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Abstract. An important requirement for pervasive computing systems is the
ability to adapt at runtime to handle varying resources, user mobility, changing
user needs, and system faults. In this paper we describe an approach in which
dynamic adaptation is supported by the use of software architectural models to
monitor an application and guide dynamic changes to it. The use of externalized
models permits one to make reconfiguration decisions based on a global per-
spective of the running system, apply analytic models to determine correct re-
pair strategies, and gauge the effectiveness of repair through continuous system
monitoring. We illustrate the application of this idea to pervasive computing
systems, focusing on the need to adapt based on performance-related criteria
and models.

1. Introduction

An important requirement for pervasive computing systems is the ability to adapt
themselves at runtime to handle such things as user mobility, resource variability,
changing user needs, and system faults. In the past, systems that supported self-
adaptation were rare, confined mostly to domains like telecommunications switches
or deep space control software, where taking a system down for upgrades was not an
option, and where human intervention was not always feasible. However, in a perva-
sive computing world more and more systems have this requirement, because they
must continue to run with only minimal human oversight, and cope with variable
resources as a user moves from one environment to another (bandwidth, server avail-
ability, etc.), system faults (servers and networks going down, failure of external
components, etc.), and changing user priorities (high-fidelity video streams at one
moment, low fidelity at another, etc.).

Traditionally system self-repair has been handled within the application, and at the
code level. For example, applications typically use generic mechanisms such as ex-
ception handling or timeouts to trigger application-specific responses to an observed
fault or system anomaly. Such mechanisms have the attraction that they can trap an
error at the moment of detection, and are well-supported by modern programming
languages (e.g., Java exceptions) and runtime libraries (e.g., timeouts for RPC). How-



ever, they suffer from the problem that it can be difficult to determine the true source
of the problem, and hence the kind of remedial action required. Moreover, while they
can trap errors, they are not well-suited to recognizing “softer” system anomalies,
such as gradual degradation of performance over some communication path.

Recently several researchers have proposed an alternative approach in which sys-
tem models — and in particular, software architectural models — are maintained at
runtime and used as a basis for system reconfiguration and repair [25]. An architec-
tural model of a system is one in which the overall structure of a running system is
captured as a composition of coarse-grained interacting components [28]. As a basis
for self-repair the use of architectural models has a number of nice properties: An
architectural model can provide a global perspective on the system allowing one to
determine non-local changes to achieve some property. Architectural models can
make “integrity” constraints explicit, helping to ensure the validity of any change. By
“externalizing” the monitoring and adaptation of a system using architectural models,
it is possible to engineer adaptation mechanisms, infrastructure and policies inde-
pendent of any particular application, thereby reducing the cost and improving the
effectiveness of adding self-adaptation to new systems.

In this paper we illustrate how architecture-based adaptation can be applied to per-
vasive computing systems. Specifically, we show how to use the approach to support
adaptation of applications in a pervasive computing environment. This pervasive
environment consists of a set of mobile users accessing shared information through a
variety of devices. These devices communicate over a heterogeneous communications
infrastructure.

2. Overview of Approach

Our approach is based on the 3-layer view illustrated in Figure 1. The Runtime Layer
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is responsible for observing a system’s runtime properties and performing low-level
operations to adapt the system. It consists of the system itself, together with its operat-
ing environment (networks, processors, 1/0 devices, communications links, etc.) (1).
Observed runtime information is propagated upwards using a monitoring infrastruc-
ture that condenses, filters, and abstracts those observations in order to render that
information in architecture-relevant terms (2).

The Model Layer is responsible for interpreting observed system behavior in terms
of higher-level, and more easily analyzed, properties. It forms the centerpiece of the
approach, consisting of one or more architectural models of the system (3), together
with respective architecture managers (4) that determine whether a system’s runtime
behavior is within the envelope of acceptable ranges. An architecture manager in-
cludes a constraint checker and a repair handler. The former determines when archi-
tectural constraints are violated; the latter determines how to adapt the system. Re-
pairs are propagated down to the running system (5).

The Task Layer is responsible for determining the quality of service requirements
for the task(s). A task is a high-level representation of a user’s computational needs,
and indicates the services required, as well as the desired performance profile for
those services. These profiles in turn determine the range of behavior permissible at
an architectural level.

