KECho - Event Communication for Distributed
Kernel Services *

Christian Poellabauer, Karsten Schwan, Greg Eisenhauer, and Jiantao Kong

College of Computing,
Georgia Institute of Technology,
Atlanta, GA 30332

{chris, schwan, eisen, jiantao}@cc.gatech.edu

Abstract. Event services have received increased attention as scalable
tools for the composition of large-scale, distributed systems, as evidenced
by their successful deployment in interactive multimedia applications and
scientific collaborative tools. This paper introduces KECho, a kernel-
based event service aimed at supporting the coordination among multiple
kernel services in distributed systems, typically to provide applications
using these services with certain levels of Quality of Service (QoS). The
publish /subscribe communication supported by KECho permits compo-
nents of remote kernels as well as applications to coordinate their opera-
tion. The target group of such a kernel-based event service is the rapidly
increasing number of extensions that are being added to existing oper-
ating systems and are intended to support the Quality of Service and
real-time requirements of distributed and embedded applications.

1 Introduction

Kernel-level services and their run-time coordination. The need to offer
high or predictable levels of performance, especially in distributed and embedded
systems, has resulted in the kernel-level implementation of certain applications
and services. Examples include the in-kernel web servers khttpd and tux on
Linux, kernel-level QoS management and resource management mechanisms [7],
and load balancing algorithms [8]. To attain desired gains in predictable perfor-
mance, distributed kernel-level extensions must coordinate their operation. For
example, for load balancing, multiple machines in a web server cluster must not
only exchange information about their respective CPU and device loads (e.g.,
disks), but must also be able to forward requests to each other without un-
due involvement of clients and forwarding engines [16]. Similarly, to ensure the
timely execution of pipelined sensor or display processing applications in embed-
ded systems, hosts must not only share detailed information on their respective
CPU schedules and the operation of the communication links they share [17,
18], but they must also coordinate the ways in which they allocate resources to

* This work was partially supported by DARPA/ITO under the Ubiquitous Comput-
ing, Quorum, and PCES programs.

pipelined tasks. Finally, the run-time coordination among kernel-level services
illustrated above is highly dynamic, involving only those kernel services and ma-
chines that currently conduct a shared application-level task. In addition, the
extent of such cooperation strongly depends on the application-level quality cri-
teria being sought, ranging from simply ’better performance’ to strong properties
like ’deadline guarantees.’

Run-time kernel coordination with KECho. This paper presents KECho, a
kernel-level publish/subscribe mechanism for run-time coordination among dis-
tributed kernel services. Using KECho, any number of kernel-level services on
multiple hosts can dynamically join and leave a group of information-sharing,
cooperating hosts. Using KECho, services can exchange resource information,
share resources (e.g., via request forwarding), and coordinate their operation to
meet desired QoS guarantees. KECho uses anonymous event-based notification
and data exchange, thereby contrasting it to lower-level mechanisms like kernel-
to-kernel socket communications, RPC [9], or the RPC-like active messaging
developed in previous work [19]. Furthermore, compared to object-based kernel
interactions [20] or to the way in which distributed CORBA, DCOM, or Java
objects interact at the user level [10-12], KECho’s model of communication pro-
vides improved flexibility, since its use of anonymous event notification permits
services to interact without explicit knowledge of each others identities.

The KECho kernel-level publish/subscribe mechanism shares several impor-
tant attributes with its user-level counterparts. First, KECho events may be used
to notify interested subscribers of internal changes of system state or of external
changes captured by the system [4]. Second, it may be used to implement kernel-
level coordination among distributed services, perhaps even to complement the
application-level coordination implemented with user-level event notification ar-
chitectures [1-4]. Applications constructed with event-based architectures in-
clude peer-to-peer applications like distributed virtual environments, collabo-
rative tools, multiplayer games, and certain real-time control systems. Third,
KECho’s functionality is in part identical to that of known user-level event sys-
tems, which means that we describe it using interchangeable terms like event no-
tification mechanism, event service, and publish/subscribe mechanism. Further,
KECho’s event services faithfully implement the publish/subscribe paradigm,
where events are sent by publishers (or sources) directly to all subscribers (or
sinks). Channel members are anonymous, which implies that members are freed
from the necessity to learn about dynamically joining and leaving members.

