
Explicit Modeling of Influences, and of Their
Absence, in Distributed Systems

Horst F. Wedde and Arnim Wedig

Informatik III, University of Dortmund
D-44221 Dortmund, Germany

{wedde,wedig}@ls3.cs.uni-dortmund.de

Abstract. Specific problems in practical distributed system design arise
from incomplete information about the cooperation requirements, up to,
or even beyond, the final design stage. Events in components will occur,
or they may occur, depending on (local) user decisions. The latter may
also not occur, as a result of yet unknown external influences or design
faults. Adequate formal modeling tools should allow for distinguishing
between such different event types. Our approach for this purpose to
be introduced here is the formal model of I–Systems. As a particularly
relevant and unique feature, the presence as well as the absence of in-
teractional influences (as part of distributed cooperation requirements)
can be explicitly modeled, with no side effects. A non-trivial synchroniza-
tion problem is modeled incrementally in order to demonstrate both the
modeling and analysis capabilities in I–Systems.

1 Introduction

In modeling distributed systems, specific problems arise from incomplete in-
formation up to, or even beyond, the final design stage, as much as from the
distribution of control. While the structure or the behavior of components could
be considered manageable this is different for distributed systems. Here condi-
tions and constraints on the cooperation between components are local, i.e. they
concern small subsystems of interacting components while typically imposing a
global propagation effect that is often not known at the design phase, or even
undesirable. Thus expected or needed events in a subsystem may never occur
because some of its preconditions may never hold, due to unforeseen propagation
effects from restrictions elsewhere. In such cases models turn inadequate during
test or debugging phases unless appropriate formal tools were available to trace
design or implementation failures back to their origin.
Another complication under distributed control is that the components’ behav-
ior, as observed from an interacting component, exhibits two different types of
transitions: some will occur, some may (or may never) occur. The reasons for
the latter behavior are not observable from the interacting components. Events
that will occur will do so (unless prevented through external influences) for two
reasons:

J.-P. Katoen and P. Stevens (Eds.): TACAS 2002, LNCS 2280, pp. 127–141, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

128 H.F. Wedde and A. Wedig

• according to the local operational semantics (e.g. for program execution)
which are otherwise comparable to organizational duties imposed on the
employees in a company;
• through implemented external influences that trigger the events.

Events that may occur come from two sources of influences:

• Local decisions, e.g. by a user in an interactive mode of operation;
• Incomplete information about unknown, or unpredictable, external influ-
ences (as discussed in the previous paragraph).

In order to cope with the problems mentioned and at the same time to develop
a both reliable and incremental modeling methodology our approach is based on
elementary binary relations between system components and their operational
semantics (action rules). These specify the restrictive effect on the involved com-
ponents.
Based on the observation that components in distributed systems may be pas-
sive/ reactive (like main memory management in a uniprocessor operating sys-
tem) or active (like in an interactive user operating mode), we distinguish in our
terminology between inert and autonomous components, respectively.

Previous and Related Work. In [12] W. Reisig has considered two classes
of transitions in Petri Nets specifying progressive actions (that will occur in the
terms of our discussion) and quiescent actions (that may occur), respectively.
The firing of quiescent transitions depends on information that has not been
available at the modeling stage. If a quiescent transition does not fire, however
(e.g. because a precondition can never be satisfied, due to a synchronization con-
dition which might be too restrictive), this cannot, by definition of quiescence,
be traced back to the originating cause. For the novel trace semantics that we
have defined for I-Systems (local) influences and their global propagation are
specified in such a way that external influences can be traced back to the orig-
inating system component or the originating behavioral restriction (whatever
applies). Even the absence of influences (restrictions) is clearly visible from the
specification. Reisig’s work is the only approach related to our work. While the
absence of influences is particularly required in synchronization constraints I–
Systems are the only formal structures, up to our knowledge, that allow for
explicitly modeling and analyzing such constraints incrementally. Earlier results
of our theoretical work were reported in [11] and [13]. Additional information
about interactive systems can be found in [3,16,17].

Organization of the Paper. The next section gives a brief survey on I–
Systems, their basic concepts, semantics, and those behavioral properties that
are needed in the subsequent sections. The main feature in section 3 is a general
theorem on representing and at the same time generating an arbitrary local be-
havior structure through an elementary interaction with a passive component.
Section 4 is devoted to demonstrating the incremental potential of I–Systems
by stepwise modeling a solution for a non-trivial synchronization problem that
includes requirements about the absence of external influences. Conclusions are
briefly summarized at the end.

