A Functional Semantics of Attribute Grammars

Kevin Backhouse

Oxford University Computing Laboratory

Abstract. A definition of the semantics of attribute grammars is given,
using the lambda calculus. We show how this semantics allows us to prove
results about attribute grammars in a calculational style. In particular,
we give a new proof of Chirica and Martin’s result [6], that the attribute
values can be computed by a structural recursion over the tree. We also
derive a new definedness test, which encompasses the traditional closure
and circularity tests. The test is derived by abstract interpretation.

1 Introduction

This paper introduces a new definition of the semantics of attribute grammars
(AGs), which we believe is easier to manipulate mathematically. The semantics
is based on the lambda calculus, so a calculational proof style is possible. We
illustrate the power of the semantics by proving Chirica and Martin’s result [6]:
that AGs can be evaluated by structural recursion. More importantly though,
we show that the semantics is an excellent basis from which to derive tools and
algorithms. We illustrate this by deriving a new definedness test for AGs. Our
original goal was to derive Knuth’s circularity test [12J13], but we were surprised
to discover a new test that is actually slightly more powerful than Knuth’s.

Notation and Semantic Framework. Our notation is based on the notation
of the functional language Haskell [4]. Although the definitions given in Section 2]
are valid Haskell, we do not restrict ourselves to Haskell’s lazy semantics. Instead
we merely assume that the computations are over a semantic domain in which
the least fixed points exist. This is so as not to rule out work such as Farrow’s [9],
in which non-flat domains are used to great effect. For example, Farrow uses the
set domain to do data flow analysis. Throughout the paper, we use a number of
standard functions such as fst and map. These are defined in the appendix. Our
definition of sequences, which is a little unusual, is also given in the appendix.

2 The Semantics of Attribute Grammars

In this section, we define the semantics of AGs as a least fixed point computa-
tion. Our approach is to represent abstract syntax trees as rose trees and then
define the semantics using functions over rose trees. Throughout, we illustrate
our definitions with Bird’s repmin problem [3]. As noted by Kuiper and Swier-
stra [14], repmin can be easily written as an attribute grammar. The input to
repmin is a binary tree of integers. Its output is a tree with identical structure,
but with every leaf value replaced by the minimum leaf value of the input tree.

J.-P. Katoen and P. Stevens (Eds.): TACAS 2002, LNCS 2280, pp. 142-{I57] 2002.
© Springer-Verlag Berlin Heidelberg 2002

A Functional Semantics of Attribute Grammars 143

2.1 Abstract Syntax Trees as Rose Trees
We use rose trees (see appendix) to represent abstract syntax trees.

type AST = Rose ProdLabel

The type ProdLabel is a sum type representing the different productions of the
grammar. In repmin, The abstract syntax tree is a binary tree, so ProdLabel is:

data ProdLabel = Root | Fork | Leaf Int

A single Root production appears at the top of the tree. It has one child, which
is the binary tree. Fork nodes have two children and Leaf nodes have zero.
Note that the type ProdLabel can contain terminal information such as integer
constants and strings, but it does not contain non-terminal information. The
non-terminals of a production are represented as children in the rose tree.

2.2 Attributes

A drawback of our use of rose trees is that every node in the tree must have
the same set of attributes. That is, if leaf nodes have a code attribute then root
nodes have a code attribute too. However, attributes can be left undefined and
our definedness test ensures that undefined attributes are not used. Repmin has
one inherited attribute for the global minimum leaf value and two synthesised
attributes: the minimum leaf value for the current subtree and the output tree
for the current subtree. So we define the following datatypes

type Inh = Int;
type Syn = (Int,, AST,)

In an AG with more attributes, we might use records or lookup tables, rather
than tuples to store the attributes. Our definition of AGs below uses polymor-
phism to leave this choice open.

2.3 Attribute Grammars as Functions

In the following definition of an attribute grammar, the inherited and synthesised
attributes are represented by the type parameters a and (3, respectively. As ex-
plained above, this means that we are not bound to a particular implementation
of attributes. (Seq is defined in the appendix.)

type AG a3 = ProdLabel — SemRule a 8
type SemRule o 8 = (a, Seq) — (B, Seq)

! The L subscript on the types indicates that we have lifted them to a flat domain by
adding L and T elements. We use a similar informal notation for lifting functions
and values: if x has type A, then x; has type A, and if f has type A — B, then f
has type A, — B.