To illustrate how the approach works, consider a set of mobile users interacting
with a pervasive environment, each user currently performing one or more tasks that
require access to shared information. We will assume that this shared information is
provided by a set of server groups distributed over a pervasive network, as illustrated
in Figure 2(a). Each server group consists of a set of replicated servers (Figure 2(b)),
and maintains a queue of requests, which are handled in FIFO order by the servers in
the server group. Individual servers send their results back directly to the requesting
user.

The pervasive computing environment that manages this overall infrastructure
needs to make sure that two inter-related system qualities are maintained. First, to
guarantee the quality of service for each user, the request-response latency for users
must be under a certain threshold, which may vary depending on the task and user.
Second, to keep costs down, the set of currently active servers should be kept to a
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minimum, subject to the first constraint.

Achieving these goals requires cooperation from three levels. The Task Layer has
knowledge of the kind of information a user requires and the quality of service re-
quirements for retrieving this information. This knowledge feeds into the Model
Layer, so that relevant analyses can be performed to determine the appropriate con-
figuration when a new task is created. The Model Layer then makes changes through
the Runtime Layer, to the executing system to fulfill those requirements.

Establishing the correct configuration for the system only when a task is created,
however, is not sufficient in a pervasive computing environment, since resources and
requirements change dynamically. For example, suppose that some user’s task re-
quires her to review a set of images and select some of them to be included in a re-
port. Suppose that initially this user is carrying out the task on a PDA, which commu-
nicates over a wireless network, and which can only display low-resolution grayscale
images. As the user moves through the environment, her PDA may move from a wire-
less cell that has an access point getting good bandwidth to a server group to a cell
that is not. In this case, the environment may need to locate another server group with
a better bandwidth and move her requests to that server group. This change of re-
sources should be sensed automatically and the reconfiguration done transparently, so
that the user is not unnecessarily distracted. Furthermore, this same user might later
move into a resource-rich environment that contains a high-resolution color display.
The task layer may then want to change the user’s bandwidth requirements so that she
can view larger images on this screen. These new bandwidth requirements may force
a change in the Model Layer, which will invoke a concomitant change in the imple-
mentation.

The approach outlined above has a number of distinct advantages for the systems
builder over current approaches that hardwire adaptation mechanisms into the compo-
nents of the application. First, the use of architectural models permits non-local prop-
erties to be observed, and non-local adaptations to be effected. For example, suitable
monitoring mechanisms can keep track of aggregate average behavior of a set of
components. Second, formal architectural models permit the application of analytical
methods for deriving sound repair strategies. For example, a queuing-theoretic analy-
sis of performance can indicate possible points of adaptation for a performance-driven
application. Third, externalized adaptation (via architectural models) has several im-
portant engineering benefits: adaptation mechanisms can be more easily extended;
they can be studied and reasoned about independently of the monitored applications;
they can exploit shared monitoring and adaptation infrastructure.

3. Architecture-Based Adaptation

The centerpiece of our approach is the use of stylized architectural models [26,28].
Although there are many proposed modeling languages and representation schemes
for architectures, we adopt a simple scheme in which an architectural model is repre-
sented as a graph of interacting components. This is the core architectural representa-
tion scheme adopted by a number of architecture description languages, including
Acme [11], XADL [8], and SADL [23]. Nodes in the graph are termed components.
They represent the principal computational elements and data stores of the system:
clients, servers, databases, user interfaces, etc. Arcs are termed connectors, and repre-



sent the pathways of interaction between the components. A given connector may in
general be realized in a running system by a complex base of middleware and distrib-
uted systems support. For example, in the software architecture illustrated in Figure
2(b), the server group, servers, and users are components. The connector includes the
request queue and the network connections between users and servers.

To account for various behavioral properties of a system we allow elements in the
graph to be annotated with extensible property lists. Properties associated with a con-
nector might define its protocol of interaction, or performance attributes (e.g., delay,
bandwidth). Properties associated with a component might define its core functional-
ity, performance attributes (e.g., average time to process a request, load, etc.) or reli-
ability. In addition we associate with each architecture a set of constraints defined in a
first-order predicate logic augmented with a set of primitives appropriate for architec-
tural specification [22]. These constraints can be attached to components or connec-
tors to express things like the fact that some property value must always lie between a
given range of values.