KECho is implemented as an extension to the Linux operating system (using
kernel-loadable modules) and offers a lightweight high-performance event service
that allows Linux kernel-level services (which could themselves be extensions)
to coordinate their actions. The intent is to ensure that distributed applications
achieve high/predictable performance and good system utilization. By using the
resulting distributed kernel services, distributed applications can improve their
use of shared underlying machine resources like processing power and disk space,
without having to explicitly interact at the application level. Application-level
counterparts to such functionality typically require additional kernel calls and

inter-machine communications, and they may even require the implementation
of extensions to existing user/kernel interfaces, so that applications can gather
the resource information they need from their respective operating system ker-
nels. In contrast, the kernel-level solutions to distributed resource management
enabled by KECho can access any kernel or network service and any kernel data
structures without restrictions, which is particularly important for fine-grained
resource monitoring or control. Finally, KECho can also be used directly by ap-
plications, thereby permitting them to directly interact with their distributed
components.

Contributions. (1) KECho is an in-kernel event-based group communication
mechanism that supports the anonymous and asynchronous cooperation of dis-
tributed kernel-based services and user-level applications. (2) KECho (i) achieves
high event responsiveness by using a kernel extension that monitors socket ac-
tivity and (ii) reduces processing and networking overhead by filtering events
based on information supplied by the event publisher and by all event sinks. (3)
The advantages of the KECho kernel-based communication tool are explained by
means of two extensions to the Linux kernel’s functionality: (i) a novel resource
management system and (ii) a load balancing mechanism for cluster-based web
services.

2 Kernel Event Channels

Event notification systems have been used in applications including virtual en-
vironments, scientific computing, and real-time control. Compared to user-level
implementations of event services, the advantages of a kernel-level implementa-
tion include:

— Performance: each call to a user-level function of the event system (e.g., re-
siding in statically or dynamically linked libraries associated with the appli-
cation) can internally result in a high number of system calls. These calls can
block, thereby delaying an application and causing unpredictable application
behavior. By using a kernel-based service, we can significantly reduce both
the number of system calls used in its implementation and the effects on pre-
dictability of its execution. Furthermore, if the application components using
event services are implemented entirely within the kernel, then no system
calls are required at all, and performance is improved further by minimized
blocking delays within the kernel. Specifically, a kernel-thread waiting for an
event can be invoked immediately after the event occurs, while a user-level
application may suffer further delays by waiting in the CPU scheduler’s run
queue for a time period dependent on its scheduling priority and the current
system load.

— Functionality: an increasing number of services is being implemented inside
of an operating system’s kernel, mainly for performance reasons. Only a
direct, kernel-to-kernel connection of such services without the additional
overheads of user/kernel crossings allows for fine-grained and direct commu-
nication and coordination among remote kernel services.

— Accessibility of resources: typical user/kernel interfaces restrict the number
and type of kernel resources that can be accessed. Kernel-based implemen-
tations have no restrictions regarding the access to such resources, that is,
resources and kernel data structures (e.g., task structures, file structures) can
be accessed and used directly. This allows kernel solutions to make ‘smarter’
decisions compared to user-level solutions.

2.1 Architecture of KECho

The goal of a kernel-based event service is to support the coordination and
communication among distributed operating system services.

Application-specific
Service

Kernel
Extension

Kernel
Extension)

Kernel

Kernel
Extension)

Kernel
Extension

Kernel
Extension,

Kernel

Kernel
Extension,

Network

Fig. 1. Event channels in KECho.

Figure 1 shows the architecture of KECho, using which both kernel- and
user-level OS services and user-level applications can dynamically create and
open event channels, subscribe to these channels as publishers and subscribers,
and then submit and receive events. Although the event channel in Figure 1 is
depicted as a logically centralized element, it is a distributed entity in practice,
where channel members are connected via direct communication links. The chan-
nel creator has a prominent role in these communications only in that it serves
as the contact point for anyone wishing to join or leave a group. Any number of
kernel services can subscribe to an event channel, and events can be typed, the
latter meaning that only events that fit a certain description will be forwarded
to subscribers.

The implementation of KECho is based on its user-level counterpart, called
ECho [2], the libraries of which have been ported to six kernel-loadable modules
for Linux 2.4.0, each with a certain task:

— KECho Module: the main interface to kernel services for channel management
and event submission/handling.

— FECalls Module: a richer interface to user-level applications that implements
a lightweight version of system calls and shared memory segments. In addi-
tion, this module can influence CPU scheduling decisions to maximize event
responsiveness [5].

— Group Manager Module: a user-level group server, running on a publicized
host, serves as channel registry, where channel creators store their contact
information and channel subscribers can retrieve this information. This mod-
ule supports the communication among subscribers and the group server.

— Communication Manager Module (CM): this module is responsible for the
connection management, including creating and operating the connections
between remote and local channel members. It currently supports TCP con-
nections as well as a reliable version of UDP to which we are planning to
add real-time communication properties.

— Attribute List Module: this module implements attributes, which are name-
value pairs with which performance or QoS information may be piggybacked
onto events.

— Network Monitoring Module (NW-MON): this module monitors socket ac-
tivity and notifies the CM module of newly arrived data at any of the sockets
associated with an event channel.

2.2 Event Delivery

The lowest module in the KECho module stack, the network monitoring module
(NW-MON), allows KECho to register interest in certain sockets. Specifically,
KECho registers interest in all sockets associated to event channels. NW-MON
then will be notified by the network interrupt handler once data arrives at one of
these sockets. In return, this module then notifies the CM module of this event.

6 (read)
1 (sleep)

5 (wake up)

3 (wake up,

Sockets

Fig. 2. Event Delivery in KECho.

As an example, a subscriber waits for a new event (step 1 in Figure 2) by
sleeping or blocking. Activity of a socket related to an event channel (step 2)

prompts the network monitoring module to send a wake-up call to the CM
module (step 3). CM then reads the data from the socket (step 4) and identifies
and notifies (step 5) the thread owning this socket. Finally, the thread can now
copy the received data from the CM module (step 6) and act upon this event.

While CM awakens and notifies waiting threads about the arrival of events,
it can also accelerate event responsiveness by increasing the CPU scheduling
priority of the process receiving an event. This is part of the ECalls module and
is described in more detail in two other papers [5, 6].

2.3 Filtering

Most event systems offer the possibility to limit the number of events received
through event filters. Filters can be placed at either the event sink or the event
source and can significantly reduce event processing and network overheads.
The most basic filters ensure that events are delivered only if they are of certain
types. Typical event systems allow those filters to base their decisions only on a
per-connection basis, where a filter makes its decision without considering the
overall channel condition. In addition to event filters, KECho offers so-called
channel filters, which (1) can be dynamically inserted by the event source and
(2) can decide on a per-channel basis which sinks will receive an event, that
is, filtering decisions are based on information collected from the publishers and
subscribers via separate event channels or via attributes piggybacked onto events.
As an example consider the task of load balancing. Here, a service request from a
machine in a web server cluster is forwarded to an event channel if the local server
is not able to service this request. A filtering function can collect load information
from all other servers and then decide which other server will receive the event
carrying the forwarded request. Alternatively, if load information is outdated and
requests are idempotent, then the quality of load balancing can be improved by
simultaneously forwarding the request to n servers, where n is chosen by the
event source. Upon delivery of the event to the n best servers (e.g, the servers
with the lightest loads) and completed event handling, duplicate responses can
be discarded by the load balancing mechanism. In this example, the event source
supplies the number of desired recipients of a forwarded request and all event
sinks supply their current load information.