144 K. Backhouse

This definition states that an AG is a set of semantic rules, indexed by the pro-
ductions of the grammar. Our concept of a semantic rule deviates slightly from
tradition. Traditionally, there is one semantic rule per attribute. In our model, a
single semantic rule defines all the attribute values. It is a function from the “in-
put” attributes to the “output” attributes. The input attributes are the inherited
attributes of the parent node and the synthesised attributes of the children. The
output attributes are the synthesised attributes of the parent and the inherited
attributes of the children. The fact that we are using a single function does not
mean that the attribute values have to be computed simultaneously. For exam-
ple, in Haskell [{] attribute values would be evaluated on demand, due to the
lazy semantics. In Farrow’s model [9], attribute values are computed iteratively,
so the function would be called several times.

Repmin. Repmin is encoded as a value of type AG as follows:

repAG 2 AG Inh Syn
repAG Root (-, syns) = ((L, Nodes Root [snd syns1]), [fst synsi])
repAG Fork (gmin, syns) = ((miny (fst synsy) (fst synsa),

Node, Fork [snd syns1, snd synss]),
[gmin, gmin])
repAG (Leaf k) (gmin, syns) = ((ki., Node, (Leaf, gmin)[]), [])

This should be read as follows. The local minimum of the root production is
undefined, because it will remain unused. The output tree of the root production
is equal to the output tree of its subtree. In the root production, the local
minimum of the subtree becomes the inherited global minimum attribute. (The
gmin attribute of the root node is ignored.) In the fork production, the local
minimum is the minimum of the two local minima of the subtrees. The output
tree is built from the output trees of the two subtrees and the global minimum
is passed unchanged to the subtrees. The local minimum in the leaf production
equals the value at the leaf and the new tree is a leaf node with the global
minimum as its value.

Semantic Trees. Given an AST and an AG, we can compute a semantic tree,
which is a tree containing semantic functions. This is done by simply mapping
the AG over the tree:

type SemTree o f = Rose (SemRule o (3)

mkSemTree :: AGap — AST — SemTree a3
mkSemTree = mapRose

We will often work with semantic trees rather than abstract syntax trees, because
it makes some of our definitions and proofs more concise.

A Functional Semantics of Attribute Grammars 145

2.4 Shifting Attributes Up and Down the Tree

The goal of an attribute grammar evaluator is to produce a tree containing the
attribute values. In other words we wish to produce a value of type Rose (a, 3),
where a and 8 are the types of the inherited and synthesised attributes. How-
ever, this format is not easily compatible with the semantic rules defined earlier.
Instead we use the following two formats to represent annotated trees:

type InputTree o = Rose («, Seq (3)
type OutputTree oo § = Rose (3, Seq «)

In the input format, the synthesised attributes of a node are stored by the node’s
parent. The parent uses a sequence to store the synthesised attributes of all its
children. Similarly, in the output format, the inherited attributes of a node are
stored by the node’s parent. The output tree is the result of applying the semantic
tree to the input tree. Note that in the input format, the synthesised attributes
of the root node are not stored. Similarly, in the output format the inherited
attributes are not stored. Therefore, this data needs to be stored separately.
The shift function is used to convert from the output to the input format.
It encapsulates the idea that inherited attributes are passed down the tree and
synthesised attributes are passed up. Note that shift merely moves attributes
around; the calculation of the attribute values is done by the semantic tree.

shift = a — OutputTree o § — InputTree a
shift a (Node (b, as) ts) = Node (a, bs) (zip With shift as ts)
where bs = map (fst o root) ts

Note that the inherited attributes of the root node are the first parameter of
shift. The inherited attributes of the root node are always an external parameter
to an attribute grammar.