Explicit Modeling of Influences, and of Their Absence 129

2 I–Systems

In order to model events in a distributed system as well as the cooperation
between its components we define I–Systems. System components are presented
as parts. These are constituted through their local states that are relevant for
the interaction. The local states are called phases. The only thing we assume
about the components is that they are in exactly one state at any time. The
interaction is specified through two binary relations, denoted as coupling and
excitement relations, respectively.

Definition 1 (I–System). A structure IS = (P,B,B,K,E) is called I–System,
iff:

(1) P is a finite set of phases
(2) B is a set of parts with:

a) ∀b ∈ B : b ⊆ P
b)

⋃
b∈B

b = P

c) ∀b1, b2 ∈ B, b1 �= b2 : b1 ∩ b2 = ∅
(3) B is a distinguished set of so-called inert parts (B ⊆ B)
(4) K ⊆ P × P is the coupling relation of IS with:

a) K = K−1

b) ∀b ∈ B ∀p, p′ ∈ b, p �= p′ : (p, p′) ∈ K
(5) E ⊆ P × P is the excitement relation of IS with

a) E ∩ (E−1 ∪K) = ∅
For p ∈ P , b(p) denotes the part of p with b(p) = b′ iff p ∈ b′ ∈ B.
AB(IS) := B \B is called the set of autonomous parts. �

Fig. 1 depicts an I–System IS1. The small circles are the phases (e.g. p1, v2)
grouped by ovals, the parts. The parts may have names (e.g. b1, b2). The inert
parts (e.g. b3) have gray fillings or/and an underlined name. Arrows (e.g. from
p3 to q2) depict the excitement relation and lines between phases (e.g. from p1
to v1) the symmetrical coupling relation.

Remark 1. Inert parts represent special components in distributed systems.
They are found e.g. in reactive systems and reactive software components
(see e.g. [2,5,9]). Events in inert parts are always triggered by environmental
influences. In the absence of external stimuli nothing will happen in such
components. �

The symmetrical coupling relation K specifies the subset of pairs of mutually
exclusive phases. Condition 4.b implies therefore that two different phases in
a part exclude each other from holding at any given time. The coupling re-
lations between phases in the same part are omitted in graphical representations.

Based on local states of components we define global system situations by
making use of the causal relationships between parts given by K. We term the

130 H.F. Wedde and A. Wedig

b
1

b
2

b
3p

1

p
2

q
3

q
2

q
4

v
1

v
2

q
1

p
3

Fig. 1. I–System IS1

new objects cases. A case is a subset c of phases such that |c ∩ b| = 1 for all
b ∈ B and (p1, p2) /∈ K for all p1, p2 ∈ c. The phases of a case c may hold
concurrently.
{p1, q4, v2} and {p3, q3, v1} are cases of the I–System in Fig. 1. {p1, q3, v2} is not
a case because p1 and q3 are mutually exclusive phases.

Events are described by phase transitions which lead from one case to another.
A phase transition p→ q may occur in a case c iff (c \ {p}) ∪ {q} is a case. Two
phase transitions p1 → q1, p2 → q2 are called concurrent in a case c iff each
transition may occur in c and (q1, q2) /∈ K. Two concurrent phase transitions
may occur in arbitrary order or simultaneously. Thus they are causally inde-
pendent, and according to the definition this global causal relationship can be
checked by testing local static relations.
In the case {p2, q1, v1} the phase transition p2 → p1 can never occur. In the
case {p2, q1, v2} of IS1, the phase transitions p2 → p1 and q1 → q2 may occur
and they are concurrent.

While the coupling relation enables, in a given case, a phase transition to occur
it is not guaranteed that it eventually will occur. In order explicitly to cover
such kind of progress quality we introduce forces arising from external influences
which enforce phase transitions to occur. Enforced phase transitions will occur
unless prevented through different external influences. An element (p, q) in the
excitement relation E expresses a potential excitation from phase p in part b to
phase q in part b′. If p and q belong to a case c then b exerts a force on b′ to
leave p. The other idea behind is that the force is released only after the excited
phase has been left. No force vanishes but by b′ leaving the excited phase.
For the case {p3, q2, v2} of IS1 in Fig. 1, b1 influences b2 to leave q2. b1 has
to stay in p3 as long as b2 is in q2. In {p2, q2, v2} no exciting influence is external.