A filter can also be applied to incoming events, in which case it is simply
invoked once each time an event arrives at the channel. For example, such a
filter can decide — based on information from the event source and from all sinks
— to which sinks the event will be dispatched. In the load balancing example
mentioned above, this kind of filter could make sure that the response to a
request is being returned to only the one sink that issued the original request,
or it could block multiple responses to the same request. A kernel service can
register two filter functions with an event channel, an IN-filter and an OUT-
filter (Figure 3). An IN-filter is invoked each time an event is being received by
KECho. The IN-filter is able to investigate the event before it is being dispatched
to the event sinks. On the other hand, an OUT-filter is being invoked each time

Event Submissior

Event Encoding
Event Decoding

Transmit Receive

0. from
subscribers publisher

Fig. 3. Channel filters in KECho.

an event is being submitted by a local event source. Again, the filter inspects
the event and can decide which remote sinks will ultimately receive the event.

3 Example 1: Resource Management

Applications rely on the availability of certain system resources in order to per-
form their tasks successfully. System resources can include processing power,
network bandwidth, disk bandwidth, RAM, and input/output devices such as
cameras or printers. Resource management systems [13, 14] have the task to al-
low applications to discover, allocate, and monitor such distributed resources.
This task is made difficult by (i) the dynamic behavior of resources (i.e., re-
sources can join and leave at any time), (ii) the dynamic arrival and departure
of application components requiring resources (e.g., through process migration),
and (iii) run-time variations in the current resources required by an application.

Kernel | Kernel Il Kernel lll
CPU
CPU \
Disk
Mgr.

@ Resource

g Disk Mgr:

Network Mgr. N
Mgr. U / y
A

y
I Network] I Network] [Network]

N
Event<

Channel

Fig. 4. Resource management with KECho

Figure 4 shows how KECho connects resource managers to facilitate the task
of locating and acquiring resources for applications. Kernels I and IT have 3 resp.

2 resources that are shared with other hosts, e.g., CPU, disk, and network re-
sources. As an alternative, a kernel could have only one resource manager, which
assumes the task of managing all available resources at a host, as shown in kernel
ITI. In both cases, resource managers can forward requests for resource alloca-
tions from applications to other, remote resource managers by submitting an
event. If a remote resource manager can fulfill the request, it responds accord-
ingly to the manager that forwarded the original request. If there are several
positive responses, a resource manager can use certain criteria (e.g., response
times, location of the resource) to decide which response to accept or discard.
Resource managers can dynamically join or leave resource-sharing groups, by
joining a group it makes its resources publicly available to all other members in
the group. However, all managers are unaware of the number or the location of
other group members and resource requests are submitted and accepted/denied
via events.

4 Example 2: Load Balancing

Load balancers in web server clusters [8,15] have the task to forward requests
that can not be handled locally to other servers in the cluster. Figure 5 shows
the architecture of a simple load balancing mechanism for a web server cluster.

@ Tl CLUSTER SERVER
erver -

Load Balancing Module

Balancer !
v /) D-Ch.

D-Ch. - Data Channel
M-Ch. - Monitoring Channel

Data Channel Monitoring Channel|,

Fig. 5. Load balancing with KECho

When using KECho to implement load balancing, each server in the cluster
subscribes to the shared data channel, which is used to forward requests to
other servers if the load on the host is too high to successfully handle a request.
Further, servers send responses to such requests in form of events over the same
event channel. All servers also register two filters, which are supplied by the load
balancing mechanism in the kernel: (i) an OUT-filter, which intercepts service
requests and decides which remote server(s) will receive a forwarded request, and
(ii) an IN-filter, which discards multiple responses from different servers if the
request has been forwarded to more than one server. The load balancing decision

is based on load information exchanged between all servers via a separate event
channel, called monitoring channel. In addition, the server forwarding a request
determines how many remote servers will receive this request. This can improve
the server utilization even more if the load information is not updated frequently
enough, that is, the n servers with the lowest utilization receive a request and
only the first response from these servers will be used, all other responses are
discarded.

5 Simulation Results

The following microbenchmarks have been performed on a dual-Pentium III with
2x800MHz, 1GB RAM, running Linux 2.4.0. The intent is to investigate the
overheads associated with event submission and delivery, channel management,
and filtering.

5.1 Event submission

The first measurement, compares the event submission overheads of the user-level
implementation of event channels (ECho), the kernel-level event channels used
by a user-level application (KECho-UL), and the kernel-level event channels used
by a kernel-thread (KECho-KL).

Event Submission (100b) Event Submission (1Kb)

mECho i mECho
CKECho (UL) - DOKECho (UL)

EKECho (KL) EKECho (KL)

Microseconds
Microseconds
N
5
8

1 2 3 a 5 6 7 8 T 2 3 4 5 6 7 8
[mECho 98 | 123 | 158 | 200 | 225 | 253 | 281 | 325 [mECho 111 | 144 | 173 | 225 | 256 | 275 | 325 | 348
[OkEcho (UL)| 97 | 119 | 155 | 197 | 220 | 250 | 279 | 324 |okecho (UL | 109 | 140 | 169 | 215 | 252 | 270 | 315 | 340

[mxeEcho)| 83 | 100 | 143 | 181 | 200 | 228 | 252 | 280 [mxEcho (k)| 93 | 122 | 153 | 193 | 222 | 239 | 262 | 293
Number of Sinks Number of Sinks

Fig. 6. Event submission overheads for data sizes of 100 bytes and 1 Kbyte.

The graphs in Figure 6 compare the event submission overheads of these
three scenarios for 100b and 1Kbyte, where the overheads of ECho and KECho-
UL differ only minimally. This can be explained by the fact that ECho uses only

two system calls per sink for the submission of an event, where KECho requires
also two system calls, but that number is independent from the number of sinks.
Event submissions with KECho-KL show up to 15% (for 100b) and up to 20%
(for 1Kb) less overhead compared to ECho.

Table 1. Overheads and number of system calls

ECho KECho-UL KECho-KL

Channel Creation 850us (56) 182us (5) 170ps (=)
Channel Opening |approx. 1.5s (117) |approx. 1.5s (5)|approx. 1.5s (-)

Event Submission|100us (2 per sink) 95us (2) 85us (-)

Event Polling 32us (4) 40us (2) 5us (=)

Table 1 compares the performance of some of the functionality of KECho
(KECho-UL/KECho-KL) with the performance of the user-level implementation
ECho. Channel creation requires 850us in ECho, compared to 182us in KECho-
UL and 170us in KECho-KL. The large difference between kernel-level and user-
level approach can be explained by the number of system calls required for the
creation of a channel in ECho, which is 56, compared to 5 in KECho-UL. The
opening of a channel depends on the current number of subscribers, the network
transmission delays and other factors, however, typical values for this operation
are approximately 1.5s in all three cases. Event submission takes about 100us
per event subscriber for ECho, compared to 95us and 85us for KECho-UL and
KECho-UL, respectively. In ECho, the overhead for polling for new events is 32us
(4 system calls) compared to 40us (2 system calls) in KECho-UL. The reason
for this increase are some inefficiencies in the implementation which will be
addressed in our future work. However, the overhead for event polling in KECho-
KL decreases to only 5us. Note that while typical applications using ECho have
to periodically poll for new events, KECho is able to notify kernel threads almost
immediately of the arrival of a new event. This ability is investigated in the
following section.

5.2 Event Delivery

Events in KECho are pushed from event sources to event sinks. The network
monitoring module of KECho is able to immediately notify a waiting thread of
the arrival of such an event. Typical latencies measured from the arrival of an
event at a socket to the invocation of a handler function are in the range of
250-300us. In the case of ECho and KECho-UL, these latencies depend heavily
on the polling frequency, the systems load, and the scheduling priority of the
application receiving the event. However, ECalls ability to boost the scheduling
priority of an application that receives a newly arrived event can significantly
reduce these latencies. This cooperation between ECalls and the CPU scheduler
is described in detail in [5].

5.3 Filtering Overhead

The following measurements have been performed on a cluster of 4x200MHz
Pentium Pros, with 512MB RAM, connected via 100Mbps Ethernet, running
Linux 2.4.0.

The filtering functions (IN- and OUT-filter) serve to reduce processing and
network overhead depending on application-specific attributes, supplied by the
event producer and the event subscribers.

Event Filtering Filtering Overhead

1000 - W OUT-Filter

= IN-Filter
= OUT-Filter

OIN-Filter

Microseconds
Microseconds
o o »
> ® o N

o
S

o
N

o
°

o 1 2 3 a s 6 7 8 o 1 2 3 a 5 6 7 8
Blocked Events Blocked Events

Fig. 7. Filtering of events can reduce event submission and event handling overheads
(a), while the filtering overhead is only in the microsecond range (b).

The left graph in Figure 7 compares the advantages of event filtering with
IN- and OUT-filters. The left bars show the event handling overhead for a host
with 8 sinks, i.e., an incoming event is dispatched to all 8 sinks and the overhead
is approximately 950us (event handling in this example means copying of the
incoming event into a buffer and printing a time-stamp into a file). This overhead
can be reduced significantly when we use an IN-filter to block the event from
being dispatched to all 8 sinks, e.g., if only one sink receives the event, the
overhead is reduced to 312us. If the filter blocks the event completely (i.e., the
event is discarded), the overhead is a little more than 200us. The right bars
in the same graph compare a similar scenario, however, the overhead shown in
the graph is the overhead associated with event submission, when the number
of remote sinks is 8. The overhead in this example is 430us. However, when an
OUT-filter is being used to block the submission of the event to some servers,
this overhead can be reduced, e.g., if the event is submitted to only one sink, the
overhead is 156us. If the event is discarded (i.e., no sink will receive the event),
the overhead is 56us. The second graph in Figure 7 compares the overhead of

the IN- and OUT-filters that have been used for the results in the left graph.
Both the IN-filter and the OUT-filter use a number of simple if-else statements
to decide if an event has to be submitted/dispatched to a certain sink or not.
The overheads are independent of the number of events submitted or blocked
and are very low in the example shown here, e.g., approximately 1us for the
OUT-filter and 0.9us for the IN-filter.

5.4 Simulated Web Server Results

In this section we investigate the load balancing mechanism introduced in Sec-
tion 4 in more detail. Measurements have been performed on a cluster of 8 nodes,
acting as a web server cluster. Web servers receive requests at rates ranging from
20 to 50 requests per second. Each request requires a simulated web server to
perform processing for approximately 38ms. The first graph in Figure 8 shows
the response times (in milliseconds) without any load balancing compared to the
scenario where load balancing is being used. Requests in this experiment have a
time-out of 5s, leading to the leveling off at 5s of the first line in the graph, i.e.,
requests are either being handled within 5s after request receipt or discarded
otherwise. In the second scenario, we modify the server such that requests that
have been waiting for more than 2.5s are being forwarded to other servers in the
cluster. In these experiments, we assume that there is at least one server in the
cluster with utilization less than 10%.

Response Times Load Balancing Overhead (8 nodes)

6000 - 1400 7 —— Monitoring and Event Submission

——wi/o load balancing o Event Handiing
~=—w/ load balancing (local requests) ——Filtering
——w/ load balancing (forwarded requests)

1200 «\-/./-\.__-——-ﬂ——-___.,__-__.__-ﬁka
5000 -

1000
4000 -

3000

Milliseconds
Microseconds

2000 -

1000

o o
20 25 30 35 40 45 50 55 20 25 30 35 40 45 50
Requests per Second Requests per Second

Fig. 8. (a) Response times for a simulated web server cluster and (b) overheads of the
load balancing mechanism used in this experiment.

The second line in the graph (w/ load balancing - local requests) shows the
response times of all requests which are handled on the local node. This time, the

response times level off at 2.5 at request rates of approximately 33 per second.
The third line shows the response time of the requests being handled on remote
servers, which is slightly higher than the times measured at the local server due
to the overhead of two events being submitted and received (forwarded request
and request response). The second graph in Figure 8 analyzes the overhead for
the load balancing mechanism, which makes sure that only one other server
(dependent on load information collected from these servers) will receive the
forwarded request. The graph compares the overhead of three actions performed
by the load balancing mechanism: (i) the monitoring of CPU utilization and the
submission of events carrying this information, (ii) the handling of incoming CPU
information from other servers in the cluster, and (iii) the filtering necessary
to ensure the delivery of the forwarded request to the server with the lowest
utilization. The graph shows that all these overheads vary only minimally with
the number of requests, where the task of event handling is the most expensive
(approximately 70% of the total load balancing overhead).

The final experiment investigates the advantage of event filtering in more
detail. The OUT-filter introduced above forwards requests to the servers with low
load to ensure small response times. However, the frequency of load information
exchange among the nodes in a server cluster has an obvious influence on the load
balancing quality, i.e., if load information is not exchanged frequently enough,
the forwarding decision can be based on outdated information, which reduces
the effectiveness of load balancing.

Update Frequency Multiple Request Receivers

9000 O Request Forwarding 9000 5 W Filtering (IN)

OiFiltering O Request Forwarding
mEvent Handler

8000 8000 OIFiltering (OUT)
@ Monitoring/Submission W Event Handler
E Monitoring/Submission

7000 7000 -

6000 6000 -

5000 5000 -

4000 4000 -

3000 3000 -

2000 2000 -

o i] i i i

o o
1 2 3 4 5 1 2 3 a 5

Updates per Second Number of Receivers

Microseconds
Microseconds

Fig. 9. Comparison of update frequency of load information (a) and forwarding of
events to more than 1 server in the cluster (b).

The left graph in Figure 9 compares the overhead of load balancing dependent
on the frequency of load information events. The overhead is mainly due to the

event handling process, followed by the load monitoring and event submission
process. Smaller overheads are caused by the actual forwarding of the requests
and the filtering functions. The overhead increases rapidly with the number of
events exchanged per second, e.g., more than 8ms with a frequency of 5 events per
second. The right graph in Figure 9 compares the approach, where the frequency
of load events is kept constantly at 1 per second, however, the filter forwards the
request to up to 5 different servers. In other words, multiple servers in the cluster
respond to the event and only the first response is being used by the server that
issued the event carrying the forwarded request. Again, the event handling and
the load monitoring and event submission contribute most to the overheads,
however, the overhead increases only minimally with the number of event sinks.
The biggest increase in overhead is caused by the IN-filter, which has the task
of discarding duplicate responses. This experiment ignores the increased total
utilization in the whole cluster due to the request handling by multiple servers.
As an alternative to the solution suggested above, a server could issue a cancel
event to all other servers, that makes sure that only one server handles a request.
If several servers issue a cancel event, a time-stamp or some other criterion can
decide which server wins. This approach reduces the unnecessary processing on
the servers, however it increases the event communication by up to n cancel
events per forwarded request.

6 Conclusions

The need for globally managing system services is exemplified by previous work
on distributed resource management, on load balancing, and QoS mechanisms.
This paper addresses dynamic service management by providing a novel fa-
cility for inter-service cooperation in distributed systems. KECho is a kernel-
based publish/subscribe communication tool that supports anonymous and asyn-
chronous group communication. KECho’s main components are its lightweight
interface to user-level service realizations, a network monitor that minimizes the
latency of event delivery, and channel filters that allow kernel services and ap-
plications to intercept event submissions with the goal of minimizing network
traffic and optimizing system performance.

Our future work will investigate the two examples introduced in this paper
in more depth and analyze their performance compared to user-level solutions.
Further, we will extend KECho to support real-time events, thereby addressing
the substantial set of applications requiring real-time guarantees. In addition,
we will deploy KECho in the embedded, wireless system domains for which its
ability to access and use power, load, and network information is critical to the
success of this class of ubiquitous applications. Finally, while protection issues
have been ignored to this point, we are already investigating and implementing
protection mechanisms that will ensure the proper system operation in face of
misbehaving kernel extensions.