2.5 The Semantics as a Least Fixed Point Computation

We explained above how we can produce a semantic tree by mapping an AG
over an AST. Given a semantic tree semtree and the inherited attributes a of
the root node, we expect the following equations to hold:

inputTree = shift a outputTree (1)
outputTree = appRose semtree inputTree (2)

As we discussed above, the attributes of the tree can be stored either in the
input or the output format. Equation () states that the input tree can be
computed from the output tree with the shift function. Equation (2) says that
the output tree can be computed by applying the semantic tree to the input tree.
Equations () and () form a pair of simultaneous equations that can be used to
compute inputTree and outputTree. Following Chirica and Martin [6], we define
the semantics of attribute grammars to be the least solution of the equations.
This choice has no effect if the attributes are not circularly defined, because the

146 K. Backhouse

solution to the equations is unique. If our domains are flat, then circularly defined
attributes will evaluate to L. Farrow [9] discusses some interesting applications
of working with non-flat domains. The least solution can be computed with the
following function:

eval = SemTree a f — a — OutputTree a 3
eval semtree a = pu (appRose semiree o shift a)

This function is our definition of the semantics of attribute grammars. Please
note that we do not propose it as an efficient implementation though! In the
following section, we define a more convenient version called 0 and demonstrate
it on the repmin problem (Section [3.4)).

3 AG Semantics as a Structural Recursion

The eval function given above computes attribute values for the entire tree. In
practice, we often only want to know the values of the synthesised attributes of
the root node of the tree. Therefore, it is convenient to define the function io:

10 iz SemTreea S — a —
i0 semtree a = fst (root (eval semtree a))

The name 7o stands for input-output. It converts the semantic tree into a function
from inherited attributes to synthesised attributes.

Johnsson [I1] showed that AGs can be viewed as an idiom of lazy functional
programming. Using the idea that a semantic tree is simply a function from in-
herited to synthesised attributes, he recursively builds the input-output function
for the entire AST. The idea that input-output functions can be computed by
structural recursion was also stated much earlier by Chirica and Martin [6]. We
state the idea formally with the following theorem:

Theorem 1. The following definition of io is equivalent to the one given above:
10 = foldRose knit
where:

knit it (SemRule a 3, Seq (v — B)) — (o —)
knit (semrule, fs) a = fst (1 (b, as e semrule (a, appSeq fs as)))

The definition of knit is rather unintuitive, but it has appeared in different
forms in many papers on AGs, including one of our own [§]. Other examples are
Gondow & Katayama [10] and Rosendahl [18]. Very briefly, as and appSeq fs as
are respectively the inherited and synthesised attributes of the subtrees. Their
values are mutually dependent (using semrule), so they are computed by a least
fixed point computation. For a better understanding of knit, see Johnsson [11].

Our proof is essentially the same as the proof given by Chirica and Martin [6],
although our notation is rather different. The most important step is to use
the mutual recursion rule and we will start by proving a lemma, that adapts
the mutual recursion rule to rose trees. Another important step is to use the
abstraction rule though. The use of the abstraction rule is the motivation for
our use of sequences rather than lists throughout this document.

A Functional Semantics of Attribute Grammars 147

3.1 The Mutual Recursion Rule on Rose Trees

The most crucial step in our proof of Theorem [1 is to use the mutual recursion
rule (see the appendix). This theorem allows us to factorise least fixed point
computations. In this section, we shall show how it can be applied to rose trees.
We do this by proving the following lemma:

Lemma 1. If f is a monotonic function of type Rose A — Rose A, then:

root (uf) = p(z e g1 (z, p(xs e g2 (v,75))))

where:
g =fstoyg
g2 =snd o g

g =split o f o merge

Proof:

root (. f)
= { merge o split = id }
root (u (merge o split o f))
{ rolling rule (see the appendix) }

root (merge (u (split o f o merge)))
= { root o merge = fst, Definition g }

fst (ng)
= { mutual recursion rule (see the appendix) }

plxegy (z, pizsegs (x,1s))))

3.2 Proving Theorem [

We now prove Theorem [l deriving the definition of knit in the process. First we
apply a general result about folds:

10 = foldRose knit
{ Universal property of fold, Bird & de Moor [5], page 46] }

V(s, ss,a e io (Node s ss) a = knit (s, map io ss) a)

We continue by manipulating the expression io (Node s ss) a until we obtain an
expression from which it is easy to derive the definition of knit:

i0 (Node s ss) a
= { Definition io }
fst (root (p (appRose (Node s ss) o shift a)))

148 K. Backhouse

We can apply the mutual recursion rule on rose trees (Lemma [I)) to this expres-
sion. By simply expanding the definitions of ¢g; and g, as specified in Lemma [T}
we find that:

a1 ((b, as), ts) = s (a, map (fstoroot) ts)
g2 ((b, as), ts) = zipWith appRose ss (zip With shift as ts)
Therefore, Lemma [l implies that io (Node s ss) a is equal to:

Jst (p (b, as & g1 ((b; as), p (ts e g2 ((b, as),ts)))))

(With g1 and g2 as defined above.) Counsider the sub-expression containing gs:

p (ts @ g2 ((b, as), ts))
= { Definition g5 }
w {ts e zipWith appRose ss (zip With shift as ts))
{ Claim (see the appendix) }

u {ts ® appSeq (zip With (o) (map appRose ss) (map shift as)) ts)
{ abstraction rule (see the appendix) }

(ko p (zipWith (o) (map appRose ss) (map shift as) k))

= { Definitions zip With and map }

(ke 1 (appRose (ss k) o shift (as k)))
{ Definition eval }

(ko eval (ss k) (ask))

We continue with the main expression:

fSt (:U’ <ba as e g ((b7 as)7 1% <t8 ® g2 ((ba 0'8)7 t8)>)>>
= { Substitute the new sub-expression }

fst (1 (b, as @ g1 ((b, as), (ke eval (ss k) (as k)))))
= { Definition ¢; }
fst (u (b, as @ s (a, map (fst o root) (k e eval (ss k) (as k)))))
= { Definitions map and io }
fst (u (b, as @ s (a,{keio (ss k) (as k)))))
= { Definitions appSeq and map }
fst (p (b, as @ s (a, appSeq (map o ss) as)))
= { Definition knit }

knit (s, map io ss) a

In the final step, we have derived the definition of knit.

A Functional Semantics of Attribute Grammars 149

3.3 A More Convenient Version of the 70 Function: trans

The 7o function operates on semantic trees. It is usually more convenient to
operate on abstract syntax trees, so we define the trans function:

trans 2 AGap — AST — a —
trans ag = i0 o mkSemTree ag

In the next section, it is important that ¢trans can be written as a fold:
trans ag = foldRose (knit o (ag x id))

The proof is a simple application of fold-map fusion [4, page 131].

3.4 Repmin as a Recursive Function

Let us expand trans repAG to demonstrate that it is equivalent to the func-
tional program for repmin. Expanding the definitions of trans (above), foldRose

(appendix), knit (page[I46) and repAG (page[I4d]), we obtain:

repmain 2 AST — Inh — Syn
repmin (Node Root [t]) - = (L, Node, Root [nt])
where (gm, nt) = repmin t gm

repmin (Node Fork [ty, tz]) gm = (miny Imy lmg, Node, Fork [nty, nty])
where (Imy, nty) = repmin t; gm
(Img, nta) = repmin ty gm
repmin (Node (Leaf k)) gm = (ki, Nodey (Leaf, gm)[])

This is indeed very similar to the program given by Bird [3]. Of course Bird’s
emphasis is on the recursive definition of gm at the root of the tree, which is
valid in a language with lazy evaluation.

4 The Definedness Test

When Knuth [12] introduced attribute grammars, he also gave algorithms for
testing them for closure and circularity. Closure is the property that there are
no ‘missing’ semantic rules for attributes. An AG is circular if there exists an
input tree on which the attributes are circularly defined. We present a new
algorithm, which is very similar to the circularity test, but encompasses the
roles of both the closure and the circularity tests. It computes equivalent results
to the circularity test and improves upon the closure test (which is based on
a very shallow analysis of the dependency structure) by reducing the number
of false negatives. In other work on extending attribute grammars [I9] we have
found this improvement essential.

In our model, an undefined attribute is an attribute with the value L. Simi-
larly, circularly defined attributes over a flat domain will evaluate to L, because

150 K. Backhouse

our semantics is a least fixed point semanticsF So in our model, the goal of both
the closure and the circularity tests is to detect attributes which will evaluate to
L. Our definedness test accomplishes both of these goals by analysing strictness.
This concept is very similar to the concept of “dependence” used in the circular-
ity test. A function f is strict if f L = L. In our model, an undefined attribute
is an attribute with the value L, so a strict function ‘depends’ on its parameter.
However, the expression f z is said to depend on x even if f is not strict, so the
two concepts are not identical. Luckily, semantic rules in a traditional AG are
always strict in the attributes that they depend on.

Our presentation of the circularity test consists of two parts. In the first part
we explain how the strictness analysis is done as an abstract interpretation. In
the second part we explain how the AG can be statically tested for circularity
on all possible input trees.

4.1 Strictness Analysis and Abstract Interpretation

Strictness analysis is very important for the optimisation of lazy functional pro-
grams. Peyton Jones [16, pages 380-395] explains this and gives a good in-
troduction to abstract interpretation, which is the technique used to perform
the analysis. The use of strictness analysis in AGs has been studied before by
Rosendahl [18]. However, Rosendahl’s emphasis is on the optimisation of AGs,
rather than definedness.

The prerequisite for abstract interpretation (first introduced by Cousot &
Cousot [7]) is a Galois Connection between the “concrete” domain (A, <) and
the “abstract” domain (A%, <). For an introduction to Galois Connections, see
Aarts [T]. Briefly, there should be an abstraction function abs of type A — A%
and a concretisation function con of type A# — A. The “connection” is:

V{z,ye absx =y = x < cony)

The Galois Connection used in strictness analysis is between any domain (A4, <)
and the boolean domain (Bool,=>):

absy 1 A — Bool cony :: Bool — A
absg x = (x # 1) conyg b=1if b then T else L

The idea is that in the abstract domain, 1 is represented by False and other
values by True. Given a function f, we derive an abstract version f# that models
the strictness of f using booleans. Suppose for example that f has type A — B.
Then f# will have type Bool — Bool. The result of f# is False if and only if
the result of f is L. Mathematically, this relationship between f and f# is

Y(ze absg (fx) = f* (absax)) (3)

2 If the domain is non-flat, then circular attributes may not evaluate to L, but in this
situation circularity is usually intended rather than erroneous. Farrow [9] suggests
some useful applications of circular attributes over non-flat domains.

3 Abstract interpretations are often only able to give conservative results, so the equa-
tion is an inquality: abs (f) < f# (abs x). However, in most ACs such as repmin,
an exact result can be given.

A Functional Semantics of Attribute Grammars 151

Often, if this equation has a solution, it is the function f# = absg o f o cona.
We will use this technique when we discuss repmin below.

Repmin. Let us apply strictness analysis to repmin. First we must define ab-
stract versions of the types Inh and Syn, defined on page [T43}

type Inh# = Bool
type Syn” = (Bool, Bool)

Inh and Inh* are Galois Connected, as are Syn and Syn™:

absInh = absp absSyn = absp,s X absasT
conlnh = conp,: conSYn = coNus X CONAST

Now we need to derive an abstract version of repAG, the attribute grammar for
repmin, defined on page [44. The type of repAG is AG Inh Syn, so repAG*
should have type AG Inh* Syn* . Following the suggestion above, we define:

repAG* p = (absSyn x map absInh) o repAG p o (conlnh x map conSyn)

A simple calculation reveals that repAG and repAG? satisfy an equation similar
to (B)), which is required by Theorem 2] An equivalent definition of repA G* is:

repAG# 0 AG Inh# Syn#
repAG* Root (_, syns) = ((False, snd synsy), [fst synsi])
repAG# Fork (gmin, syns) = ((fst syns; A fst synss,
snd synsy A snd synsz), [gmin, gmin))
repAG# (Leaf k) (gmin, _) = ((True, gmin), [])

The reader should compare this definition with the definition of repAG, given
on page[T44l Where repAG computes the value L, this function computes False.

Using the Abstract Interpretation. Now that we have ag#, the abstract
interpretation of ag, what happens when we evaluate an abstract syntax tree
using it? Our hope is that the result of evaluating the tree with ag? can be
used to predict something about the result of evaluating the tree with ag. The
following theorem is what we need:

Theorem 2. Suppose we are given an attribute grammar ag and its abstract
interpretation ag¥. By definition, they are related as follows, for all p:

(absSyn x map absInh) o agp = ag” p o (absInh x map absSyn)
Then, for all t:
absSyn o trans agt = trans ag™ t o abslnh

This theorem could be worded as: if ag# is the abstract interpretation of ag, then
trans ag? is the abstract interpretation of trans ag. The theorem can be proved
manually using fixpoint fusion or fixpoint induction, but we have discovered that
it follows immediately from the polymorphic type of trans. This is the topic of a
forthcoming paper [2], which presents a result based on Reynold’s parametricity
theorem [I7], similar to Wadler’s “Theorems for free” [20].

152 K. Backhouse

4.2 Computing the Strictness for All Possible Trees

In general an attribute grammar will have n inherited attributes and m synthe-
sised attributes. Therefore, the types Inh* and Syn# will be:

type Inh* = (Bool, ..., Bool)
type Syn® = (Bool, ..., Bool)

This means that there are 2" different values of type Inh? and 2™ of type Syn™.
Consequently, there are only a finite number of functions of type Inh?* — Syn™.
So even though there are an infinite number of input trees, trans ag?” can only
have a finite number of values. In this section we derive an algorithm, very
similar to the traditional circularity test algorithm, for computing those values
in a finite amount of time.

The Grammar. Until this point we have ignored the fact that abstract syntax
trees are constrained by a grammar. We are using rose trees to represent ASTs,
which means that we are not prevented from building grammatically incorrect
trees. The definedness test depends crucially on the grammar, so let us define it.

A grammar consists of a set of symbols and an associated set of produc-
tions. Just like productions, we represent the symbols with a simple enumeration
datatype. In repmin, there are just two symbols:

data Symbol = Start| Tree

Every symbol in the grammar is associated with zero or more productions. Every
production has a sequence of symbols on its right hand side. We represent this
as a partial function with the following type:

grammar :: (ProdLabel, Seq Symbol) + Symbol

This function is partial, because it only accepts inputs where the sequence of
symbols matches the production. For example, the grammar for repmin is:

grammar (Root, [Tree]) = Start
grammar (Fork, [Tree, Tree]) = Tree
grammar (Leaf _, []) = Tree

The following function checks whether a tree is grammatically correct:
foldRose grammar :: AST -+ Symbol

This function is also partial. It is only defined on grammatically correct trees.

Generating Grammatically Correct Trees. We can generate the set of all

grammatically correct trees by inverting the grammar:

trees :: Symbol «— AST
trees = (foldRose grammar)®

A Functional Semantics of Attribute Grammars 153

As indicated by the type signature, trees is a relation. Relations can be thought
of as set-valued functions, so given a symbol, trees produces the set of all gram-
matically correct trees with that symbol-type.

The above definition is known as an unfold. See Bird and de Moor [B] for a
proper discussion of folds and unfolds over relations.

Testing all Grammatically Correct Trees. We now have the two necessary
ingredients for the definedness test. We can test an individual tree for definedness
and we can generate the set of all grammatically correct trees. We can put them
together as follows:

circ : Symbol < (Inh#* — Syn#)
circ = trans ag# o trees

Given a symbol, circ produces the test results for all trees of that type. As we
explained earlier, these results form a set of finite size, despite the fact that
the number of trees involved might be infinite. So the question is: how do we
compute the results in a finite amount of time? The answer is provided by the
hylomorphism theorem (see the appendix). Recalling that trans can be written
as a fold and trees as an unfold, we see that an equivalent definition for circ is:

circ = p{ce knit o (ag® x mapc) o grammar®) (4)

The result of this fixpoint computation can be computed by iteration. Iteration is
a technique for computing the value of p f in finite sized domains. The technique
is to compute the sequence L, f(L), f(f(L)),..., which is guaranteed to stabilise
at p f within a finite number of steps. In the context of computing cire, ¢ is a
relation over a finite domain, so we represent it as a set of pairs. We start with
the empty set and iterate until ¢ ceases to change.

Testing repmin. Let us evaluate circ for repmin. We start with ¢ equal to the
empty relation. After one iteration, ¢’ equals:

¢ = knit o (repAG# x map c) o grammar®
=(Tree — (a o (True, a)))

After the second iteration:
"= (Start — (a e (False, True)), Tree — (a o (True, a)))

On the third iteration, we find that ¢’ = ¢”, so the iteration has stabilised and
circ = ¢”’. What does this value of circ tell us about repmin? On the root node,
the Imin attribute will never be defined, regardless of whether the inherited gmin
attribute is defined, but the ntree attribute is always defined. On internal nodes
of the tree, Imin is always defined and ntree is defined if gmin is defined.

154 K. Backhouse
5 Conclusion

We have defined a semantics for attribute grammars based on the lambda cal-
culus and given a new proof of Chirica and Martin’s important result [6]. We
also derived a definedness test, which is very similar to the traditional circularity
test. However, our test also encompasses the closure test. The use of the hylo-
morphism theorem is very important in our derivation of the definedness test
and it results in an algorithm based on iteration. We think this may also help
to explain why the algorithm for the circularity test is based on iteration.