In order to formalize the effects of influences and to distinguish between phase
transitions that may and phase transitions that will occur, our idea is to assign
certain qualities of activity (phase qualities) to every phase p, thus refining the
concept of case to global activity state in which the phase qualities are reflected.

Explicit Modeling of Influences, and of Their Absence 131

Definition 2 (Local / Global Activity State). Let IS = (P,B,B,K,E) be
an I–System and b ∈ B. The mapping z〈b〉 : b −→ b ∪ {0, 1,F} such that
(L1) ∀p, p′ ∈ b : (z〈b〉(p) = p′ ⇒ p′ /∈ {p, 0, 1,F} ∧ b(p) ∈ AB(IS))
(L2) ∃! p ∈ b : z〈b〉(p) �= 0
is called local activity state of b.
LState(b) denotes the set of all local activity states of b. For a phase p in part
b we interpret the phase qualities in the following way:

z〈b〉(p) =




q : b is in p, b has made the (control) decision to enter q.
F : b is in/ assumes p, b is unstable in p (as an effect of an external

influence), b is to take action to leave p.
1 : b is in/ assumes p, b is stable in p (no decision has been made,

and there is no necessity to leave p as a result of some external
influence).

0 : b is not in/ does not assume p.

If B = {b1, . . . , bn}, n ∈ IN and z〈bi〉 ∈ LState(bi), i = 1, . . . , n, then the
mapping z : P −→ P ∪ {0, 1,F} such that
(G1) z|bi = z〈bi〉
(G2) ∀p, p′ ∈ P : (z(p) �= 0 ∧ z(p′) �= 0)⇒ (p, p′) �∈ K
is called global activity state of IS.
z|bi is the restriction of z to the part bi. GState(IS) denotes the set of all global
activity states. In this terminology, a global activity state z is a tuple of local
activity states. �

According to Remark 1: In our terms, phase transitions in inert parts are always
effects of external influences. Inert parts cannot make any decision.

Definition 3 (free / exciting). If a part b does not assume p in a global
activity state z with p ∈ b then we say p is free in z iff p is not coupled to any
phase p′, such that z(p′) �= 0 and p′ /∈ b: (p, p′) /∈ K.
If part b assumes p in z and another part b′ assumes p′ in z and (p, p′) ∈ E then
we say that p is exciting p′ in z. �

Action rules formulated as distributed algorithms (the syntax is similar to that
in [10]) specify the interaction between the parts of an I–System and compute
changes of phase qualities in a single part. From a global view the action rules
specify how, starting from a global activity state z, the successor states z′ would
be derived, making use of Definition 3. Because of the strict page limitation we
do not present the action rules. These can be found as an appendix in [15]. In
the sequel we will present the basic ideas.

Two successive global activity states z1.z2 represent a specific activity (specified
by the action rules) in the parts of an I–System IS. Let p, q be phases of a part
b of IS.

132 H.F. Wedde and A. Wedig

AC1. If z1(p) = 1 and z2(p) = q then we say that b makes a decision to enter q.
b may make a decision or may not. b must be an autonomous part (def.1).
b is bound to the decision, and a phase transition from p to q will occur
unless q is not a free phase in z1. If q is not free, b influences every part
b′ of IS with b′ beeing in a phase v (z(v) �= 0) and (v, q) ∈ K to leave v.
After every such b′ has left v, b will enter q.

AC2. If z1(p) = 1 and z2(p) = F then we say that b becomes unstable. The
cause for this unstability is either an excitation (it exists a phase v with
z1(v) �= 0 and (v, p) ∈ E) or an influence from another part b′ to leave
p, because (p, v) ∈ K and v is not free (AC1 or AC2). b will eventually
leave p unless there exists no free successor phase. In the latter case, b
influences every part b′ of IS to leave a phase v if b′ is in v and (v, q) ∈ K
for any q ∈ b.

AC3. If z1(p) = q and z2(p) = 1 then we say that the decision of b to enter q is
cancelled. In this case p is exciting a phase w assumed by a part b′.