In our system each architecture is identified with a particular architectural style. An
architectural style defines a set of types for components, connectors, interfaces, and
properties together with a set of rules that govern how elements of those types may be
composed. Requiring a system to conform to a style has many benefits, including
support for analysis, reuse, code generation, and system evolution [10,31,32]. More-
over, the notion of style often maps well to widely-used component integration infra-
structures (such as EJB, HLA, CORBA), which prescribe the kinds of components
allowed and the kinds of interactions that may take place between them.

One of the significant advantages of architectural descriptions is that they provide
opportunities for analysis, including system consistency checking [3], conformance to
architectural style constraints [1], conformance to quality attributes [7], and depend-
ence analysis [30].

We can model our example using a client-server architectural style. The architec-
tural style provides definitions for client, server, and server group components and the
connections between them. Properties include those required for queuing-theoretic
performance analysis, and integrity constraints include the necessity for each client to
be connected to one and only one server group.

As mentioned in our example, the Task Layer sets the performance profile for the
architecture. These profiles can be expressed as threshold constraints in the architec-
ture. These constraints can then be checked dynamically to see if the system is func-
tioning within bounds. In the context of our example, we desire each user to receive
no more than some maximum latency. This can be expressed in the architecture as a
constraint on each of the client’s connections to the server group. In the architecture
of our example, the constraint is of the form:

averagelatency < maxLatency.
This constraint appears on each client’s connection, and needs to be evaluated dy-
namically. In our approach, the Task Layer sets the value for maxLatency; the aver-
agelatency value is an observed value determined by monitoring.



3.1. UsingArchitectural Analysisto Guide System (Re)configuration

As we argued above, one of the main benefits of using software architecture is that the
level of abstraction gives us the ability to use analytical methods to evaluate proper-
ties of a system’s architectural design. To illustrate how this works, consider our
example, where we have modeled the application in a style amenable to M/M/m per-
formance analysis [29]. The M/M indicates that the probability of a request arriving at
component s, and the probability of component s finishing a request it is currently
servicing, are assumed to be exponential distributions (also called “memoryless,”
independent of past events); requests are further assumed to be, at any point in time,
either waiting in one component’s queue, receiving service from one component, or
traveling on one connector. The m indicates the replication of component s; that is,
component s is not limited to representing a single server, but rather can represent a
server group of m servers that are fed from a single queue. Given estimates for cli-
ents’ request generation rates and servers’ service times (the time that it takes to ser-
vice one request), we can derive performance estimates for components.

Applying this M/M/m theory to the style used in our example tells us that with re-
spect to the average latency for servicing user requests, the key design parameters in
our style are (a) the replication factor m of servers within a server group, (b) the
communication delay between clients and servers, (c) the arrival rate of client re-
quests, and (d) the service time of servers within a server group. We can use per-
formance analysis to decide (1) the number of replicated servers that must exist in a
server group so that it is properly utilized, and (2) where server groups should be
placed so that the bandwidth is sufficient to achieve the desired latency.

Given a particular service time and arrival rate, performance analysis of this model
gives a range of possible values for server utilization, replication, latencies, and sys-
tem response time. Say that the task layer for each user informs us that the arrival rate
is 180 requests/sec, the average request size is 0.5KB, and the average response size is
20KB. Assume also that the server service time is between 10ms and 20ms. Given
these values, then the performance analysis gives us the following bounds:

Initial server replication count= 3-5

Average Bandwidth = 10.5KB/sec

This analysis gives us parameters for a configuration of the architecture of the
software that satisfies the above requirements. We use this information to configure
the system to locate appropriate server groups, monitor the application to make sure it
is in conformance with these requirements, and attempt to adapt the system transpar-
ently as the user moves about the environment.

If the Task Layer changes the requirements, for example when the user begins us-
ing a large display, the analysis is performed again to determine a satisfactory recon-
figuration of the system. Again, this can be done transparently.

