fenner. Notions of resource-bounded category and genericity. In Proceedings of the 6th Conference on Structure in Complexity Theory, pages 196–212. IEEE Computer Soceity, 1991.

    Google Scholar 

  17. S. Fenner. Resource-bounded Baire category: A stronger approach. In Proceedings of the 10th Conference on Structure in Complexity Theory, pages 182–192. IEEE Computer Society, 1995.

    Google Scholar 

  18. L. Fortnow, R. Freivalds, W. Gasarch, M. Kummer, S. Kurtz, C. Smith, and F. Stephan. On the relative sizes of learnable sets. Theoretical Computer Science, 197(1–2):139–156, 1998.

    Article  MathSciNet  Google Scholar 

  19. L. Fortnow, R. Freivalds, W. Gasarch, M. Kummer, S. Kurtz, C. Smith, and F. Stephan. Measure, category and learning theory. In Proceedings of ICALP’95, LNCS Vol. 944, pages 558–569, 1995.

    Google Scholar 

  20. J. Foster. The generic oracle hypothesis is false. Information Processing Letters, 45(2):59–62, 1993.

    Article  MathSciNet  Google Scholar 

  21. R. Freivalds. Inductive inference of recursive functions: Qualitative theory. In J. Bārzdinš and D. Bjørner, editors, Baltic Computer Science, pages 77–110. Springer Verlag, 1991.Lecture Notes in Computer Science, Vol. 502.

    Chapter  Google Scholar 

  22. R. Freivalds and C. Smith. On the power of procrastination for machine learning. Information and Computation, 107:237–271, 1993.

    Article  MathSciNet  Google Scholar 

  23. E. M. Gold. Language identi.cation in the limit. Information and Control, 10:447–474, 1967.

    Article  MathSciNet  Google Scholar 

  24. M. Kummer. On the complexity of random strings. In C. Puech and R. Reischuk, editors, Proceedings of the 13th Symposium on the Theoretical Aspects of Computer Science, volume LNCS 1046, pages 25–38. Springer, 1996.

    MATH  Google Scholar 

  25. C. Kuratowski. Topologie, 4th edition, volume 20–21 of Monografie Matematyczne. Panstwowe Wydawnictwo Naukowe, 1958.

    Google Scholar 

  26. Stuart A. Kurtz. On the random oracle hypothesis. Information and Control, 57(1):40–47, 1983.

    Article  MathSciNet  Google Scholar 

  27. C. Lund, L. Fortnow, H. Karlo., and N. Nisan. Algebraic methods for interactive proof systems. Journal of the ACM, 39(4), 1992.

    Article  MathSciNet  Google Scholar 

  28. L. Lisagor. The Banach-Mazur game. Translated Version of Matematicheskij Sbornik, 38:201–206, 1981.

    MATH  Google Scholar 

  29. J. Lutz. Category and measure in complexity classes. SIAM Journal of Computing, 19:1100–1131, 1990.

    Article  MathSciNet  Google Scholar 

  30. J. Lutz. The quantitative structure of exponential time. In Proceedings of the 8th Structure in Complexity Theory Conference, pages 158–175. IEEE Computer Society, 1993.

    Google Scholar 

  31. J. Lutz. Observations on measures and lowness for ΔP 2. In C. Puech and R. Reischuk, editors, Proceedings of the 13th Symposium on the Theoretical Aspects of Computer Science, volume LNCS 1046, pages 87–98. Springer, 1996.

    Google Scholar 

  32. K. Mehlhorn. On the size of sets of computable functions. In Proceedings of the 14th Symposium on Switching and Automata Theory, pages 190–196. IEEE Computer Soceity, 1973.

    Google Scholar 

  33. E. Minicozzi. Some natural properties of strong-identification in inductive inference. Theoretical Computer Science, 2:345–360, 1976.

    Article  MathSciNet  Google Scholar 

  34. M. Machtey and P. Young. An Introduction to the General Theory of Algorithms. North-Holland, New York, 1978.

    Google Scholar 

  35. D. Osherson, M. Stob, and S. Weinstein. Systems that Learn. MIT Press, Cambridge, Mass., 1986.

    Google Scholar 

  36. J. Oxtoby. Measure and Category. Springer-Verlag, 1971.

    Google Scholar 

  37. L. Pitt. Probabilistic inductive inference. Journal of the ACM, 36(2):383–433, 1989.

    Article  MathSciNet  Google Scholar 

  38. H. Putnam. Probability and confirmation. In Mathematics, Matter and Method, volume 1. Cambridge University Press, 1975.

    Google Scholar 

  39. W. Sierpinski. Hypoth`ese du continu, volume 4. Monografie Matematyczne, 1934.

    Google Scholar 

  40. W. Sierpinski. Sur la dualité entre la première catégore et la mesure nulle. Fund. Math., 28:276–280, 1934.

    Article  Google Scholar 

  41. C. H. Smith. The power of pluralism for automatic program synthesis. Journal of the ACM, 29(4):1144–1165, 1982.

    Article  MathSciNet  Google Scholar 

  42. C. Smith. A Recursive Introduction to the Theory of Computation. Springer-Verlag, 1994.

    Google Scholar 

  43. C. Smith. Three decades of team learning. In Proceedings of AII/ALT’94, Lecture Notes in Artificial Intelligence. Springer Verlag, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Freivalds, R., Smith, C.H. (2002). Category, Measure, Inductive Inference: A Triality Theorem and Its Applications. In: Rajsbaum, S. (eds) LATIN 2002: Theoretical Informatics. LATIN 2002. Lecture Notes in Computer Science, vol 2286. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45995-2_35

Download citation

  • DOI: https://doi.org/10.1007/3-540-45995-2_35

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43400-9

  • Online ISBN: 978-3-540-45995-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics