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Abstract. Standard class-based inheritance mechanisms, which are of-
ten used to implement distributed systems, do not seem to scale well
to a distributed context with mobility. In this paper, a mizin-based ap-
proach is proposed for structuring mobile object-oriented code and it is
shown to fit in the dynamic and open nature of a mobile code scenario.
We introduce MoM1 (Mobile Mixins), a coordination language for mo-
bile processes that communicate and exchange object-oriented code in
a distributed context. MOMI is equipped with a type system, based on
polymorphism by subtyping, in order to guarantee safe code communi-
cations.

1 Introduction

Internet provides technologies that allow the transmission of resources and ser-
vices among computers distributed geographically in wide area networks. The
growing use of a network as a primary environment for developing, distributing
and running programs requires new supporting infrastructures. A possible an-
swer to these requirements is the use of mobile code [26,11] and in particular of
mobile agents [20,19, 28], which are software objects consisting of data and code
that can autonomously migrate to a remote computer and execute automatically
on arrival.

On the other hand, the object-oriented paradigm has become established as
a well suited technology for designing and implementing large software systems.
In particular it provides a high degree of modularity, then of flexibility and
reusability, so that it is widely used also in distributed contexts (see, e.g., Java [2]
and CORBA [23]).

The new scenario arising from mobility puts at test the flexibility of object-
oriented code in a wider framework. Object-oriented components are often de-
veloped by different providers and may be downloaded on demand for being
dynamically assembled with local applications. As a consequence, they have to
be strongly adaptive to any local execution environment, so that they can be
dynamically reconfigured in several ways: downloaded code can be specialized by
locally defined operations, conversely, locally developed software can be extended
with new operations available from the downloaded code.

* This work has been partially supported by EU within the FET - Global Computing
initiative, project MIKADO IST-2001-32222, DART project IST-2001-33477 and by
MIUR. project NAPOLI. The funding bodies are not responsible for any use that
might be made of the results presented here.



Hence a coordination language allowing to program object-oriented compo-
nents as mobile processes should provide specific mechanisms for coordinating
not only the transmission, but also the local dynamic reconfiguration of object-
oriented code.

In this paper we address the above issue in the specific context of class-based
languages, that “form the main stream of object-oriented programming” [1].
We propose to use a new mizin-based approach for structuring mobile object-
oriented code, as an alternative to standard inheritance mechanisms (Section 2).
A mizin (a class definition parameterized over the superclass) can be viewed as
a function that takes a class as a parameter and derives a new subclass from
it. The same mixin can be applied to many classes (the operation is known as
mizin application), obtaining a family of subclasses with the same set of methods
added and/or redefined. A subclass can be implemented before its superclass
has been implemented; thus mixins remove the dependence of the subclass on
the superclass, enabling dynamic development of class hierarchies. Mixins have
become a focus of active research both in the software engineering [27,25, 14]
and programming language design [7,21,15] communities. In our approach, we
use mixins and mixin application as the coordination mechanism for assembling
mobile components in a flexible and safe way.

The paper proposes a formal calculus, MOMI, that integrates the mixin tech-
nology (relying on the calculus of [6]) into a core coordination language for mobile
processes in a distributed context, where the main features of both components
coexist in a uniform way. MOMI can be seen as a kernel language for program-
ming and coordinating network services that allow remote communication with
transmission of object-oriented code and dynamic reconfiguration of class hier-
archies. The calculus is equipped with a type system, based on polymorphism by
subtyping. We focus our attention on the subtyping relation on mixins, which
comes out to be the main tool for coordinating the composition of local and
mobile code in a safe way. The mobile code enjoys the benefits deriving from
being statically type-checked and remote communications use static types “dy-
namically” to coordinate themselves (see Section 4).

The paper is structured as follows. In Section 2 we motivate our approach by
investigating scenarios of object-oriented mobile code. In Section 3 we define the
calculus MoMI1 whose operational semantics is given in Section 4. The type sys-
tem of MOMI is presented in Section 5. In Section 6 we show an implementation
of an example scenario in MOMI. Section 7 concludes the paper and discusses
some related works and future directions.

2 DMobility and Object-Oriented Code

In this section we discuss two different scenarios, where an object-oriented ap-
plication is received from (sent to) a remote site. In this setting we can assume
that the application consists of a piece of code A that moves to a remote site,
where it will be composed with a local piece of code B. These scenarios may
take place during the development of an object-oriented software system in a
distributed context with mobility.