AC4. If z1(p) = q and z2(q) = 1 then we say that a free phase transition from
p to q occurs in b. We call that transition free because it depends on a
decision of b that may occur anytime (AC1).

AC5. If z1(p) = F and z2(q) = 1 then we say that an enforced phase transition
from p to q occurs in b. We call that transition enforced because it origi-
nates from a condition of unstability that will occur inevitably (AC2).

A recursive application of AC2 represents a global propagation effect of local
conditions. We call the influences in AC1 and AC2 (b influences b′ to leave
v because b takes action to enter a phase that is not free and coupled to v)
propagated influences.

A sequence of global activity states as permitted by the action rules defines a run
in the I–System. The set of all such sequences forms the behavior of the I–System.

Definition 4 (Behavior of an I–System). Let IS be an I–System. We define
the behavior V[[IS]] of IS as:
V[[IS]] = {z0z1z2 . . . | z0z1z2 . . . represents a run in IS with zi ∈ GState(IS)
and zi �= zi+1 for i = 0, 1, 2, . . . }. �

A complete and more formal definition can be found in [15]. Properties of the
trace semantics ’behavior’ (see [15]) can be used for proving that the action
rules are complete and are not contradicting each other. As mentioned in section
1, Reisig [12] distinguishes between between two different kinds of actions:
’progressive’ ones that will occur and ’quiescent’ ones that may occur. Please
remember that if a quiescent action does not occur the cause can not be traced
back in general. If, for an I–System IS, two successive global activity states in
a trace of the behavior V[[IS]] represent a free or an enforced phase transition
(AC4 or AC5, respectively) then we are able to trace back to the local causes
(AC1 or AC2, respectively).

Explicit Modeling of Influences, and of Their Absence 133

p
1

p
2

p
3

p
4

b
1

(a) G(b1)

b
1

e
1

e
2

e
3

e
4

p
1

p
2

p
3

p
4

b
2

e
0

(b) IS

Fig. 2. Interaction inducing a state/transition graph

3 Example: Sequential Processes with Enforced and Free
Phase Transitions

From the viewpoint of distributed, interacting system components each of
them has a certain amount of autonomy. (In the extreme case of technical
components, some may be passive, though.) Beyond the interaction with other
components there may exist an internal organizational scheme specifying the
component’s process structure. On the human administration level such schemes
are typically described as role-based state/event structures (e.g. in distributed
security, see [4,14]). Part of a role is decision making. Other actions are the
result of organizational duties. Each action belongs to one of these classes.
In I–Systems, actions occur in phases (local states). When a decision has been
made then all possible actions in this phase are considered autonomous (decision
situations). In every other situation all actions meant to be organizationally
enforced (procedural situations). The formal approach discussed in section 2
follows exactly this organizational context. In the components (parts) there are
two types of local situations (phases). Transitions from one type of phases are
free (see AC4), the other phases allow for enforced transitions only (see AC5).
In this way an organizational scheme for the phases of any part is defined.
(External influences may superpose the local organizational scheme.)

Definition 5 (Organizational Scheme). A phase/transition structure in a
part b of an I–System consisting of decision and procedural situations will be
called an organizational scheme for b. �

If one disregards the difference between decision and procedural situations
an organizational scheme is just a state/transition graph (see Fig. 2.a). As a
possible interpretation let us assume that every transition in a phase/transition

134 H.F. Wedde and A. Wedig

structure is free. Then the following general representation theorem expresses
that the behavior in a given part b1, specified through a directed graph structure
over b1 (e.g. G(b1) in Fig. 2.a), can be interpreted as originating from a simple
interaction between b1 and an additional inert part b2 where |b2| = |b1|+ 1 (see
IS in Fig. 2.b). b2 is only interconnected to b1, so b2 cannot be influenced from
elsewhere.

Theorem 1 (Induction of State/Transition Graphs). Let IS =
(P, {b1, b2}, {b2}, K,E) be an I–System with b1 = {p1, p2, . . . , pm},
b2 = {e0, e1, e2, . . . , em}, m ∈ IN .
Let G(b1) = (b1,�) be a directed loop-free graph structure over b1.
Assume that the following structural preconditions hold for j = 1, 2, . . . ,m 1:
K(ej) \ b2 = {p ∈ b1 \ {pj} | (pj , p) /∈�}, K(e0) \ b2 = ∅,
E−1(ej) = {p ∈ b1 | (pj , p) ∈�}, E−1(e0) = b1,
E(ej) = E(e0) = ∅.
Then the following holds for every z0z1z2 . . . zi . . . ∈ V[[IS]], i ∈ IN , p, q ∈ b1:
possible phase transitions
((p, q) ∈�) ⇔ ((zi(p) �= Ø) ⇒ (∃z′1, z′2, . . . , z′k ∈ GState(IS), k ∈ IN :
z0z1z2 . . . ziz

′
1z
′
2 . . . z

′
k . . . ∈ V[[IS]] with z′1(p) �= 0, z′2(p) �= 0, . . . , z′k−1(p) �= 0

and z′k(q) �= 0)) �

The number of phases in b2 (equalling b1+1) does not depend on the complexity
of the process structure. In fact, through b2 there is a one-to-one correspondence
between the graph structure G(b1) and a specific standard interaction between
b1 and b2. The proof of the theorem checks the action rules and utilizes semantic
properties of V[[IS]]. (The properties can be found in [15].)

In organizational schemes as defined in Definition 5, we distinguish between
decision and procedural situations. In the corresponding graphs (e.g. G′(b1) in
Fig. 3.a) we depict these two types of situations by two different sets of edges.
Arrows with a single head are representing transitions from decision situations,
and arrows with a double head start from procedural situations.
Following this example we extend the idea behind Theorem 1 such that any
organizational scheme for b can be generated, or imposed, by an additional inert
part connected solely to b.

Corollary 1 (Induction of Organizational Schemes). Let IS′ be an I–
System with parts and phases like IS from Theorem 1.
Let G′(b1) = (b1,�1,�2) be a directed loop-free graph structure over b1 with
{p ∈ b1 |�1(p) �= ∅∧�2(p) �= ∅} = ∅ 2. Set � :=�1 ∪�2.
Assume that the structural preconditions from Theorem 1 hold, but with:

1 For a binary relation R ⊆ P × P we define R(p) := {p′ | (p, p′) ∈ R} and R−1(p) :=
{p′ | (p′, p) ∈ R}.

2 p represents either a decision situation or a procedural situation.

Explicit Modeling of Influences, and of Their Absence 135

p
1

p
2

p
3

p
4

b
1

(a) G′(b1)

b
1

e
1

e
2

e
3

e
4

p
1

p
2

p
3

p
4

b
2

e
0

(b) IS′

Fig. 3. Decision and procedural situations. A double arrow head depicts an enforced,
a single arrow head depicts a free phase transition.

E(ej) =
{{pj} iff �2(pj) �= ∅
∅ else .

Then the following holds for every z0z1z2 . . . zi . . . ∈ V[[IS′]], i ∈ IN , p, q ∈ b1:

a) possible phase transitions
Analogous to Theorem 1 with IS′ instead of IS.

b) free phase transition
((p, q) ∈�1)⇔ ((zi(p) �= 0 ∧ zi+1(q) �= 0)⇒ (zi(p) = q ∧ zi+1(q) = 1))

c) enforced phase transition
((p, q) ∈�2)⇔ ((zi(p) �= 0 ∧ zi+1(q) �= 0)⇒ (zi(p) = F ∧ zi+1(q) = 1)) �

The idea behind this variation of the construction in Theorem 1 is that if b1
is in a phase pi representing a procedural situation then we need an additional
influence that forces b1 to leave pi. We realize such an influence by simply
adding an excitement edge (ei, pi) ∈ E. Now, if b1 is in pi then b2 eventually
enters ei which, in turn, will excite pi. pi becomes unstable and eventually
enters a successor phase.
In Fig. 3.a p2 and p3 represent procedural situations. In order to model the
behavior we extend the interaction IS from Fig. 2.b by two excitement edges
(e2, p2) and (e3, p3). We get IS′ in Fig. 3.b.

Remark 2. Since the inert parts are connected solely to those part where they
induce the organizational scheme the specification of further external influences
between parts is not changed (superposition of restrictive influences). �

As a formal convention for I–Systems, if no internal behavior is specified in b
it is assumed that transitions between any 2 phases are possible.

136 H.F. Wedde and A. Wedig

4 Application: Problems about Ensuring Priorities
among Distributed Processes

Let us assume that in a distributed computer system we have two components,
b1 and b2, which at times want to download time critical jobs on a special high-
speed machine M . In order to avoid conflicts about accessing M between the
involved components priority regulations are frequently implemented. Due to
organizational reasons b2 is assumed to have higher priority than b1.
Throughout this section we will discuss various aspects of priority handling in
the context of the example addressed. Formally we model b1 and b2 by one
part of an I–System ĨS each. We will focus on the basic ideas in modeling
mutual influences, omitting proofs (because of page limitations) and the detailed
semantical specification of V[[ĨS]].

4.1 Local Behavior of b1 and b2

The local behavior of bj , j = 1, 2, can be depicted by the organizational scheme

rg
j

cs
j

cl
j

r
j

The procedure of accessing M is described by a 3-phase process structure:
The registration phase rgj is the only predecessor of the critical section phase
csj in which bj is allowed to access M . The clearing phase clj is the only
successor of the critical section phase. The transitions rgj → csj and csj → clj
are enforced and will occur if no global influences impose further blocking
restrictions. The other activities in bj will be summarized into a remainder
phase rj , from which, and to which, phase transitions are assumed to be free.
They depend on local control decisions e.g. resulting from interactions with users.

The local behavior in part bj can be generated by an I–System according to Corol-
lary 1.

4.2 Static Access Priority

If the access to a shared resource is to be arranged on the basis of mutual
exclusion then the resulting priority requirement is that if two processes are
both ready to access the resource then the one of higher priority is to go ahead
while the other one has to wait. In the context of the example in 4.1 this
condition can be phrased as follows.

Requirements 1.

PR0. If bj is in rgj , j = 1, 2, then only b2 may enter cs2 while b1 has to wait.

Explicit Modeling of Influences, and of Their Absence 137

b
1

e
1

e
2

e
3

EX

rg
1

cs
1

cl
1

r
1

rg
2

cs
2

cl
2

r
2

b
2

EX
C

L(
rg

2|rg
1,cs

1)

Fig. 4. Minimal realization of PR0

In order to realize the restriction PR0 we use the formal construction
EXCL(rg2 | rg1, cs1). Here an inert part EX interacts with b1 and b2 as de-
picted in Fig. 4. For every global activity state of ĨS, the interaction satisfies
the following requirements:

E1. If b2 is in rg2 then no transition rg1 → cs1 is possible in b1.
E2. b2 cannot be prevented from entering or leaving rg2. b1 has no influence on

b2 as to leaving rg2.
E3. Once b2 has left rg2, b1 cannot be prevented from performing the phase

transition rg1 → cs1 unless b2 reenters rg2.
E4. b2 has no influence on b1 as to leaving rg1 or cs1.

The interaction is minimal in the sense that through this connection no further
restriction is imposed on b1 or b2. PR0 is an immediate consequence of E1,
E2, and the local behavior of b1. (Please remember from the end of section 3
that transitions between any 2 phases in EX are possible yet would occur only
through external influence.) The proof of E1-E4 would be done by analyzing
V[[ĨS]].

Remark 3. EXCL(rg2 | rg1, cs1) is an example for a standard construction.
Through standard constructions we are able to model a large set of complex
interaction and synchronization relationships, including the behavioral patterns
unique for Interaction Systems. The correctness proofs are done by analyzing
the trace semantics. Due to page limitations we refer to [15] for more details.�

4.3 Enforcing Access Priority

In the scenario described at the beginning of section 4 at most one of the
components b1, b2 may have a job residing and executing on M (sensitive data).
Also, if b1 is executing a job on M and a job is waiting for execution at b2,
then because of b2’s higher priority some influence should be exerted on b1

138 H.F. Wedde and A. Wedig

(e.g. through a kind of notification) to finish up and give room to b2. (b1, due
to its lower priority, should not impose a waiting influence on b2, i.e., priority
inversion should be excluded.) In terms of our formal representation, these
conditions can be rephrased as follows:

Requirements 2.

PR1. cs1 and cs2 are mutually exclusive phases.
PR2. If b2 is in rg2, it influences b1 to leave cs1.
PR3. If b1 is in rg1, it does not exert any influence on b2 as to leaving cs2.