Our decision to use rose trees comes with one major drawback: loss of type
safety. If we had used algebraic datatypes to define the abstract syntax, then they
would automatically be grammatically correct. We would not have needed to dis-
cuss “The Grammar” in Section It is also common for different grammar
symbols to have different attributes. For example, in repmin the Start symbol
does not need a locmin or a gmin attribute. In our model, it is not possible
to distinguish between the symbols in this way. It would be interesting to ex-
plore the use of category theory to extend our results to an arbitrary recursive
datatype.

Acknowledgements. I am supported by a grant from Microsoft Research. I
would like to thank Eric Van Wyk, Ganesh Sittampalam and Oege de Moor for
all their help with this paper. I would also like to thank my father for his help
with the paper and for teaching me about fixpoints.

References

1. C. J. Aarts. Galois connections presented calculationally. Graduating Dissertation,
Department of Computing Science, Eindhoven University of Technology. Available
from: http://www.cs.nott.ac.uk/\char’176rcb/MPC/galois.ps.gz, 1992.

2. R. C. Backhouse and K. S. Backhouse. Abstract interpretations for free. Available
from: http://www.cs.nott.ac.uk/\char’ 176rcb/papers/papers.htmll

3. R. S. Bird. Using circular programs to eliminate multiple traversals of data. Acta
Informatica, 21:239-250, 1984.

4. R. S. Bird. Introduction to Functional Programming using Haskell. Prentice Hall,
2 edition, 1998.

5. R. S. Bird and O. de Moor. Algebra of Programming, volume 100 of International
Series in Computer Science. Prentice Hall, 1997.

6. L. M. Chirica and D. F. Martin. An order-algebraic definition of Knuthian seman-
tics. Mathematical Systems Theory, 13(1):1-27, 1979.

7. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 238—252, Los Angeles, California, 1977. ACM
Press, New York, NY.

8. O. de Moor, K. Backhouse, and S. D. Swierstra. First-class attribute grammars.
Informatica, 24(3):329-341, 2000.

http://www.cs.nott.ac.uk/char '176 rcb/MPC/galois.ps.gz
http://www.cs.nott.ac.uk/char '176 rcb/papers/papers.html

A Functional Semantics of Attribute Grammars 155

9. R. Farrow. Automatic generation of fixed-point-finding evaluators for circular,
but well-defined, attribute grammars. In SIGPlan ’86 Symposium on Compiler
Construction, pages 85-98, Palo Alto, CA, June 1986. Association for Computing
Machinery, SIGPlan.

10. K. Gondow and T. Katayama. Attribute grammars as record calculus — a
structure-oriented denotational semantics of attribute grammars by using cardelli’s
record calculus. Informatica, 24(3):287-299, 2000.

11. T. Johnsson. Attribute grammars as a functional programming paradigm. In Gilles
Kahn, editor, Proceedings of the Conference on Functional Programming Languages
and Computer Architecture, volume 274 of LNCS, pages 154173, Portland, OR,
September 1987. Springer-Verlag.

12. D. E. Knuth. Semantics of context-free languages. Mathematical Systems Theory,
2:127-146, 1968.

13. D. E. Knuth. Semantics of context-free languages: Correction. Mathematical Sys-
tems Theory, 5:95-96, 1971.

14. M. Kuiper and S. D. Swierstra. Using attribute grammars to derive efficient func-
tional programs. In Computing Science in the Netherlands CSN ’87, 1987.

15. Mathematics of Program Construction Group, Eindhoven University of Technol-
ogy. Fixed-point calculus. Information Processing Letters Special Issue on The
Calculational Method, 53:131-136, 1995.

16. S. L. Peyton Jones. The Implementation of Functional Programming Languages.
Series in Computer Science. Prentice Hall, 1987.

17. J. C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A.
Mason, editor, Proceedings 9th IFIP World Computer Congress, Information Pro-
cessing ‘83, Paris, France, 19-23 Sept 1983, pages 513-523. North-Holland, Ams-
terdam, 1983.

18. M. Rosendahl. Strictness analysis for attribute grammars. In PLILP’92, volume
631 of LNCS, pages 145-157. Springer-Verlag, 1992.