Scenario 1 The local programmer may need to dynamically download classes
in order to complete his own class hierarchy, without triggering off a chain
reaction of changes over the whole system. For instance, he may want the
downloaded class A to be a child class of a local class B. This generally
happens in frameworks [17]: classes of the framework provide the general
architecture of an application (playing the role of the local software), and
classes that use the framework have to specialize them in order to provide
specific implementations. The downloaded class may want to use operations
that depend on the specific site (e.g. system calls); thus the local base class
has to provide generic operations and the mobile code becomes a derived
class containing methods that can exploit these generic operations.

Scenario 2 The site that downloads the class A for local execution may want
to redefine some, possibly critical, operations that remote code may execute.
This way access to some sensitive local resources is not granted to untrusted
code (for example, some destructive “read” operations should be redefined
as non-destructive ones in order to avoid that non-trusted code erases in-
formation). Thus the downloaded class A is seen, in this scenario, as a base
class, that is locally specialized in a derived class B.

Summarizing, in 1 the base class is the local code while in 2 the base class is the
mobile code. These scenarios are typical object-oriented compositions seen in a
distributed mobile context. A major requirement is that composing local code
with remote code should not affect existing code in a massive way. Namely, both
components and client classes should not be modified nor recompiled.

Standard mechanisms of class extension and code specialization would solve
these design problems only in a static and local context, but they do not scale well
to a distributed context with mobile code. The standard inheritance operation
is essentially static in that it fixes the inheritance hierarchy, i.e., it binds derived
classes to their parent classes once for all. If such a hierarchy has to be changed,
the program must be modified and then recompiled. This is quite unacceptable
in a distributed mobile scenario, since it would be against its underlying dynamic
nature. Indeed, what we are looking for is a mechanism for providing a dynamic
reconfiguration of the inheritance relation between classes, not only a dynamic
implementation of some operations.

Let us go back and look in more details at the above scenarios. We could
think of implementing a kind of dynamic inheritance for specifying at run-time
the inheritance relation between classes without modifying their code. Such a
technique could solve the difficulty raised by scenario 1. However dynamic in-
heritance is not useful for solving scenario 2, that would require a not so clear
dynamic definition of the base class. Another solution would be releasing the
requirement of not affecting the existing code, and allowing to modify the code
of the local class (i.e. the local hierarchy). This could solve the second scenario,
but not the first one that would require access to foreign source code. We are also
convinced that the two scenarios should be dealt with by the same mechanism,
allowing to dynamically use the same code in different environments, either as a
base class for deriving new classes, or as derived class for being “adopted” by a



parent class. We remark that a solution based on delegation could help solving
these problems. However delegation would destroy at least the dynamic binding
and the reusability of the whole system [4].

Summarizing, mobile object-oriented code needs to be much more flexible
than locally developed applications. To this aim we propose a new solution which
is based on a mixin approach and we show that it enables to achieve the sought
dynamic flexibility. Indeed, mixin-based inheritance is more oriented to the con-
cept of “completion” than to that of extendibility/specialization. Mixins are
incomplete class specifications, parameterized over superclasses, thus the inher-
itance relation between a derived and a base class is not established through a
declaration (e.g., like extends in Java), instead it can be coordinated by the op-
eration of mizin application, that takes place during the execution of a program,
and it is not in its declaration part.

The novelty of our approach is the smooth integration of mobile code with
mixins, a powerful tool for implementing reusable class hierarchies, that origi-
nated in a classical object-oriented setting as an alternative to class-based in-
heritance. The above examples hint that the usual class inheritance would not
scale that harmoniously to the mobile and distributed context.

3 MoMi: Mobile Mixin Calculus

In this section we present the kernel calculus MoMI, aiming at coordinating dis-
tributed and mobile processes that exchange object-oriented code and reuse it in
several execution environments. Following motivations discussed in the previous
section, object-oriented code is structured via mixins. The mixin-based compo-
nent is integrated with a core distributed and mobile calculus, where we abstract
a few main features for representing distribution, communication and mobility
of processes. This way MOMI is intended to represent a general framework for
integrating object-oriented features in several calculi for mobility, such as, e.g.,
Kram [12] and DJoin [16]. Before presenting our calculus we briefly recall the
main features of the calculus of mixins of [6].

3.1 Object-Oriented Expressions

The object-oriented core of our exp ==z | Az.exp | exp, exp, | fir
language is based on the mixin cal- | refz | derefz | z = exp
culus of [6], whose syntax is shown | {zi = exp;}'€" | exp < x| new exp
in Table 1. For the sake of clarity | class(exp,, [mi]'€"")
the syntax is slightly different from | mixin
the one presented in [6], since some method m; = ezp,, ;FENew)
of its details are not necessary for redefine my, = eap,, ;<)
our purposes. We recall here the constructor ezp,;
features of the mixin calculus that end
are pertinent to MoOMI. | ezp, o exp,

The mixin calculus is funda-
mentally class-based and it takes a
standard calculus of functions, records, and imperative features and adds new

Table 1. Syntax of the mixin core calculus.



constructs to support classes and mixins. It relies on the Wright-Felleisen idea of
store [29], called heap here, in order to evaluate imperative side effects. There are
four expressions involving classes: class, mixin, ¢ (mixin application), and new.
A class can be created by mixin application (via the ¢ operator), and objects
(that are records) can be created by class instantiation (using new). Finally, we
define the root of the class hierarchy, class Object, as a predefined class. The
root class is necessary so that all other classes can be treated uniformly, as it is
the only class that is not obtained as a result of mixin application.

let A = let B = A mixin essentially is an ab-
mpan mixin stract class that is parameter-
method m1 = ... n() ... method n = ... X
redefine ma = ... next() ...  method ma = ... ized over a super class. Let us
en?“s”“c“" G C;’“S”“Ct‘" 4 consider the mixin A in Ta-
en . . .
ble 2. Each mixin consists of

Table 2. Two mixins. four parts: methods defined in
the mixins, like my; expected methods, like n, that must be provided by the su-
perclass, during the completion of the mixin; redefined methods, like ms, where
next can be used to access the implementation of ms in the superclass. a con-
structor that takes care of initializing the fields of the mixin (left implicit here).

If we now consider the mixin B in Table 2, then the application Ao(BoObject)
will construct a class, which is a subclass of B, that can be instantiated and used:

let C = A o (B o Object) in (new C)<= m()

An example follows in Table 3, to show how mixins work in practice (the
syntax is further simplified in the example). We define a mixin Encrypted that
implements encryption functionality on top of any stream class. Note that the
class to which the mixin is applied may have more methods than expected by
the mixin. For example, Encrypted can be applied to Socket ¢ Object, even
though Socket ¢ Object has other methods besides read and write.

From the definition of
Encrypted, the type sys-
tem of the mixin calculus
infers the constraints that
must be satisfied by any class

let FileStream = let Socket =
mixin mixin
method write = ... method write = ...
method read = ... method read = ...
e method hostname = ...
end in method portnumber = ...

end in
let Encrypted =
mixin

redefine write = ... next (encrypt(data, key));

redefine read = ... decrypt(next (), key);
constructor (key, arg) = ...
end in ...

Table 3. Example of mixin usage.

to which Encrypted is ap-
plied. The class must contain
write and read methods whose
types must be supertypes of
those given to write and read,
respectively, in the definition
of Encrypted.

To create an encrypted

stream class, one must apply the Encrypted mixin to an existing stream class.
For example, Encrypted ¢ FileStream ¢ Object is an encrypted file class. The
power of mixins can be seen when we apply Encrypted to a family of different
streams. For example, we can construct Encrypted ¢ Socket ¢ Object, which



is a class that encrypts data communicated over a network. In addition to sin-
gle inheritance, we can express many uses of multiple inheritance by applying
more than one mixin to a class. For example, PGPSign ¢ UUEncode ¢ Encrypt ¢
Compress ¢ FileStream ¢ Object produces a class of files that are compressed,
then encrypted, then uuencoded, then signed.

3.2 MoMi1 syntax

We consider a very simple distributed calculus similar to CCS [22], enriched with
localities. This is widely inspired by KLAIM [12], in the sense that physical nodes
are explicitly denoted as localities. The calculus is higher-order in that processes
can be exchanged as first-entity data, and since we are interested in mobility of
code this is a meaningful choice.

A node is denoted by its locality, £, and by the processes P running on it.
Informally, the semantics of send(P, ¢) is that of sending (the code of) process P
to a process at locality £ waiting for it by means of a receive. This calculus is syn-
chronous in that both sender and receiver are blocked until the communication
occurs. However, switching to an asynchronous version would be straightforward.

The syntax of the MoMI cal- P = nil (null process)
culus (Table 4) is obtained by | a.P (action prefixing)
combining this distributed calcu- | PP (parallel comp.)
lus with the expressions of the .
mixin calculus: object-oriented ex- X (process variable)
pressions are seen as special pro- | eap (OO expression)
cesses. Process exp cannot be fol- | letz=ezpinP (let)
lowed by any continuation process: a :: = send(P, {) (send)
this is a syntactic simplification | receive(id : 7) (receive)
that does not harm the expressive | x.._/,.. p (node)
power, but it helps in having a sim- | NN (net composition)
pler operational semantics (see Sec-

tion 4). On the Othe.r hand, the COL~ Table 4. MoMi1 Syntax (see Table 1 for exp
struct let x = exp in P, which can syntax).

only occur as last action in a pro-

cess, allows to pass to the sub-process P the results of an object-oriented com-
putation. The receive action specifies, together with the formal parameter name,
the type of the expected actual parameter. In Section 5 a type system is in-
troduced in order to assign a type to each well-behaved process. Only the free
identifiers that are arguments of receives are explicitly typed by the program-
mer. In the processes receive(id : 7).P and let x = exp in P, receive and let act
as binders for, respectively, id and z in the process P.

3.3 Mixin Mobility in Action

We present in the following two simple examples showing mobility of mixins in
action. They represent a remote evaluation and a code-on-demand [11] situation,
respectively. Let us observe that both situations can be seen as examples of
mobile agents as well. A more complex example is presented in Section 6.



Example 1. Let agent represent the type of a mixin defining a mobile agent
that has to print some data by using the local printer on any remote site
where it is shipped for execution. Obviously, since the print operation highly
depends on the execution site (even only because of the printer drivers), it
is sensible to leave such method to be defined. The mixin can be applied,
on the remote site, to a local class printer which will provide the specific
implementation of the print method in the following way:

£y ... | send(my_agent, £2) ||
£y ... | receive(mob_agent : agent).
let PrinterAgent = mob_agent ¢ printer o Object in
(new PrinterAgent) < start()

Example 2. Let agent be a class defining a mobile agent that has to access the
file system of a remote site. If the remote site wants to execute this agent
while restricting the access to its own file system, it can locally define a
mixin restricted, redefining the methods accessing the file system according
to specific restrictions. Then the arriving agent can be composed with the
local mixin in the following way.

£y :z. .. | send(my_agent, €>) ||
£y ... | receive(mob_agent : agent).
let RestrictedAgent = restricted © mob_agent o Object in
(new RestrictedAgent) < start()

This example can also be seen as an implementation of a “sandbox”.

The above examples highlight how an object-oriented expression (mob_agent)
can be used by the receiver site both as a mixin (Example 1) and as a base class!
(Example 2). Indeed, without any change to the code of the examples, one could
also dynamically construct a class such as restricted ¢ mob_agent ¢ printer
o Object. It is important to remark that in these examples we assume that
the code sent (argument of send) and the code expected (argument of receive)
are “compatible”. This will be guaranteed by the type matching of the actual
parameter and of the formal one in the communication rule (see Table 6).

4 Operational Semantics

The operational semantics of the MOMI calculus is centered around the dis-
tributed calculus, that allows distributed processes to communicate and ex-
change data (i.e. processes) by means of send and receive. The semantics of
the object-oriented expressions is omitted here since it is basically the same of
the one presented in [6]. The reduction of an ezp is denoted by — (its closure is
—») and will produce an answer of the form h.v, where h is the heap obtained
by evaluating the side effects present in exp, and v is the value obtained by
evaluating exp.

! Every mixin can be formally made into a class by applying it to the empty top class
Object, as explained before.



The semantics for MoOMT’s distributed
(Ny [ No) [ Ns = N || (Ns || Ns) part is‘ based on structural. congruence apd
(2P =(:P|nil r(?d}lctlon relatlons.. Reduction represents in-

0 (P P) =Pl Py dividual computation steps, and is defined in
terms of structural congruence. The struc-

Table 5. Congruence laws tural congruence = (defined as the least con-

gruence relation closed under the rules in Ta-
ble 5) allows the rearrangement of the syntactic structure of a term so that
reduction rules may be applied.

Reduction rules are displayed in Table 6. The crucial rule is (comm) that
allows to communicate code among different sites. Code exchanged during a
communication is a process that is not evaluated, and this is consistent with
the higher-order nature of send and receive. The substitution Q[P/id] is to be
considered as a name-capture-avoid substitution (and so will be all substitutions
from now on).

Ni || N2 =N || Ny

1 <iTe
(comm)

N || €1 :: send(P71, £2).P" || €2 :: receive(id: 72).Q =— N || £1 =z P' || €2 =: Q[P /id)]

erp —» h.v

(exp)
N || €:: exp > N || £ :: nil

exp —» h.v

(let)
N | €:letx=expin P> N | £:: Plhov/z]

N =N; N; = Ny Ny =N’

- (net)
N — N

Table 6. Distributed operational semantics

The key idea of this rule relies on the dynamic checking of the type of the
actual parameter in order to guarantee a safe communication of code. Namely,
the argument of a send is a process P annotated with its type 7, which is
produced by the static analysis of process P2. In Section 5 we will present a
type system that allows to check whether a process is typeable, so that only
well-typed processes will be evaluated. Moreover, this static type analysis is
assumed to produce an annotated version of the process to be evaluated, where
every send’s argument is annotated with its type. The (comm) rule uses this type
information, delivered together with P, in order to dynamically check that the
received item P is compliant with the formal argument (of type 72) by subtyping
(as shown in Section 5.2). Conversely, the type 7 has been previously used to
statically type check the continuation @), on site £», where id is possibly used.
We would like to stress that, except for the dynamic checking required during
the communication, type analysis of processes is totally static and performed
in each site independently. Thus type safety of the communication results from

2 Similarly, Java bytecode contains type information, used both by the classloader and
the bytecode verifier.



the (static) type soundness of local and mobile code, with no need of further
re-compilation and type-checking.

Finally, we require that a process, in order to be executed on a site, must be
closed (i.e. without free variables), so it must be well-typed under I' = . Tt is
easy to verify that if a process P is closed, for any send(P’,f) occurring in P,
the free variables of P’ are bound by an outer let or by an outer receive. This
implies that exchanged code is closed, as expected, when a send is executed.

Any time an ezp is met (rules (exp) and (let)), this is reduced under the
rules of the operational semantics of the mixin calculus. The rule for evaluating
(let) says that ezp is evaluated and then the resulting value is replaced for z in
P. As a consequence, one can use the let construct to send evaluated code. In
this case the code will be implicitly delivered together with its heap (containing
the results of evaluating the side effects present in exp), according to reduction
rules for object-oriented expressions as defined in [6] (see Section 3.1). Thus, all
the heap references will be known also at the destination site. This is typical of
mobile code and mobile agent systems, where the state is transmitted together
with the code. Rule (net) is standard for the evolution of nets.

5 Typing

In this section we present the type system for the MOMI calculus. At this
stage we are not interested in typing processes in details, so a process start-
ing with an action will simply have the constant type action. A process like
receive(X : action).X means that it is willing to receive any process starting with
an action and to execute it.

5.1 Type Rules

We extend the type assignment system of [6] with rules to type processes. Here
we concentrate on the typing of processes, classes and mixins.

Type syntax is defined in Table 7, cer
where ¢ is a constant type; — is the | 777 ¢ | 71— 7o | 7 ref | {zi: 7}
functional type operator; 7 ref is the I i?;isrfzﬂ) G enps Gold Tnew, Fred)
type of locations containing a value of | actionvb,w, cops Goldy Onew Ored
type 7; {x;:7; }'€! is a record type; and

I,J,K C N. A class type, class(y,o) Table 7. Syntax of types.
includes the type v of the argument

of the class generator, and the type o of self, consisting of a record type
{m; : 7, }*€!. In class and mixin types, v_ is the type of the argument of a
generator, and o_ is a record type. action is the above mentioned special con-
stant type.

Table 8 illustrates the shape of mixin types. Notice that mixin methods make
typing assumptions about methods of the superclass to which the mixin will be
applied. We refer to these types as expected types since the actual superclass
methods may have different types. The exact relationship between the types
expected by the mixin and the actual types of the superclass methods is formal-
ized below in the rule for mixin application. We mark types that come from the



superclass with * and those that will be redefined or added in the mizin (which
acts as the subclass) with +.

miXin(’Yb, ’Yd, UEEP, UOlda Unew, UTEd)

_ Lt i€el _ Lt 1kEK
Oexp = {mz : Tmi} yOold = {mk : ka} s
jeJ kEK
where  opnew = {m; : Tn; ¥ €7 0rea = {mu s T }FE
m;, TrTnl. , T,Ilk are inferred from method bodies

Table 8. The mixin type.

Both new and redefined methods in the mixin may call superclass methods
(i.e. methods that are expected to be supported by any class to which the mixin
will be applied). We refer to these methods as m;. Their types 7, are inferred
from the mixin definition. The mixin type encodes the following information
about the mixin:

— 7 is the expected argument type of the superclass generator.

— 74 is the argument type of the mixin generator.

— Oeap = {mi: T, Y€1, 0010 = {my : T, JFEE are the expected types of the
methods that must be supported by any class to which the mixin is applied.
m; are the methods that are not redefined by the mixin but still expected to
be supported by the superclass since they are called by other mixin methods,
and 7}, are the types assumed for the old bodies of the methods redefined
in the mixin.

— Onew = {myj 1T, 117, 0req = {my 17, }¥€K are the types of mixin methods
(new and redefined, respectively).

For further details we refer the reader to [6]. The type system of the calculus
of mixins is extended with rules in Table 9. The rule (send) basically states
that a process performing a send is well-typed if both its argument and the
continuation are well typed. For typing a process performing a receive we type
the continuation with the information about the type of id (rule (receive)). The
form for rule (let) is standard (first the type of the exp is inferred and then P is
typed considering this information). For parallel composition (rule (comp)) we
require that both processes have the same type?.

— (proj)
ryid:vFid: 7
r-pP:r P : 1 Iid:7+ P:7'
(send) (receive)
I + send(P,¢).P' : action I' + receive(id : 7).P : action
I' + Py :action I' + P5:action 't oexp:r Iz:7+ P:7'
(comp) (let)
I' + (P | P») :action I'kletz=expinP:7'

Table 9. Type rules for processes.

3 At this stage, it is meaningful to consider only parallel composition of processes that
perform actions, so we require both P; and P> to have an action type.



In order to facilitate the understanding of the type system of the MoMi1
calculus, we report in Table 10 the type rule for mixin application, taken from

[6].

I' '+ exp, : mixin{yy, Yd, Oeap, Told, Tnew, Ored )
I'  exp, : class{~yc, ob)

't 0g<:i0p <:(Teap UToid)

I'F v <:ive

(mizin app)
I' - exp, o exp, : class(vy4, 04)

Texp = {ml : T;Ll-}, Oold = {mk- IT,I”C}

Onew = {mj : Tm; }, Orea = {mun : 70y }

oy = {mp:Tmy, Mi: Tm;, My T, }

0a =Mt T, 0 Ty, My T M Tong,

where

Table 10. Rule for mixin application.

In the rule definition, o, contains the type signatures of all methods sup-
ported by the superclass to which the mixin is applied. In particular, my are the
superclass methods redefined by the mixin, m; are the superclass methods called
by the mixin methods but not redefined, and m; are the superclass methods not
mentioned in the mixin definition at all. Note that the superclass may have more
methods than required by the mixin constraint.

Type o4 contains the signatures of all methods supported by the subclass
created as a result of mixin application. Methods m;; are inherited directly
from the superclass, methods my, are redefined by the mixin, and methods m;
are the new methods added by the mixin. We are guaranteed that methods m;
are not present in the superclass by the construction of o} and o4: 04 is defined
so that it contains all the labels of o}, plus labels m;.

The premises of the rule are as follows:

— The 04 <: 0y constraint requires that the types of the methods redefined by
the mixin (my) be subtypes of the superclass methods with the same name.
This ensures that all calls to the redefined methods in m; and m; (methods
inherited intact from the superclass) are type-safe.

— The 0y <: (0ezp Uooq) constraint requires that the actual types of the super-
class methods m; and m;, be subtypes of the expected types assumed when
typing the mixin definition.

— The 7y, <: 7. constraint requires that the actual argument type of the super-
class generator be a supertype of the type assumed when typing the mixin
definition. Since class generators are functions, their argument types are in
contravariant position, so this justifies the supertype requirement.

In the type of the class created as a result of mixin application, 7,4 is the argument
type of the generator, and o, (see above) is the type of objects that will be
instantiated from the class.