3.2. Using Architectureto Assist Adaptation

The representation schemes for architectures and analyses outlined above were origi-
nally created to support design-time development tools. As suggested above, these
schemes and analyses need to be made available at runtime. This section discusses an
augmentation to architectures that allows them to function as runtime adaptation



mechanisms. This includes adaptation operations, based on the style of the architec-
ture, to change an architectural model, and repair strategies that apply these opera-
tions to adapt the architecture. These operations need to be translated into operations
on the runtime system. We consider the supporting runtime infrastructure needed to
make this work in practice in Section 3.3.

3.21  Architecture Adaptation Operators

The first extension is to augment an architectural style description with a set of opera-

tors that define the ways in which one can change systems in that style. Such opera-

tors determine a “virtual machine” that can be used at runtime to adapt an architec-
tural design.

Given a particular architectural style, there will typically be a set of natural opera-
tors for changing an architectural configuration and querying for additional informa-
tion. In the most generic case, architectures can provide primitive operators for adding
and removing components and connections [24]. However, specific styles can often
provide higher-level operators that exploit the restrictions in that style and the in-
tended implementation base.

In terms of our example, we define the following operators:

— addServer(): This operation is applied to a server group component and adds a
new replicated server component to its representation, ensuring that the architec-
ture is structurally valid.

— move(to: ServerGroupT): This operation is applied to a client and deletes the role
currently connecting the client to the connector that connects it to a server group
and performs the necessary attachment to a connector that will connect it to the
server group passed in as a parameter.

— remove(): This operation is applied to a server and deletes the server from its con-
taining server group. Furthermore, it changes the replication count on the server
group and deletes the binding.

The above operations all effect changes to the architectural model. The next opera-
tion queries the state of the running system:

— findGoodSGroup(cl: ClientT,bw:float):ServerGroupT; finds the server group with
the best bandwidth (above bw) to the client cli, and returns a reference to the server
group.

These operators reflect the style in question and the implementation base. First,
from the nature of a server group, we get the operations for activating or deactivating
a server within a group. Also, from the nature of the asynchronous request connectors,
we get the operations for adapting the communication path between particular clients
and server groups. Second, based on the knowledge of supported system change op-
erations, outlined in Section 3.3.2, we have some confidence that the architectural
operations are actually achievable in the executing system.

3.2.2  Architecture Repair Strategies

The second extension is the specification of repair strategies that correspond to se-
lected constraints of the architecture. The key idea is that when an architectural con-
straint violation is detected, the appropriate repair strategy will be triggered.



A repair strategy has two main functions: first to determine the cause of the prob-
lem, second to determine how to fix it. Thus the general form of a repair strategy is a
sequence of repair tactics. Each repair tactic is guarded by a precondition that deter-
mines whether that tactic is applicable. The evaluation of a tactic’s precondition will
usually involve the examination of various properties of the architecture in order to
pinpoint the problem and determine applicability. If it is applicable, the tactic exe-
cutes a repair script that is written as an imperative program using the style-specific
operators described above.

To handle the situation where several tactics may be applicable, the enclosing re-
pair strategy decides on the policy for executing repair tactics. It might apply the first
tactic that succeeds. Alternatively, it might sequence through all of the tactics, or use
some other style-specific policy.

One of the principal advantages of allowing the system designer to pick an appro-
priate style is the ability to exploit style-specific analyses to determine whether repair
tactics are sound. By sound, we mean that if executed the changes will help reestab-
lish the violated constraint.

In general an analytical method for an architecture will provide a compositional
method for calculating some system property in terms of the properties of its parts. By
looking at the constraint to be satisfied, the analysis can often point the repair strategy
writer both to the set of possible causes for constraint violation, and for each possible
cause, to an appropriate repair.

Illustrating this idea for our example, we can show how the repair strategy devel-
oped from the theoretical analysis. The equations for calculating latency for a service
request, derived from [4], indicate that there are four contributing factors: 1) the con-
nector delay, 2) the server replication count, 3) the average client request rate, and 4)
the average server service time. Of these we have control over the first two. When the
latency is high, we can decrease the connector delay or increase the server replication
count to decrease the latency. Determining which tactic depends on whether the con-
nector has a low bandwidth (inversely proportional to connector delay) or if the server
group is heavily loaded (inversely proportional to replication). These two system
properties form the preconditions to the tactics; we have thus developed a repair strat-
egy with two tactics.