19. E. Van Wyk, O. de Moor, K. Backhouse, and P. Kwiatkowski. Forwarding in
attribute grammars for modular language design. Compiler Construction 2002.

20. P. Wadler. Theorems for free! In FPCA’89, London, England, pages 347-359.
ACM Press, September 1989.

A Definitions and Theorems

Pairs fst (x,y) =2 snd (z,y) =y (fxg) (x,y)=(fz,gv)

Sequences. Throughout this paper, we use sequences rather than lists. Our
motivation is that this simplifies the use of the abstraction rule (see below). The
type of sequences is:

type Seq v = Natt™ — «

Every sequence zs in this document has a finite length n, which means that V(k >
ne zs, = L). (Hence, sequences should be over a domain with a | element.)
We sometimes use the notation [a, b,] to denote a finite length sequence and
xsy is equivalent to xs k. Some useful operations on sequences are:

156

K. Backhouse
map 2 (= B) = Seqa — Seq 8
map f xs =f o xs
appSeq i Seq (¢ — B) — Seqa — Seq
appSeq fs xs k =fsk(zsk)
zip With (e — B —) = Seqav — Seq S — Seqry

zipWith f zs ys k = f (zs k) (ys k)

Note that appSeq and zip With are equivalent to the S and S’ combinators,
respectively (see Peyton Jones [I6] pages 260 and 270]). Therefore, the claim on
page [148] can be stated as, for all ¢1, ¢, zs, ys and k:

S e as (S cayszs)k = S (9 (o) (cpoms) (caoys)) 2s k

The proof is a simple manipulation of the definitions of S and S’.

Rose Trees. Our rose trees differ from Bird’s [4, page 195], because we use
sequences, rather than lists:

data Rose « = Node « (Seq (Rose «))

All our rose trees are finite in size. Some useful functions are:

split :: Rose oo — («, Forest) merge :: (o, Forest o) — Rose «
split (Node x zs) = (z, xs) merge (x,zs) = Node z zs
mapRose :: (a¢ —) — Rose a — Rose 3 root :: Rose o — «
mapRose f (Node x xs) = root = fst o split

Node (f z) (map (mapRose f) zs)

appRose :: Rose (a« — 3) — Rose a — Rose 3
appRose (Node f fs) (Node x xs) = Node (f x) (zip With appRose fs xs)

foldRose :: ((«, Seq B) — 3) — Rose a — 3
foldRose r (Node x xs) = r (x, map (foldRose r) xs)

The hylomorphism theorem [Bl page 142] on rose trees states that, for all r, s:

(foldrose r) o (foldrose s)° = p (hero(id x map h) o s°)

Fixpoint Theorems. A proper introduction to these theorems is given by the
Eindhoven MPC group [15]. The theorems assume that the fixpoints exist.

1.

2.

Rolling Rule. If f is a monotonic function of type A — B and g is a mono-
tonic function of type B — A then: p (fog) = f (u(go f)).
Abstraction Rule. Suppose f is a function of type A — B — B. If f is

monotonic in both its arguments then: 1 (S f) = (xep (f x)). In the context
of sequences, this means that for all zs: u (appSeq xs) = map p xs.

A Functional Semantics of Attribute Grammars 157

3. Mutual Recursion Rule. Suppose f is a monotonic function of type (A, B) —
(A, B). If we define f1 = fsto f and fo = snd o f, then:

pfoo= (plzefi(z,pz)), p{yef2(qy,y))
where pz = p (ve fy (z,v))
qy = p{uefi(u,y))

	A Functional Semantics of Attribute Grammars
	Introduction
	The Semantics of Attribute Grammars
	Abstract Syntax Trees as Rose Trees
	Attributes
	Attribute Grammars as Functions
	Shifting Attributes Up and Down the Tree
	The Semantics as a Least Fixed Point Computation

	AG Semantics as a Structural Recursion
	The Mutual Recursion Rule on Rose Trees
	Proving Theorem T @ref {factorisation-theorem}
	A More Convenient Version of the textit {io} Function: textit {trans}
	Repmin as a Recursive Function

	The Definedness Test
	Strictness Analysis and Abstract Interpretation
	Computing the Strictness for all Possible Trees

	Conclusion
	Acknowledgements
	References
	Definitions and Theorems