Finally, let us remark that rules of Tables 9 and 10 are syntax-driven, so
they can define an algorithm for deciding whether a given process P, on a site



£, is typeable. In particular, since we require P to be closed, then typability of
P means that § = P : 7, where each subterm of P is assigned a type (even
when 7 is action). Thus the reconstruction of the deduction () - P : 7 allows to
statically decorate any send’s argument, occurring in P, by its type, as required
by (comm) rule in the semantics (Table 6). For instance, let z = exp in send(z, £)
has type action, and its compiled version is let z = ezp in send(z™, /) if exp has
type 71.

5.2 Subtyping Relation

The main novelty of the MOMI type system is the extension of the subtyping
relation to class and mixin types. In [6], subtyping exists only at the object level,
to keep the inheritance and the subtyping hierarchies completely separated. Here,
the key idea is to deal with classes and mixins as polymorphic entities that are
exchanged among distributed sites. So we extend the subtyping relation to classes
and mixins, in order to achieve more flexibility in the communication. Observe
that, from the formal point of view, we have chosen to use subtyping in type
matching at communication time, instead of explicitly define a subsumption rule
in the type system. Namely, any term of type 7 is implicitly assumed to have
also any type greater than 7. So, in particular, in the rule (comm), the formal
parameter of a receive, which is explicitly typed, matches with any received item
whose type is a subtype of the one expected.

The starting point is the basic system of subtyping for arrow and ref types
and other standard subtyping rules (they can be found in [6]). Concerning record
types, we use the standard width subtyping. This is not a crucial simplification*
with respect to the more complete width-depth subtyping, which would require
more technicalities to be dealt with, technicalities that are not within the purpose
of this paper. Width-depth subtyping on records is introduced in a forthcoming
foundational work on MOMI’s type system.

The subtype relation concerning mixins and classes is in Table 11. In the
rule (<: mizin) the subtype can define more new methods and require less
methods, but it cannot override more methods (|o| is the number of methods in
o); the contravariance of the mixin (subclass) generator parameter is as expected
(va <:7};), while for the superclass generator parameter covariance is required

(75 <:78)-

I'-~v<:y I'kFo' <o

(<: class)
I' + class(y',0') <:class(vy, o)
I+ o., <:‘7;1.ew lo7eal = |a'7ﬂd| rr 0:‘51l<:0—;‘5'l
't 0ep <:0yy, [oota] = |0l 'kt ooi<io,y
I'Evn<im I+ vg<:v)

(<: mizin)
o ’ ’ ’ ’ ’ ’ ot
T = mixin(yys Vs T o Totds Tnews Trea) < MXIN(Vby Vds Teaps Tolds Tnews Tred)

Table 11. Subtype relation for classes and mixins.

* This is typical, for instance, of popular languages such as C++ and Java.



The new subtype relation on mixins is consistent with <: constraints of the
rule for mixin application (Table 10); thus the type system guarantees that what
is statically type-checked on a site can be communicated to a different site with-
out producing run-time errors when executed, as long as the above constraints
are respected. Conversely, local code remains well typed even when remote code
is merged in it, via a well typed communication. Thus, polymorphism by sub-
typing for classes and mixins guarantees type-safe communications, in the sense
that errors like “message-not-understood” cannot occur, without requiring to
type check neither the whole system nor the local code again.

6 A scenario for mixin mobility

We will use here a slightly simplified syntax: (i) we will list the methods’ pa-
rameters in between “()” instead of using explicit A-abstractions; (ii) exp;; exp,
is interpreted as (Az.exp,)exp,, v & FV (exp,), in a call-by-value semantics.

The example is about a client and a server, executing on two different nodes,
that want to communicate, e.g., by means of a common protocol. They both
use a Socket to this aim, however the server is willing to abstract from the
implementation of such socket, by allowing the client to provide a custom im-
plementation. This can be useful, for instance, because the client may decide
to use a customized socket; in this example the client implements a socket that
sends and receives compressed data (alternatively it could implement a multicast
socket, or even a combination of the two). However, the code sent by the client
may rely on some low-level system calls, that may be different on the server’s
site: indeed, the two sites may run different operating systems and have different
architectures. These low-level system calls are then to be provided by each site
(the client’s and the server’s sites). The customized socket of the client is then
a mixin requiring the existence of such system calls, that will be provided by
two different (yet compliant) superclasses, one resident on each site. The code
executed in the two nodes (client and server) is in Listing 1.