Figure 3 illustrates the repair strategy and tactics associated with a latency thresh-
old constraint. Line 1 defines the constraint that the average latency must not be be-
low the maximum latency set by the task requirements. Line 2 calls the repair strategy
to be invoked if the constraint fails. The repair strategy in lines 4-14, fixLatency, con-
sists of two tactics. The first tactic, defined in lines 16-26, handles the situation in
which a server group is overloaded, identified by the precondition in lines 22-23. Its
main action in lines 24-25 is to create a new server in any of the overloaded server
groups. The second tactic, defined in lines 28-42, handles the situation in which high
latency is due to communication delay, identified by the precondition in lines 30-31.
It queries the architecture to find a server group that will yield a higher bandwidth
connection in lines 35-36. In lines 37-39, if such a group exists it moves the client-
server connector to use the new group. The repair strategy uses a policy in which it
executes these two tactics sequentially: if the first tactic succeeds it commits the re-
pair strategy; otherwise it executes the second. The strategy will abort if neither tactic



succeeds, or if the second tactic finds that it cannot proceed since there are no suitable
server groups to move the connection to.

1 invariantr: averagelLatency <= maxLatency 22 if (size(loadedServerGroups) == 0)

2 !> fixLatency(r); 23 return false;

3 24 foreach sGrp in loadedServerGroups {
4 strategy fixLatency (badRole : ClientRoleT)={ 25 sgrp.addServer(); }

5 let badClient : ClientT = 26 return (size(loadedServerGroups)>0);
6 select one cli: ClientT in self.Components | 27

7 exists p : RequestT in cli.Ports | 28 tactic fixBandwidth(client:ClientT

8 attached(badRole, r); 29 role:ClientRoleT):boolean={
9 if (fixServerLoad(badClient)) { 30 if (role.bandwidth>=minBandwidth) {
10 commit repair; } 31 return false;}

11 else if (fixBandwidth(badClient,badRole) { 32 let oldSGrp: ServerGroupT =

12 commit repair; } 33 select one sGrp:ServerGroupT in
13 else {abort ModelError;} 34 self.Components | connected (client,sGrp);
14 } 35 let goodSGrp : ServerGroupT =

15 36 findGoodSGrp(client,minBandwidth);
16 tactic fixServerLoad (client :ClientT) :boolean={ 37 if (goodSGrp !=nil) {

17  let loadedServerGroups :set{ServerGroupT}= 38 client.move (0ldSGrp,goodSGrp);

18 select sgrp:ServerGroupT in 39 return true;

19 self.Components | 40 }else{

20 connected(sgrp,client) and 41 abort NoServerGroupFound;

21 sgrp.load > maxServerLoad; 2%

Fig. 3. Repair Strategy for High Latency

3.3 Bridging the Gap to I mplementation

While the use of architectural models allows us to provide automated support for
adaptation at an architectural level, through use of constraints, operators, and analyti-
cal methods, we must furthermore relate model changes to the real world. There are
two aspects to this. The first is getting information out of the executing system so we
can determine when architectural constraints are violated. The second is propagating
architectural repairs into the system itself.

331 Monitoring
In order to provide a bridge from system level behavior to architecturally-relevant
observations, we have defined a three-level approach illustrated in Figure 4. This
monitoring infrastructure is described in more detail elsewhere [12]: here we summa-
rize the main features.

The lowest level is a set of probes, which are “deployed” in the target system or
physical environment. Probes monitor the system and announce observations via a
“probe bus.” We can use off-the-shelf monitoring components (such as Remos [19])
and write wrappers to turn them into probes, or write custom probes. At the second
level a set of gauges consume and interpret lower-level probe measurements in terms
of higher-level model properties. Like probes, gauges disseminate information via a
“gauge reporting bus.” The top-level entities in Figure 4 are gauge consumers, which
consume information disseminated by gauges. Such information can be used, for
example, to update an abstraction/model, to make system repair decisions, to display
warnings and alerts to system users, or to show the current status of the running sys-
tem.
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In the context of architectural repair, we use the architectural style to inform us
where to place gauges. Specifically, for each constraint that we wish to monitor, we
must place gauges that dynamically update the properties over which the constraint is
defined. In addition, our repair strategies may require additional monitored informa-
tion to pinpoint sources of problems and execute repair operations.