References

1. A. Rowstron, A-M. Kermarrec, P. Druschel, M. Castro: SCRIBE: The Design of a
Large-scale Event Notification Structure. Proc. of the 3rd Intl. Workshop on Net-
worked Group Communications, London, UK, 2001.

2. G. Eisenhauer, F. Bustamente, K. Schwan: Event Services for High Performance
Computing. Proc. of High Performance Distributed Computing, 2000.

3. T. H. Harrison, D. L. Levine, D. C. Schmidt: The Design and Performance of a Real-
time CORBA Object Event Service. Proc. of the OOPSLA ’97 Conference, Atlanta,
Georgia, October 1997 .

4. C. Ma, J. Bacon: COBEA: A CORBA-Based Event Architecture. Proc. of the Fourth
USENIX Conf. on Object-Oriented Technologies, Santa Fe, New Mexico, April 1998.

5. C. Poellabauer, K. Schwan, R. West: Coordinated CPU and Event Scheduling for
Distributed Multimedia Applications. Proc. of the 9th ACM Multimedia Conference,
Ottawa, Canada, October 2001.

6. C. Poellabauer, K. Schwan, R. West: Lightweight Kernel/User Communication for
Real-Time and Multimedia Applications. Proc. of the 11th International Workshop
on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV
2001), Port Jefferson, NY, June 2001.

7. T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus: Operating System Support for
Multimedia Systems. The Computer Communications Journal, Elsevier, Vol. 23, No.
3, February 2000, pp. 267-289.

8. A. Bestavros, M. Crovella, J. Liu, D. Martin: Distributed Packet Rewriting and its
Application to Scalable Web Server Architectures. Proc. of the 6th IEEE Interna-
tional Conference on Network Protocols, Austin, TX, October 1998.

9. A. D. Birrell, B. J. Nelson: Implementing Remote Procedure Calls. ACM Transac-
tions on Computer Systems, 2(1), February 1984.

10. Object Management Group: CORBAservices: Common Object Services Specifica-
tion, July 1997, (http://www.omg.org/).

11. D. Box: Understanding COM. Addison-Wesley, Reading, MA, 1997.

12. A. Wollrath, R. Riggs, J. Waldo: A Distributed Object Model for the Java System.
USENIX Computing Systems, vol. 9, November/December 1996.

13. F. Kon, T. Yamane, C. K. Hess, R. H. Campbell, M. D. Mickunas: Dynamic
Resource Management and Automatic Configuration of Distributed Component Sys-
tems. Proc. of USENIX COOTS 2001.

14. 1. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, A. Roy: A Distributed
Resource Management Architecture that Supports Advance Reservations and Co-
Allocation. In International Workshop on Quality of Service, 1999.

15. V. Cardellini, M. Colajanni, P. S. Yu: Dynamic Load Balancing on Web-server
Systems. IEEE Internet Computing, Vol. 3, No. 3, May/June 1999.

16. M. Aron, D. Sanders, P. Druschel, W. Zwaenepoel: Scalable Content-aware Request
Distribution in Cluster-based Network Servers. Proc. of the USENIX 2000 Annual
Technical Conference, San Diego, CA, June 2000.

17. D. Ivan-Rosu, K. Schwan: FARA— A Framework for Adaptive Resource Alloca-
tion in Complex Real-Time Systems. Proc. of the IEEE Real-Time Technology and
Applications Symposium, June 1998.

18. D. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, J. Walpole: A Feedback-
Driven Proportion Allocator for Real-Rate Scheduling. Proc. of the Third Symposium
on Operating System Design and Implementation, New Orleans, February 1999.

19. T. von Eicken, D. Culler, S. Goldstein, K. Schauser: Active Messages: A Mechanism
for Integrated Communication and Computation. Proc. of the 19th International
Symposium on Computer Architecture, pages 256-266, May 1992.

20. G. Hamilton and P. Kougiouris: The Spring Nucleus: A Microkernel for Objects.
Report Number: TR-93-14, April 1993.

