
Exogenous and Endogenous Extensions
of Architectural Types

Marco Bernardo and Francesco Franzè

Università di Urbino - Italy
Centro per l’Applicazione delle Scienze e Tecnologie dell’Informazione

Abstract. The problem of formalizing architectural styles has been re-
cently tackled with the introduction of the concept of architectural type.
The internal behavior of the system components can vary from instance
to instance of an architectural type in a controlled way, which preserves
the absence of deadlock related architectural mismatches proved via the
architectural compatibility and interoperability checks. In this paper we
extend the notion of architectural type by permitting a controlled vari-
ability of the component topology as well. This is achieved by means
of two kinds of topological extensions: exogenous and endogenous. An
exogenous extension consists of attaching a set of new topology compli-
ant components to a set of already existing components. An endogenous
extension consists of replacing a set of already existing components with
a set of new topology compliant components. We show that such a vari-
ability of the topology is still manageable from the analysis viewpoint.

1 Introduction

An important goal of the software architecture discipline [9, 10] is the creation of
an established and shared understanding of the common forms of software design.
Starting from the user requirements, the designer should be able to identify a
suitable organizational style, in order to capitalize on codified principles and
experience to specify, analyze, plan, and monitor the construction of a software
system with high levels of efficiency and confidence. An architectural style defines
a family of software systems having a common vocabulary of components as
well as a common topology and set of contraints on the interactions among the
components. Since an architectural style encompasses an entire family of software
systems, it is desirable to formalize the concept of architectural style both to have
a precise definition of the system family and to study the architectural properties
common to all the systems of the family. This is not a trivial task because there
are at least two degrees of freedom: variability of the component topology and
variability of the component internal behavior.

Some papers have appeared in the literature that address the formaliza-
tion of the architectural styles. In [1] a formal framework based on Z has been
provided for precisely defining architectural styles and analyzing within and be-
tween different architectural styles. This is accomplished by means of a small
set of mappings from the syntactic domain of architectural descriptions to the

semantic domain of architectural meaning, following the standard denotational
approach developed for programming languages. In [6] a syntactic theory of
software architecture has been presented that is based on set theory, regular ex-
pressions, and context free grammars. Architectural styles have been categorized
through the typing of the nodes and the connections in the diagrammatic syntax
as well as a pattern matching mechanism. In [8] architectural styles have been
represented as logical theories and a method has been introduced for the step-
wise refinement of an abstract architecture into a relatively correct lower level
one. In [3] a process algebraic approach is adopted. In such an approach the
description of an architectural style via Wright [2] comprises the definition of
component and connector types with a fixed internal behavior as well as topolog-
ical constraints, whereas the component and connector instances and the related
attachments are separately specified in the configurations of the style, so that
the set of component and connector instances and the related attachments can
vary from configuration to configuration. Also in [4] a process algebraic approach
is adopted. An intermediate abstraction called architectural type is introduced,
which denotes a set of software architectures with the same topology that differ
for the internal behavior of their architectural elements and satisfy the same
architectural compatibility and interoperability properties [5].

The purpose of this paper is to make the notion of architectural type of [4]
closer to the notion of architectural style through a controlled variability of the
topology that preserves the properties of [5]. We propose two kinds of topolog-
ical extensions: exogenous and endogenous. An exogenous extension consists of
attaching a set of new topology compliant components to a set of already ex-
isting components. An endogenous extension instead consists of replacing a set
of already existing components with a set of new topology compliant compo-
nents. Besides giving rise to scalable architectural specifications, we show that
such a controlled variability of the topology is still manageable from the analysis
viewpoint, as the absence of deadlock related architectural mismatches proved
via the architectural compatibility and interoperability checks scales w.r.t. the
number of new components for all the exogenous extensions as well as for all the
endogenous extensions satisfying a certain contraint. Finally, we prove that the
endogenous extensions are more expressive than the exogenous ones.

This paper is organized as follows. In Sect. 2 we recall syntax, semantics, and
architectural checks for PADL, a process algebra based ADL for the description
of architectural types. In Sect. 3 and 4 we enrich PADL with exogenous and
endogenous extensions, respectively, and we investigate the scalability of the
architectural checks. Finally, in Sect. 5 we discuss some future work.

2 PADL: A Process Algebra Based ADL

In this section we recall the syntax, the semantics, and the architectural checks
for PADL, a process algebra based ADL for the compositional, graphical, and
hierarchical modeling of architectural types. For a complete presentation and
comparisons with related work, the reader is referred to [4, 5].