For instance, in the example above we are concerned with the average latency of
client requests. To monitor this property, we must associate a gauge with the aver-
agel atency property of each client role. Each latency gauge in turn deploys a probe
into the implementation that monitors the timing of reply-request pairs. When it re-
ceives such monitored values it averages them over some window, updating the la-
tency property in the architecture model when it changes. In addition to this gauge,
we are also guided by the repair tactics to place gauges that measure the bandwidth
between the client and the server group and also to measure the load on the server
group. The gauge for measuring bandwidth uses the same probe used by the latency
gauge for measuring the time it takes to receive a reply. An additional probe measures
the size of the reply and calculates the bandwidth based on these values. A probe
measuring the size of the request queue indicates whether a server group is over-
loaded.

3.3.2 Repair Execution

The final component of our adaptation framework is a translator that interprets repair
scripts as operations on the actual system (Figure 1, item 5). The nature of these op-
erations will depend heavily on the implementation platform. In general, a given
architectural operation will be realized by some number of lower level system recon-
figuration operations. Each such operator can raise exceptions to signal a failure.
These are then propagated to the Model Layer.

To illustrate, the specific operators and queries supported by the runtime system in
our example are listed in Table 1. These operators include low-level routines for cre-
ating new request queues, activating and deactivating servers, and moving client
communications to a new queue. The operations at the Model Layer, describe in Sec-
tion 3.2.1, are translated into calls on the operations in the Runtime Layer (Table 1) to
effect the actual change in the system.



4. Implementation

Previously, the work on tools software architecture has mostly focused on design-time
support. We have adapted these tools so that they can be used as runtime facilities.
Specifically, AcmeStudio, an architecture design environment, can now make avail-
able an architectural description at runtime. This description can be analyzed by run-
time versions of our Armani constraint checking and performance analysis tools, as
well as be manipulated by our repair engine. Collectively, these tools implement the
Model Layer elements in Figure 1.

In terms of monitoring, we have developed prototype probes for gathering informa-
tion about networks, based on the Remos system [19]. Remos has two parts: (1) an
API, that allows applications to issue queries about bandwidth and latency between
groups of hosts; and (2) a set of collectors that gather information about different
parts of the network [21]. A probe uses Remos to collect the information required for
the probe and distributes it as events using the Siena wide area event bus [6]; gauges
listen to this information and perform calculations and transformations to relate it to
the software architecture of the system.

Currently, we have hand-tailored support for translating APIs in the Model Layer
to ones in the Runtime Layer that need to be changed for each implementation. Our
work in this area will concentrate on providing more general mechanisms where ap-
propriate, and perhaps using off-the-shelf reconfiguration commands for commercial
systems.

With respect to the Task Layer, we are actively investigating effective means for
specifying user tasks, as part of our broader research in the Aura project at Carnegie
Mellon University [27,33].

For our modeling and analysis approach to be feasible, we need to have some con-
fidence that the analysis at the Model Layer is relevant at the Runtime Layer. To ex-
plore specific data points of this, we have conducted some initial experimentation
with comparing predicted performance and measured performance. Our simple ex-
perimental testbed was a client-server application where the repair tactic was to use
compression to make more effective use of the available bandwidth [17]. In this case,
we used simple analytical models instead of queuing models — shown in Figure 5(a).

Table 1. Environment Manager Operators and Queries.

createReqQueue() Adds a logical request queue to Reg-queue machine
in Figure 2.

findSer ver ([string cli_ip, Finds a spare server that has at least bw_thresh

float bw_thresh]) | bandwidth between it and the client.
moveClient(ReqQ newQ) Moves a client to the new request queue.
connect Ser ver (Server srv, Configures a server so that it pulls client requests
ReqQ to) out of the to request queue.

activateServer () Signals that the server should begin pull requests
from the request queue.

deactivateServer() Signals that a server should stop pulling requests
from the request queue.

remos_get_flow (string cllP, | This is a Remos API call that returns the predicted

string svIP) | bandwidth between two IP addresses.
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Fig. 5. (a) The Analytical Compression Model; (b) Comparing Measured and Predicted Performance

The model variables in italics have to be determined at runtime. For our prototype
(where compression uses gzip), the compression ratio (comp_ratio) depends on the
data type (text, JPEG, etc.) and is simply determined through look up in a predefined
table. The compression speed (comp_speed) is machine dependent. It is estimated
based on benchmarks. Finally, the estimated network throughput (available_bw) is
obtained using the Remos system.