Both ZipSocket and Socket rely on a superclass that provides (at least)
methods write_to_net and read_from_net. The client, in its site, completes its
mixin ZipSocket with NetChannel that provides these two methods for writing
data on the net, by using its operating system low-level system calls. Sending the
class ZipSocket ¢ NetChannel directly to the server may be nonsense, since the
server may use a different operating system (or a different version of the same
operating system). Instead, only the mixin ZipSocket is sent to the remote
server. In the server this mixin will be received as a Socket mixin (and this
succeeds since ZipSocket <: Socket) and it will be completed with NetFile,
which corresponds to the NetChannel of the client. The server will then use such
socket independently from the particular client’s implementation. Notice that
the use of subtyping in the communication (instead of a simpler type equality)
completely relieves the receiver (and especially its programmer) from the real
complete interface of the clients’ code.

Let us now consider an alternative implementation of the same scenario, in
order to show other features of MOMI: suppose that on the client ZipSocket



client:: let ZipSocket =

mixin server:: let Socket =
method zip = ... mixin
method unzip = ... method write = write_to_net(data)
method write = write_to_net(zip(data)) method read = read_from_net()
method read = unzip(read_from_net()) end in
end in let NetFile =
let NetChannel = mixin
mixin method write_to_net =
method send = // <send through the net>
// <send through the net> method read_from_net =
method receive = // <receive from the net>
// <receive from the net> end in
method write_to_net = send(data) (
method read_from_net = receive() receive( sock : Socket ).
end in let client_channel = ref new
let channel = ref new (sock ¢ (NetFile ¢ Object)) in

(ZipSocket ¢ (NetChannel ¢ Object)) in
(deref client_channel)<read() ;
send( ZipSocket, server ). (deref client_channel)<write("welcome")
( (deref channel)<=write("hello") ; )
(deref channel)<read() ) )
)

Listing 1: Example code for client and server communication.

is written like in Listing 2 on the left. In this case the class does not rely on
write_to_net and read_from_net (instead it expects the superclass to provide
methods write and read that the mixin redefines), and thus it is not a subtype
of Socket in the server. In the server, the code would be like in Listing 2 on the
right. Since also Channel relies on a super class that provides write and read,
we have that ZipSocket <: Channel. So the server receives a ZipSocket (as a
Channel) that it completes with Socket completed, in turn, with NetFile.

Channel =
mixin
redefine write = next(data)
ZipSocket — enrdedefine read = next()
mixin
method zip = ... receive( chan : Channel ).

method unzip = ...
redefine write = next(zip(data))
redefine read =

end

let client_channel =
. ref new (chan o
unzip(next()) (Socket o (NetFile ¢ Object))) in

(deref client_channel)<read() ;
(deref client_channel)<=write("welcome")

Listing 2: An alternative implementation.

Finally, as hinted in Section 3.1, other implementations of such a socket can
be created, simply by using more than one mixin, such as UUEncode, Encrypt,
and so on.

7 Conclusions and Related Work

In the literature, there are several proposals of combining objects with pro-
cesses and/or mobile agents. Oblig [9] is a lexically-scoped language providing



distributed object-oriented computation. Mobile code maintains network refer-
ences and provides transparent access to remote resources. In [8], a general model
for integrating object-oriented features in calculi of mobile agents is presented:
agents are extended with method definitions and constructs for remote method
invocations. Other works, such as, e.g., [5,24,18] do not deal explicitly with
mobile distributed code. In our calculus no remote method call functionality
is considered, and, instead of formalizing remote procedure calls (like most of
the above mentioned approaches), MOMI provides the introduction of safe and
scalable distribution of object-oriented code, in a calculus where communication
and coordination facilities are already provided.

MoMI results from the integration of two calculi, a simple coordination lan-
guage for mobile code and the mixin calculus of [6]. Since it looks like in MOMI
the two core calculi cooperate quite smoothly, this gives us some confidence
about the modularity of this approach, so this is meant as a first step towards
a general framework to experiment the mixin-based approach also with other
different mobile calculi, such as the DJoin [16], the Ambient Calculus [10], and
in particular KrA1M [12]. The type system of MOMI is currently being extended
and completely formalized in order to prove main properties such as subject-
reduction and type safety.

We are also designing a mixin-oriented version of KLAIM (and we are planning
to extend its implementation, X-KLAIM [3], along the same line). The type
system presented in this paper can be modified in order to refine action types,
so that finer types can be assigned to processes, e.g. according to the capability-
based type system for access control developed for KrLAtm [13].
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