We realize this form of priority through a construction with an inert part PR
which is shown in Fig. 5.

b
1

e
1

e
2

e
3

PR

rg
1

cs
1

cl
1

r
1

rg
2

cs
2

cl
2

r
2

b
2

Fig. 5. Minimal realization of PR1, PR2, PR3

This construction is a variation of the standard construction in Fig. 4, with edge
(cs2, e3) instead of (rg2, e3), and by adding a coupling edge (e1, cs1). This edge
represents an additional interaction/influence that is necessary because property
E4 satisfied by the previous standard construction contradicts requirement PR2
for enforcing access priority. PR1 is satisfied as well by this simple extension. E2
is still valid (with cs2 instead of rg2) and leads to PR3.

4.4 Reserved Access Right

In the context of our application example let us assume that b1 has a series
of time critical jobs to download onto M . They carry short deadlines. Each of
them is supposed to be rather small in comparison to the jobs without deadlines
coming from b2. M ’s scheduler may therefore, in order to meet the deadlines,
decide to start executing a job of b1 instead of processing a job of b2, despite of
b2’s high priority. Obviously this problematic configuration (another example of
priority inversion) may be repeated indefinitely often resulting in starvation of
b2. In order to avoid this undesirable effect we formulate the following conditions.

Explicit Modeling of Influences, and of Their Absence 139

Requirements 3.

PR4. Through the interaction, bj , j = 1, 2, cannot be prevented from entering
rgj anytime.

PR5. If b2 is in rg2 while b1 is in cs1 then b1 can proceed only as far as rg1 as
long as b2 has not entered cs2.

PR6. After b2 has left cs2, b1 has the chance to reenter cs1.

The main idea is to establish the needed communication between b1 and b2
through a single inert part CP the behavior of which is to be restricted by an-
other inert part EX ′. The formal construction including the necessary relations
is to be found in Fig. 6. The second inert part is part of a parametrization of
the standard construction introduced in section 4.2. Its known properties E1,
E2, E3, E4 in conjunction with the interaction through CP are the basis for the
proof of PR4, PR5, PR6.

e
21

e
22

e
23

e
11

e
12b

1

EX

rg
1

cs
1

cl
1

r
1

rg
2

cs
2

cl
2

r
2

b
2

CP

EX
C

L(
rg

2|e 12
,e 11

)

Fig. 6. Minimal realization of PR4, PR5, PR6

4.5 Guaranteed Access under Priority

If we assume, in the course of our developing example, that the critical sections
in b1 and b2 underlie the restrictions PR1, PR2, PR3, PR4, PR5, PR6 then
we would simply combine the constructions in Fig. 5 and Fig. 6 in order to
overcome the shortcomings of the solution that is solely taking care of the
priority restrictions. We can combine the effects of the two constructions since
they have no side-effects. Graphically this is depicted in Fig. 7.

While the discussion in the context of our example scenario could easily continue
by further elaborating on open priority problems our purpose here was simply to
demonstrate, in the dimension of a large real system design, the modularity and
incrementality of our formal tools. Recent research related to compositionality/
modularity within the design and analysis of distributed systems can be found
in [1,6,8].

140 H.F. Wedde and A. Wedig

e
21

e
22

e
23

e
11

e
12

b
1

rg
1

cs
1

cl
1

r
1

rg
2

cs
2

cl
2

r
2

b
2

CP

e
1

e
2

e
3

PR

EX

Fig. 7. Minimal realization of PR1, PR2, PR3, PR4, PR5, PR6

5 Conclusion

In order to model events in distributed components as well as cooperation be-
tween components in a formally unified framework we defined I–Systems. System
components are presented as parts. These are constituted through their relevant
(local) states, denoted by phases. The interaction between parts is specified
through two binary relations, denoted as coupling and excitement relations, re-
spectively. Their (restrictive) influences on the involved parts is defined through
action rules for which novel trace semantics have been constructed thus formally
introducing the global effect of the local cooperation, in terms of propagating
local influences.
Modeling distributed behavior in large systems is done in two different ways.
Traditional approaches start with modeling behavior of components and next
interaction between components. The problem is to understand/ analyze the ef-
fect of the interaction on the component behavior. In our approach we model
interaction between components starting with elementary interaction relations
and by explicitly defining their influence on the behavior of the involved com-
ponents. We have proven to cover the range of representations given by the
first approach but our tools are even more powerful. They allow for explicitly
distinguishing between free and enforced actions (transitions) which is crucial
for adequately modeling organizational processes. We have shown the additional
advantage through I–Systems to incrementally model complex distributed (soft-
ware) systems and to guarantee their correctness at the same time.
We have done much research on finding a tool set of standard constructions for
the efficient formal representation of all forms of synchronization and cooper-
ation between distributed components. Currently we are finalizing our efforts

Explicit Modeling of Influences, and of Their Absence 141

to generate these formal constructions through a very small set of elementary
restrictions, and through particular principles for their refinement and modifi-
cation.