Figure 5(b) shows the result of a set of experiments performed on a dedicated test-
bed. The testbed allows us to vary the available bandwidth (x-axis) by generating a
variable competing UDP stream. The y-axis shows execution, both estimated (dashed
lines) and measured (full lines). The experiments show two interesting results. First,
the crossover point for the estimated execution time with and without compression
happens at about the same point as the crossover point for the measured execution
times with and without compression (indicated by the arrows in Figure 5(b)). This
shows that the choice of tactics based on an analytical model will have the desired
effect in the implementation. Second, around the crossover point, the execution times
for the different tactics are very similar, suggesting that even if the client would pick
the wrong tactic (for example because of a probe value with an unusually large error),
the impact on performance would be minimal.

5. Related Work

Considerable research has been done in the area of dynamic adaptation at an imple-
mentation level. There are a multitude of programming languages and libraries that
provide dynamic linking and binding mechanisms (e.g., [15,16]), as well as exception
handling capabilities and distributed debugging [14]. Systems of this kind allow self-
repair to be programmed on a per-system basis, but do not provide external, reusable
mechanisms that can be added to systems in a disciplined manner, as with an architec-
ture-driven approach.

There is a large body of research in the area of pervasive computing (e.g., [2]) and
many companies are exploring support for this area. This research primarily focuses
on user interface issues and the provision of low-level services and infrastructure in



the environment. The notion of adaptation is hardwired into particular applications or
services [5,9,18]. Again, our architecture-based approach provides a general solution
that supports adaptation of applications and systems for which it is not explicitly
supported.

The BBN QuO system [20] extends CORBA to support applications that adapt to
resource availability. One aspect of the system is that users can define operating re-
gions. The runtime system monitors the application and execution environment, and
invokes application specific handlers when the application changes operating region.
QuO is a specific example of an adaptive and reflective middleware system, which in
general do not have an explicit architectural model of the application.

There has been some related research on architecture-based adaptation. However,
this research relies on specific architectural styles, and implementations that match
these styles [13,24]. In this paper, we have concentrated on how architectural models
can be used to guide adaptation in a pervasive system, and the extensions need to
software architectures to make them useful in a dynamic setting. In our broader ap-
proach we decouple the style from the system infrastructure so that developers have
the flexibility to pair an appropriate style to a system based on its implementation and
the system attributes that should drive adaptation. To accomplish this we have intro-
duced some new mechanisms to allow “runtime” styles to be treated as a design pa-
rameter in the runtime adaptation infrastructure. Specifically, we have shown how
styles can be used to detect problems and trigger repairs. We have also provided
mechanisms that bridge the gap between an architectural model and an implementa-
tion — both for monitoring and for effecting system changes.

6. Conclusions and Future Work

In this paper we have presented a technique for using software architectural models to

automate dynamic repair of systems. In particular, architectures and their associated

analyses:

— make explicit the constraints that must be maintained in the face of evolution;

— direct us to the set of properties that must be monitored to achieve system quality
attributes and maintain constraints;

— define a set of abstract architectural operators for repairing a system; and

— allow us to select appropriate repair strategies, based on analytical methods.

We illustrated how the technique can be applied to performance-oriented adaptation

in a pervasive computing environment with mobile users, time-varying resources, and

heterogeneous devices.

For future research we need to be able to develop mechanisms that provide richer
adaptability for executing systems. We also need new monitoring capabilities, and
reusable infrastructure for relating monitored values to architectures. Finally, we need
new analytical methods for architecture that will permit the specification of principled
adaptation policies. Additionally we see a number of other key future research areas.
First is the investigation of more intelligent repair policy mechanisms. For example,
one might like a system to dynamically adjust its repair tactic selection policy so that
it takes into consideration the history of tactic effectiveness: effective tactics would be
favored over those that sometimes fail to produce system improvements. Second is
the link between architectures and tasks. We need to further explore both how to



specify user tasks and the precise interaction between them and the architectural pa-
rameters and constraints.
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