The set of process terms of the process algebra PA on which PADL is based
is generated by the following syntax

E ::= 0 | a.E | E/L | E[ϕ] | E + E | E ‖S E | A
where a belongs to a set Act of actions including a distinguished action τ for
unobservable activities, L, S ⊆ Act − {τ}, ϕ belongs to a set ARFun of action
relabeling functions preserving observability (i.e., ϕ−1(τ) = {τ}), and A belongs
to a set Const of constants each possessing a (possibly recursive) defining equa-
tion of the form A

∆= E. In the syntax above, “0” is the term that cannot execute
any action. Term a.E can execute action a and then behaves as term E. Term
E/L behaves as term E with each executed action a turned into τ whenever
a ∈ L. Term E[ϕ] behaves as term E with each executed action a turned into
ϕ(a). Term E1 +E2 behaves as either term E1 or term E2 depending on whether
an action of E1 or an action of E2 is executed. Term E1 ‖S E2 asynchronously
executes actions of E1 or E2 not belonging to S and synchronously executes
equal actions of E1 and E2 belonging to S. The action prefix operator and the
alternative composition operator are called dynamic operators, whereas the hid-
ing operator, the relabeling operator, and the parallel composition operator are
called static operators. A term is called sequential if it is composed of dynamic
operators only. The notion of equivalence that we consider for PA is the weak
bisimulation equivalence [7], denoted ≈B, which captures the ability of two terms
to simulate each other behaviors up to τ actions.

A description in PADL represents an architectural type (AT). Each AT is
defined as a function of its architectural element types (AETs) and its architec-
tural topology. An AET is defined as a function of its behavior, specified either
as a family of PA sequential terms or through an invocation of a previously
defined AT, and its interactions, specified as a set of PA actions. The architec-
tural topology is specified through the declaration of a fixed set of architectural
element instances (AEIs), a fixed set of architectural interactions (AIs) given
by some interactions of the AEIs that act as interfaces for the whole AT, and a
fixed set of directed architectural attachments (DAAs) among the interactions of
the AEIs. Every interaction is declared to be an input interaction or an output
interaction and the DAAs must respect such a classification: every DAA must
involve an output interaction and an input interaction of two different AEIs.
Every interaction that is not an AI must be involved in at least one DAA. In
order to allow for multi AEI synchronizations, every interaction can be involved
in several DAAs, provided that no autosynchronization arises, i.e. no chain of
DAAs is created that starts from an interaction of an AEI and terminates on an
interaction of the same AEI.

We show in Table 1 a PADL textual description for a pipe-filter system. The
system is composed of three identical filters and one pipe. Each filter acts as a
service center of capacity two that is subject to failures and subsequent repairs.
For each item processed by the upstream filter, the pipe forwards it to one of
the two downstream filters according to the availability of free positions in their
buffers. If both have free positions, the choice is resolved nondeterministically.

The same system is depicted in Fig. 1 through the PADL graphical notation,
which is based on flow graphs [7].

archi type PipeFilter

archi elem types

elem type FilterT

behavior Filter
∆
= accept item.Filter ′ +

fail .repair .Filter

Filter ′
∆
= accept item.Filter ′′ +

serve item.Filter +
fail .repair .Filter ′

Filter ′′
∆
= serve item.Filter ′ +

fail .repair .Filter ′′

interactions input accept item
output serve item

elem type PipeT

behavior Pipe
∆
= accept item.(forward item1.Pipe +

forward item2.Pipe)
interactions input accept item

output forward item1

output forward item2

archi topology
archi elem instances F0, F1, F2 : FilterT

P : PipeT
archi interactions input F0.accept item

output F1.serve item, F2.serve item
archi attachments from F0.serve item to P.accept item

from P.forward item1 to F1.accept item
from P.forward item2 to F2.accept item

end

Table 1. Textual description of PipeFilter

The semantics of a PADL specification is given by translation into PA in two
steps. In the first step, the semantics of all the instances of each AET is defined
to be the behavior of the AET projected onto its interactions.

Definition 1. Given a PADL specification, let C be an AET with behavior E
and interaction set I. The semantics of C and its instances is defined by

[[C]] = E/(Act − {τ} − I)

In our pipe-filter example we have
[[FilterT]] = [[F0]] = [[F1]] = [[F2]] = Filter/{fail , repair}
[[PipeT]] = [[P]] = Pipe

����

�
�
�
�
�
�

�
�
�
�
�
�

���� ����

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

0F : FilterT

P : PipeT

1F : FilterT 2F : FilterT

accept_item accept_item

serve_itemserve_item

accept_item

serve_item

accept_item

forward_item1 2forward_item

Fig. 1. Flow graph of PipeFilter

In the second step, the semantics of an AT is obtained by composing in par-
allel the semantics of its AEIs according to the specified DAAs. In our pipe-filter
example we have

[[PipeFilter]] = [[F0]][serve item 7→ a] ‖∅
[[F1]][accept item 7→ a1] ‖∅

[[F2]][accept item 7→ a2] ‖{a,a1,a2}
[[P]][accept item 7→ a,

forward item1 7→ a1, forward item2 7→ a2]

where the use of the relabeling operator is necessary to make the AEIs interact. In
general, let C1, . . . , Cn be AEIs of an AT, with interaction sets IC1 , . . . , ICn con-
taining the AI setsAIC1 , . . . ,AICn , respectively. Let i, j, k range over {1, . . . , n}.
We say that Ci.a1 is connected to Cj .a2 iff either there is a DAA between them,
or there exists an interaction a3 of Ck such that Ci.a1 is connected to Ck.a3 and
there is a DAA between Ck.a3 and Cj .a2. We say that a subset of interactions
of C1, . . . , Cn is connected iff they are pairwise connected via DAAs involving
interactions of C1, . . . , Cn only and the subset is maximal. Since the actions of a
connected subset of interactions must be identically relabeled in order to result
in a synchronization at the semantic level, denoted by ICi;C1,...,Cn ⊆ ICi the
subset of interactions of Ci attached to C1, . . . , Cn, let S(C1, . . . , Cn) be a set
of as many fresh actions as there are connected subsets of interactions among
the considered AEIs, let ϕCi;C1,...,Cn : ICi;C1,...,Cn −→ S(C1, . . . , Cn) be injec-
tive relabeling functions such that ϕCi;C1,...,Cn(a1) = ϕCj ;C1,...,Cn(a2) iff Ci.a1

is connected to Cj .a2, and let S(Ci; C1, . . . , Cn) = ϕCi;C1,...,Cn(ICi;C1,...,Cn) and
S(Ci, Cj ;C1, . . . , Cn) = S(Ci; C1, . . . , Cn) ∩ S(Cj ; C1, . . . , Cn).

Definition 2. Let C1, . . . , Cn be AEIs of an AT. The closed and the open in-
teracting semantics of Ci restricted to C1, . . . , Cn are defined by

[[Ci]]cC1,...,Cn
= [[Ci]] / (Act − {τ} − ICi;C1,...,Cn) [ϕCi;C1,...,Cn]

[[Ci]]oC1,...,Cn
= [[Ci]] / (Act − {τ} − (ICi;C1,...,Cn ∪ AICi)) [ϕCi;C1,...,Cn]

Definition 3. Let C1, . . . , Cn be AEIs of an AT. The closed and the open in-
teracting semantics of the set of AEIs are defined by

[[C1, . . . , Cn]]c = [[C1]]cC1,...,Cn
‖S(C1,C2;C1,...,Cn)

[[C2]]cC1,...,Cn
‖S(C1,C3;C1,...,Cn)∪S(C2,C3;C1,...,Cn) . . .

. . . ‖∪n−1
i=1 S(Ci,Cn;C1,...,Cn) [[Cn]]cC1,...,Cn

[[C1, . . . , Cn]]o = [[C1]]oC1,...,Cn
‖S(C1,C2;C1,...,Cn)

[[C2]]oC1,...,Cn
‖S(C1,C3;C1,...,Cn)∪S(C2,C3;C1,...,Cn) . . .

. . . ‖∪n−1
i=1 S(Ci,Cn;C1,...,Cn) [[Cn]]oC1,...,Cn

Definition 4. The semantics of an AT A with AEIs C1, . . . , Cn is defined by
[[A]] = [[C1, . . . , Cn]]o

A PADL description represents a family of software architectures called an
AT. An instance of an AT can be obtained by invoking the AT and passing
actual behavior preserving AETs and actual names for the AIs, whereas it is not
possible to pass an actual topology. This restriction allows us to efficiently check
whether an AT invocation conforms to an AT definition.

Definition 5. Let A(C′1, . . . , C′m; a′1, . . . , a
′
l) be an invocation of the AT A de-

fined with formal AETs C1, . . . , Cm and AIs a1, . . . , al. C′i is said to conform to
Ci iff there exist an injective relabeling function ϕ′i for the interactions of C′i and
an injective relabeling function ϕi for the interactions of Ci such that

[[C′i]][ϕ′i] ≈B [[Ci]][ϕi]

Definition 6. Let A(C′1, . . . , C′m; a′1, . . . , a
′
l) be an invocation of the AT A de-

fined with formal AETs C1, . . . , Cm and AIs a1, . . . , al. If C′i conforms to Ci for
all i = 1, . . . , m, then the semantics of the AT invocation is defined by

[[A(C′1, . . . , C′m; a′1, . . . , a
′
l)]] = [[A]][a1 7→ a′1, . . . , al 7→ a′l]

Theorem 1. Let A(C′1, . . . , C′m; a′1, . . . , a
′
l) be an invocation of the AT A defined

with formal AETs C1, . . . , Cm and AIs a1, . . . , al and let C ′1, . . . , C
′
n be the AEIs

of the AT invocation. If C′i conforms to Ci for all i = 1, . . . ,m, then there exist
an injective relabeling function ϕ′ for the interactions of the AT invocation and
an injective relabeling function ϕ for the interactions of the AT definition such
that [[C ′1, . . . , C

′
n]]o[ϕ′] ≈B [[A]][ϕ].

PADL is equipped with two checks for the detection of architectural mis-
matches resulting in deadlocks when combining deadlock free AEIs. The first
check (compatibility) is concerned with the well formedness of acyclic ATs, while
the second check (interoperability) is concerned with the well formedness of sets
of AEIs forming a cycle. Both checks are preserved by conformity.

Definition 7. Given an acyclic AT, let C1, . . . , Cn be the AEIs attached to AEI
K. Ci is said to be compatible with K iff

[[K]]cK,C1,...,Cn
‖S(K;K,C1,...,Cn) [[Ci]]cK,C1,...,Cn

≈B [[K]]cK,C1,...,Cn

Theorem 2. Given an acyclic AT, let C1, . . . , Cn be the AEIs attached to AEI
K. If [[K]]cK,C1,...,Cn

is deadlock free and Ci is compatible with K for all i =
1, . . . , n, then

[[K;C1, . . . , Cn]] = [[K]]cK,C1,...,Cn
‖S(K;K,C1,...,Cn)

[[C1]]cK,C1,...,Cn
‖S(K;K,C1,...,Cn) . . .

. . . ‖S(K;K,C1,...,Cn) [[Cn]]cK,C1,...,Cn

is deadlock free.

Corollary 1. Given an acyclic AT, if every restricted closed interacting se-
mantics of each AEI is deadlock free and every AEI is compatible with each AEI
attached to it, then the AT is deadlock free.

Definition 8. Given an AT, let C1, . . . , Cn be AEIs forming a cycle. Ci is said
to interoperate with C1, . . . , Ci−1, Ci+1, . . . , Cn iff

[[C1, . . . , Cn]]c/(Act − {τ} − S(Ci; C1, . . . , Cn)) ≈B [[Ci]]cC1,...,Cn

Theorem 3. Given an AT, let C1, . . . , Cn be AEIs forming a cycle. If there
exists Ci such that [[Ci]]cC1,...,Cn

is deadlock free and Ci interoperates with C1, . . . ,
Ci−1, Ci+1, . . . , Cn, then [[C1, . . . , Cn]]c is deadlock free.

Theorem 4. Let A(C′1, . . . , C′m; a′1, . . . , a
′
l) be an invocation of the AT A defined

with formal AETs C1, . . . , Cm and AIs a1, . . . , al. If C′i conforms to Ci for all
i = 1, . . . , m, then the AT invocation and the AT definition have the same com-
patibility and interoperability properties.

3 Exogenous Extensions

The instances of an AT can differ for the internal behavior of their AETs. How-
ever, it is desirable to have some form of variability in the topology as well. As an
example, consider the pipe-filter system of Sect. 2. Every instance of such an AT
can admit a single pipe connected to one upstream filter and two downstream
filters, whereas it would be desirable to be able to express by means of that AT
any pipe-filter system with an arbitrary number of filters and pipes, such that
every pipe is connected to one upstream filter and two downstream filters. E.g.,
the flow graph in Fig. 2 should be considered as a legal extension of the flow
graph in Fig. 1. The idea is that, since the AIs of an AT are the frontier of the
whole AT, it is reasonable to extend the AT at some of its AIs in a way that
follows the prescribed topology. This cannot be done at a simple interaction be-
cause every simple interaction must occur in at least one DAA, hence it cannot
be free.

An exogenous extension of an AT can take place only at a set K1, . . . ,Kn

of AEIs having one or more AIs and consists of attaching a set of new AEIs to
one or more AIs of each of K1, . . . , Kn in a controlled way. By controlled way
we mean that the addendum topologically conforms to the AT, i.e.:

�
�
�
�
�
�

�
�
�
�
�
�

���� ����

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

���� ����

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

����

�
�
�
�
�
�

�
�
�
�
�
�

1F : FilterT 2F : FilterT

0F : FilterT

forward_item1 2forward_item

accept_item

accept_item accept_item

serve_itemserve_item

serve_item

accept_item

forward_item1 2forward_item

accept_item accept_item

serve_itemserve_item

serve_item

accept_item

forward_item1 2forward_item

accept_item

F : FilterT F : FilterT F : FilterT F : FilterT3 4 5 6

P’ : PipeT P’’ : PipeT

accept_item

serve_item

accept_item

P : PipeT

Fig. 2. Flow graph of an exogenous extension of PipeFilter

1. For each AEI C in the addendum, there is a corresponding AEI corr(C) in
the AT such that C has the same type as corr(C) and an interaction a of
C is simple/architectural iff the corresponding interaction a of corr(C) is
simple/architectural. Every AI in the addendum must be equal to one of the
AIs of K1, . . . ,Kn involved in the extension.

2. For each AEI C and for each simple interaction a of C in the addendum,
there are an AEI C ′ and a DAA from C.a (C ′.a′) to C ′.a′ (C.a) in the
addendum iff there is a DAA from corr(C).a (corr(C ′).a′) to corr(C ′).a′

(corr(C).a) in the AT.
3. For each AEI Ki, 1 ≤ i ≤ n, there is an AEI K ′

i with the same type as Ki in
the AT such that, for each AI a of Ki, there are an AEI C ′ in the addendum
and a DAA from Ki.a (C ′.a′) to C ′.a′ (Ki.a) iff there is a DAA from K ′

i.a
(corr(C ′).a′) to corr(C ′).a′ (K ′

i.a) in the AT, in which case the AI a of Ki

is made simple.

The first constraint makes sure that no instances of new AETs are present in the
addendum and that only the AIs of K1, . . . , Kn involved in the extension prop-
agate to the addendum. The second constraint guarantees that the addendum
follows the same topological pattern prescribed by the AT. The third constraint
ensures that the DAAs between the involved AEIs on the frontier of the AT
and the addendum is consistent with the topological pattern prescribed by the
AT. As can be noted, an exogenous extension never introduces a DAA between
two interactions a1, a2 of two different AEIs C1, C2 of the addendum if no two

interactions a1, a2 of two different AEIs of the same type as C1, C2 are attached
in the AT. In other words, an exogenous extension fully preserves the type of
the DAAs. We finally observe that an exogenous extension does not necessarily
take place at a single AEI having AIs, but can involve several AEIs having AIs.
As an example, consider a variant PipeFilter ′ of the AT PipeFilter in which the
pipe has two upstream filters instead of a single one. In that case, an exogenous
extension must involve both upstream or downstream filters.

Exogenous extensions are syntactically expressed in an AT invocation by
passing an actual topology between the actual AETs and the actual names for
the AIs. Such an actual topology is given by four arguments that declare the
actual AEIs, the actual AIs, the actual DAAs, and the exogenous extensions, re-
spectively. As an example, we provide below the invocation of the AT PipeFilter
that gives rise to the flow graph in Fig. 2:

PipeFilter(FilterT ,PipeT ;
F0, F1, F2 : FilterT , P : PipeT ;
F0.accept item, F1.serve item, F2.serve item;
from F0.serve item to P.accept item,
from P.forward item1 to F1.accept item,
from P.forward item2 to F2.accept item;
exo(F3, F4 : FilterT , P ′ : PipeT ;

subst F3.serve item, F4.serve item for F1.serve item;
from F1.serve item to P ′.accept item,
from P ′.forward item1 to F3.accept item,
from P ′.forward item2 to F4.accept item;
),

exo(F5, F6 : FilterT , P ′′ : PipeT ;
subst F5.serve item, F6.serve item for F2.serve item;
from F2.serve item to P ′′.accept item,
from P ′′.forward item1 to F5.accept item,
from P ′′.forward item2 to F6.accept item;
);

accept , serve, serve, serve, serve)
An AT invocation has the following six semicolon separated arguments:

1. The first argument is the list of actual AETs, which must conform to the
corresponding formal AETs as established in Def. 5. In the invocation above,
the actual AETs coincide with the formal AETs.

2. The second argument is the list of actual AEIs, whose number and types
must match the number and types of the corresponding formal AEIs. In the
invocation above, the actual AEIs coincide with the formal AETs.

3. The third argument is the list of actual prefixed AIs, whose number and
prefixes must match the number and prefixes of the corresponding formal
AIs. In the invocation above, the actual AIs coincide with the formal AIs.

4. The fourth argument is the list of actual DAAs, whose number and directions
must match the number and directions of the corresponding formal DAAs.
In the invocation above, the actual DAAs coincide with the formal DAAs.

5. The fifth argument is the list of exogenous extensions. Each exogenous ex-
tension has the following four semicolon separated arguments:

(a) The first argument is the list of additional AEIs, whose types must occur
in the list of actual AETs of the AT invocation. The number and types
of such additional AEIs must allow the topological pattern prescribed
by the AT to be preserved. In the invocation above, both exogenous
extensions declare two additional instances of FilterT and one additional
instance of PipeT .

(b) The second argument is the list of substitutions of prefixed additional AIs
for previously declared prefixed AIs, where all the prefixes/interactions in
a substitution must be of the same type/equal and an AI can be replaced
only once in an AT invocation thus becoming a simple interaction. Such
substitutions must follow the topological pattern prescribed by the AT.
In the invocation above, both exogenous extensions substitute the two
serve item interactions of the two additional instances of FilterT for the
serve item interaction of one of the two original downstream instances
of FilterT .

(c) The third argument is the list of additional DAAs, which must connect
the replaced AIs with the interactions of the additional AEIs as well
as the additional AEIs with themselves. Such DAAs must follow the
topological pattern prescribed by the AT. In the invocation above, both
exogenous extensions declare three DAAs: one from one of the two origi-
nal downstream instances of FilterT to the additional instance of PipeT ,
one from the additional instance of PipeT to one of the two additional
instances of FilterT , and one from the additional instance of PipeT to
the other additional instance of FilterT .

(d) The fourth argument is the list of exogenous extensions to the current
exogenous extension, i.e. those exogenous extensions that can take place
at the AIs declared in the substitutions of the current exogenous ex-
tension. In the invocation above, both exogenous extensions declare no
nested exogenous extension. A nested exogenous extension would be de-
clared if e.g. F3 in Fig. 2 were attached to an instance of PipeT attached
in turn to two downstream instances of FilterT .

6. The sixth argument is the list of actual names for the AIs, whose number
must match the number of AIs declared in the third argument according to
their possibly nested substitutions. In the invocation above, we have five AIs
with the last four equally renamed, which means that the software compo-
nent whose behavior is given by the AT invocation has just two interactions.

We finally investigate whether the compatibility and interoperability results
proved on an AT scale to all of its exogenous extensions. In the case of the
architectural compatibility check, which is concerned with acyclic ATs, we always
get the desired scalability from an AT to all of its exogenous extensions provided
that no cycles are introduced. Note that cycles can be introduced in an acyclic
AT when performing an exogenous extension, as is the case with PipeFilter ′.

Theorem 5. Given an acyclic AT, let C1, . . . , Cn be the AEIs attached to AEI
K. If [[K]]cK,C1,...,Cn

is deadlock free, Ci is compatible with K for all i = 1, . . . , n,
and every further AEI that can be attached to K through an acyclic exogenous
extension is compatible with K, then [[K; C1, . . . , Cn]] and all of its acyclic ex-
ogenous extensions involving K are deadlock free.

Proof. The first part of the result stems directly from Thm. 2. The second part of
the result is trivial if K has no AIs. If K has AIs and an arbitrary acyclic exoge-
nous extension involves some of them, then the corresponding acyclic exogenous
extension of [[K; C1, . . . , Cn]] is deadlock free by virtue of Thm. 2, because Ci

is compatible with K for all i = 1, . . . , n and every AEI attached to K in the
acyclic exogenous extension is compatible with K by hypothesis.

Corollary 2. Given an acyclic AT, if every restricted closed interacting seman-
tics of each AEI is deadlock free and every AEI is compatible with each AEI at-
tached to it, then the AT and all of its acyclic exogenous extensions are deadlock
free.

Proof. It follows from the theorem above and the three constraints that estab-
lish that any addendum must topologically conform to the AT. In particular, we
observe that the third constraint provides the additional information required by
the theorem above about the satisfaction of the compatibility condition on the
frontier of K.

In the case of the architectural interoperability check, which is concerned
with cyclic ATs, we obtain the desired scalability (for individual cycles) from an
AT to all of its exogenous extensions, because attaching an addendum to one
or more AEIs in the cycle does not alter the interoperability of the AEIs within
the cycle.

Theorem 6. Given an AT, let C1, . . . , Cn be AEIs forming a cycle. If there
exists Ci such that [[Ci]]cC1,...,Cn

is deadlock free and Ci interoperates with C1, . . . ,
Ci−1, Ci+1, . . . , Cn, then [[C1, . . . , Cn]]c is deadlock free even in the presence of
an exogenous extension involving some of C1, . . . , Cn.

As an example of application of the architectural checks above, let us consider
the AT PipeFilter . It is easy to see that F0, F1, F2 are all compatible with P ,
hence we can conclude by Thm. 2 that [[PipeFilter]] is deadlock free. Let us now
consider the exogenous extension of PipeFilter depicted in Fig. 2. By applying
Thm. 5 to F1 and F2, we obtain that [[F1;P, P ′]] and [[F2; P, P ′′]] are deadlock
free. By subsequently applying Cor. 2, we further obtain that every exogenous
extension of PipeFilter is deadlock free, hence so is in particular the one in Fig. 2.

4 Endogenous Extensions

Besides exogenous extensions, there are other desirable forms of variability in
the topology of an AT. As an example, let us consider Table 2, which provides a

archi type Ring

archi elem types

elem type InitStationT

behavior InitStation
∆
= start .InitStation ′′

InitStation ′
∆
= receive.process.InitStation ′′

InitStation ′′
∆
= send .InitStation ′

interactions input receive
output send

elem type StationT

behavior Station
∆
= receive.process.send .Station

interactions input receive
output send

archi topology
archi elem instances IS : InitStationT

S1, S2, S3 : StationT
archi interactions
archi attachments from IS .send to S1.receive

from S1.send to S2.receive
from S2.send to S3.receive
from S3.send to IS .receive

end

Table 2. Textual description of Ring

PADL description of a ring of stations each following the same protocol: wait for
a message from the previous station in the ring, process the received message, and
send the processed message to the next station in the ring. Since such a protocol
guarantees that only one station can transmit at a given instant, the protocol
can be considered as an abstraction of the IEEE 802.5 standard medium access
control protocol for local area networks known as token ring. One of the stations
is designated to be the initial one, in the sense that it is the first station allowed
to send a message. The PADL description in Table 2 declares one instance of
the initial station and three instances of the normal station. Every instance of
the AT Ring can thus admit a single initial station and three normal stations
connected to form a ring, whereas it would be desirable to be able to express by
means of that AT any ring system with an arbitrary number of normal stations.
E.g., the flow graph in Fig. 3 should be considered as a legal extension of the
AT Ring . The idea is that of replacing a set of AEIs with a set of new AEIs
following the topology prescribed by the AT. In this case, we consider the frontier
of the AT w.r.t. one of the replaced AEIs to be the set of interactions previously
attached to the simple interactions of the replaced AEI. On the other hand, all

the replacing AEIs that will be attached to the frontier of the AT w.r.t. one of
the replaced AEIs must be of the same type as the replaced AEI.

An endogenous extension of an AT can take place at a set K1, . . . , Kn of
AEIs, with Ki attached to Ki,1, . . . ,Ki,ni for all i = 1, . . . , n, and consists of
substituting a set S of AEIs for K1, . . . ,Kn in a controlled way. By controlled
way we mean that S topologically conforms to the AT, i.e.:

1. For each AEI C in S, there is a corresponding AEI corr(C) in the AT
such that C has the same type as corr(C) and an interaction a of C is
simple/architectural iff the corresponding interaction a of corr(C) is sim-
ple/architectural. Every AI in S must be equal to one of the AIs of K1, . . . , Kn.

2. For each AEI C and for each simple interaction a of C in S, there are an
AEI C ′ and a DAA from C.a (C ′.a′) to C ′.a′ (C.a) in S iff there is a DAA
from corr(C).a (corr(C ′).a′) to corr(C ′).a′ (corr(C).a) in the AT.

3. For each AEI Ki,j , 1 ≤ i ≤ n, 1 ≤ j ≤ ni, and for each interaction a of Ki,j

attached to an interaction a′ of Ki in the AT, there are an AEI C ′ with the
same type as Ki in S and a DAA from Ki,j .a (C ′.a′) to C ′.a′ (Ki,j .a). If
C ′.a′ is an AI, it is made simple.

The three constraints above are similar to those for the exogenous extensions.
The only difference is in the third constraint, which is now simpler because of
the requirement that C ′ has the same type as Ki.

Similarly to exogenous extensions, when invoking an AT the endogenous ex-
tensions are syntactically expressed through four additional arguments for the
actual topology. As an example, we provide below the invocation of the AT Ring
that gives rise to the flow graph in Fig. 3:

Ring(InitStationT ,StationT ;
IS : InitStationT , S1, S2, S3 : StationT ;
;
from IS .send to S1.receive,
from S1.send to S2.receive,
from S2.send to S3.receive,
from S3.send to IS .receive;
endo(subst S′2, S

′′
2 : StationT for S2 : StationT ;

;
from S1.send to S′2.receive,
from S′2.send to S′′2 .receive,
from S′′2 .send to S3.receive;
);

)
The fifth argument above is the list of endogenous extensions, which can be
interleaved with the exogenous extensions. Each endogenous extension has the
following four semicolon separated arguments:

1. The first argument is the substitution of new AEIs for previously declared
AEIs, where the types of the replacing AEIs must occur in the list of actual
AETs of the AT invocation and an AEI can be replaced only once in an AT

invocation. The number and types of such replacing AEIs must allow the
topological pattern prescribed by the AT to be preserved. In the invocation
above, S′2 and S′′2 substitute for S2.

2. The second argument is the list of substitutions of prefixed additional AIs
for previously declared AIs of the replaced AEIs that consequently become
simple, where all the prefixes/interactions in a substitution must be of the
same type/equal. Such substitutions must follow the topological pattern pre-
scribed by the AT. In the invocation above, there are no AI substitutions as
there are no AIs.

3. The third argument is the list of DAAs. Some of them replaces the DAAs
involving the replaced AEIs (see those from S1 to S′2 and from S′′2 to S3),
while the others are new DAAs connecting the replacing AEIs (see the one
from S′2 to S′′2). Such DAAs must follow the topological pattern prescribed
by the AT.

4. The fourth argument is the list of endogenous/exogenous extensions to the
current exogenous extension, i.e. those extensions that can take place at the
AEIs/AIs declared in the substitutions of the current endogenous extension.
In the invocation above, there are no nested extensions.

receive

receive

receive

receive

receive

IS : InitStationT

1S : StationT S : StationT3

send

send

send

2S’ : StationT 2

send

send
S’’ : StationT

Fig. 3. Flow graph of an endogenous extension of Ring

We finally investigate whether the compatibility and interoperability results
proved on an AT scale to all of its endogenous extensions. In the case of the
architectural compatibility check, which is concerned with acyclic ATs, we always
get the desired scalability from an AT to all of its endogenous extensions provided
that no cycles are introduced. Note that cycles can be introduced in an acyclic
AT when performing an endogenous extension, as is the case with PipeFilter ′ if
we perform an endogenous extension at both downstream filters.

Theorem 7. Given an acyclic AT, let C1, . . . , Cn be the AEIs attached to AEI
K. If [[K]]cK,C1,...,Cn

is deadlock free and Ci is compatible with K for all i =

1, . . . , n, then [[K; C1, . . . , Cn]] and all of its acyclic endogenous extensions taking
place at some among C1, . . . , Cn are deadlock free.

Proof. The first part of the result stems directly from Thm. 2. Suppose now that
an endogenous extension takes place at Ci1 , . . . , Cim

with 1 ≤ i1, . . . , im ≤ n.
Since for each ij the new AEI C ′ij

attached to K in place of Cij must be of the
same type as Cij

, the second part of the result follows by virtue of Thm. 2.

Corollary 3. Given an acyclic AT, if every restricted closed interacting se-
mantics of each AEI is deadlock free and every AEI is compatible with each
AEI attached to it, then the AT and all of its acyclic endogenous extensions are
deadlock free.

Proof. It follows from the theorem above and the three constraints that establish
that any replacing set of AEIs must topologically conform to the AT.

In the case of the architectural interoperability check, which is concerned
with cyclic ATs, we obtain the desired scalability (for individual cycles) from
an AT only to those of its endogenous extensions such that the set of replacing
AEIs is weakly bisimilar to the set of replaced AEIs.

Theorem 8. Given an AT, let C1, . . . , Cn be AEIs forming a cycle. If there ex-
ists Ci such that [[Ci]]cC1,...,Cn

is deadlock free and Ci interoperates with C1, . . . ,
Ci−1, Ci+1, . . . , Cn, then [[C1, . . . , Cn]]c is deadlock free and so is each of its en-
dogenous extensions substituting C ′1, . . . , C

′
m′ for Cj1 , . . . , Cjm , with 1 ≤ j1, . . . ,

jm ≤ n, such that, denoted by I ′ the set of simple interactions of C ′1, . . . , C
′
m′ that

are not attached to the interactions of the AEIs formerly attached to Cj1 , . . . , Cjm ,
there exist two relabelings ϕ and ϕ′, which may not be injective only on the AIs of
C ′1, . . . , C

′
m′ , such that [[C ′1, . . . , C

′
m′]]cC′1,...,C′

m′
/I ′[ϕ′] ≈B [[Cj1 , . . . , Cjm]]cC1,...,Cn

[ϕ].

Proof. The first part of the result stems directly from Thm. 3. If an endogenous
extension takes place at Cj1 , . . . , Cjm , then the resulting extended cycle is still
deadlock free, because the original cycle is deadlock free by Thm. 3, the extended
cycle is weakly bisimilar to the original one as [[C ′1, . . . , C

′
m′]]cC′1,...,C′

m′
/I ′[ϕ′] ≈B

[[Cj1 , . . . , Cjm]]cC1,...,Cn
[ϕ] and ≈B is a congruence w.r.t. the static operators, and

≈B preserves deadlock freedom.

As an example of application of the architectural checks above, let us consider
the AT Ring . It is easy to see that each of IS , S1, S2, S3 is deadlock free and
interoperates with the others, hence we get from Thm. 3 that [[Ring]] is deadlock
free. Let us now consider the endogenous extension of Ring depicted in Fig. 3.
Since [[S′2, S

′′
2]]cS′2,S′′2

is weakly bisimilar to [[S2]]cIS ,S1,S2,S3
up to relabeling when

the interactions in the DAAs between S′2 and S′′2 are hidden, from Thm. 8 we
obtain that the endogenous extension of Ring in Fig. 3 is deadlock free.

We conclude by observing the endogenous extensions are more expressive
than the exogenous ones.

Theorem 9. Given an AT, each of its exogenous extensions has an associated
endogenous extension such that the two corresponding invocations of the AT
result in the same instance of the AT.

Proof. Given an arbitrary exogenous extension of the AT, its associated endoge-
nous extension takes place at the AEIs whose AIs are involved in the exogenous
extension, and it is obtained by considering as set of new AEIs the same new
AEIs as the exogenous extension together with, for each AEI whose AIs are
involved in the exogenous extension, a new AEI of the same type.

5 Conclusion

In this paper we have enriched the notion of AT of [4] by introducing the ca-
pability of expressing exogenous and endogenous extensions of the topology, in
such a way that the architectural checks of [5] scale w.r.t. the number of ad-
ditional software components for all the exogenous extensions as well as for all
the endogenous extensions satisfying a certain contraint. Finally, we have proved
that the endogenous extensions are more expressive than the exogenous ones.

As far as future work is concerned, first we would like to investigate whether
information can be gained about the interoperability of cycles that are generated
when performing an exogenous extension on an AT, starting from the compat-
ibility of the involved AEIs of the AT. Second, we would like to study whether
the additional constraint for the interoperability result in the case of endogenous
extensions can be weakened. Third, we would like to compare our approach to
topological extensions with graph grammar based approaches.

References

1. G.D. Abowd, R. Allen, D. Garlan, “Formalizing Style to Understand Descrip-
tions of Software Architecture”, in ACM Trans. on Software Engineering and
Methodology 4:319-364, 1995

2. R. Allen, D. Garlan, “A Formal Basis for Architectural Connection”, in ACM
Trans. on Software Engineering and Methodology 6:213-249, 1997

3. R. Allen, D. Garlan, “A Case Study in Architectural Modelling: The AEGIS
System”, in Proc. of IWSSD-8, 1998

4. M. Bernardo, P. Ciancarini, L. Donatiello, “On the Formalization of Architectural
Types with Process Algebras”, in Proc. of FSE-8, 2000

5. M. Bernardo, P. Ciancarini, L. Donatiello, “Detecting Architectural Mismatches
in Process Algebraic Descriptions of Software Systems”, in Proc. of WICSA 2001

6. T.R. Dean, J.R. Cordy, “A Syntactic Theory of Software Architecture”, in IEEE
Trans. on Software Engineering 21:302-313, 1995

7. R. Milner, “Communication and Concurrency”, Prentice Hall, 1989
8. M. Moriconi, X. Qian, R.A. Riemenschneider, “Correct Architecture Refine-

ment”, in IEEE Trans. on Software Engineering 21:356-372, 1995
9. D.E. Perry, A.L. Wolf, “Foundations for the Study of Software Architecture”, in

ACM SIGSOFT Software Engineering Notes 17:40-52, 1992
10. M. Shaw, D. Garlan, “Software Architecture: Perspectives on an Emerging Dis-

cipline”, Prentice Hall, 1996