References

1. Rajeev Alur, Luca de Alfaro, Thomas A. Henzinger, and Freddy Y. C. Mang.
Automating Modular Verification. In CONCUR’99, volume 1664 of LNCS, pages
82–97. Springer-Verlag, 1999.

2. Rajeev Alur and Thomas A. Henzinger. Reactive Modules. In Formal Methods in
System Design, volume 15, pages 7–48. Kluwer Academic Publishers, 1999.

3. Ralph Back, Anna Mikhajlova, and Joakim von Wright. Reasoning About In-
teractive Systems. In FM’99, Vol. II, volume 1709 of LNCS, pages 1460–1476.
Springer-Verlag, 1999.

4. Piero Bonatti, Sabrina de Capitani di, and Pierangela Samarati. A modular ap-
proach to composing access control policies. In Proceedings of the 7th ACM Confer-
ence on Computer and Communications Security, pages 164 – 173, Athens Greece,
nov 2000.

5. Paul Caspi, Alain Girault, and Daniel Pilaud. Automatic Distribution of Reactive
Systems for Asynchronous Networks of Processors. IEEE Transactions on Software
Engineering, 25(3):416–427, 1999.

6. Michael Charpentier and K. Mani Chany. Towards a Compositional Approach to
the Design and Verification of Distributed Systems. In FM’99, Vol. I, volume 1708
of LNCS, pages 570–589. Springer-Verlag, 1999.

7. V. Diekert and G. Rozenberg. The Book of Traces. World Scientific, 1995.
8. Valérie Issarny, Luc Bellissard, Michel Riveill, and Apostolos Zarras. Component-

Based Programming of Distributed Applications. In Distributed Systems, volume
1752 of LNCS, pages 327–353. Springer-Verlag, 2000.

9. Man Lin, Jacek Malec, and Simin Nadjm-Tehrani. On Semantics and Correctness
of Reactive Rule-Based Programs. In PSI’99, volume 1755 of LNCS, pages 235–246.
Springer-Verlag, 2000.

10. Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
11. Andrea Maggiolo-Schettini, Horst F. Wedde, and Józef Winkowski. Modeling a

Solution for a Control Problem in Distributed Systems by Restrictions. Theoretical
Computer Science, 13:61–83, 1981.

12. W. Reisig. Elements of Distributed Algorithms. Springer-Verlag, 1998.
13. Horst F. Wedde. An Iterative and Starvation-free Solution for a General Class of

Distributed Control Problems Based on Interaction Primitives. Theoretical Com-
puter Science, 24, 1983.

14. Horst F. Wedde and Mario Lischka. Modular authorization. In Proceedings of
the 6th ACM Symposium on Access Control Models and Technologies (SACMAT),
Chantilly, Virginia, May 3-4 2001.

15. Horst F. Wedde and Arnim Wedig. Explicit Modeling of Influences, and of Their
Absence, in Distributed Systems (Extended version). Technical report, University
of Dortmund, October 2001.
http://ls3-www.cs.uni-dortmund.de/IS/P/techrep1001.ps.

16. Peter Wegner. Why interaction is more powerful than algorithms. Communications
of the ACM, 40(5):81–91, May 1997.

17. Peter Wegner and Dina Goldin. Interaction as a Framework for Modeling. In
LNCS, volume 1565. Springer-Verlag, 1999.

	Explicit Modeling of Influences, and of Their Absence, in Distributed Systems
	Introduction
	I--Systems
	Example: Sequential Processes with Enforced and Free Phase Transitions
	Application: Problems about Ensuring Priorities among Distributed Processes
	Local Behavior of b_1 and b_2
	Static Access Priority
	Enforcing Access Priority
	Reserved Access Right
	Guaranteed Access under Priority

	Conclusion
	References

