
Resource-Constrained Model Checking of
Recursive Programs�

Samik Basu1, K. Narayan Kumar1,2, L. Robert Pokorny1, and
C.R. Ramakrishnan1

1 Department of Computer Science,
State University of New York at Stony Brook

Stony Brook, New York, U.S.A.
{bsamik,kumar,pokorny,cram}@cs.sunysb.edu

2 Chennai Mathematical Institute, Chennai, India.
kumar@smi.ernet.in

Abstract. A number of recent papers present efficient algorithms for
LTL model checking for recursive programs with finite data structures.
A common feature in all these works is that they consider infinitely long
runs of the program without regard to the size of the program stack.
Runs requiring unbounded stack are often a result of abstractions done
to obtain a finite-data recursive program. In this paper, we introduce
the notion of resource-constrained model checking where we distinguish
between stack-diverging runs and finite-stack runs. It should be noted
that finiteness of stack-like resources cannot be expressed in LTL. We
develop resource-constrained model checking in terms of good cycle de-
tection in a finite graph called R-graph, which is constructed from a
given push-down system (PDS) and a Büchi automaton. We make the
formulation of the model checker “executable” by encoding it directly
as Horn clauses. We present a local algorithm to detect a good cycle in
an R-graph. Furthermore, by describing the construction of R-graph as
a logic program and evaluating it using tabled resolution, we do model
checking without materializing the push-down system or the induced R-
graph. Preliminary experiments indicate that the local model checker is
at least as efficient as existing model checkers for push-down systems.

1 Introduction

Model checking is a widely used technique for verifying whether a system specifi-
cation possesses a property expressed as a temporal logic formula [7,8,14]. Most
early works on model checking have restricted system specifications to be finite
state. A number of recent works have addressed the problem of model checking
push-down processes with finite alphabets, which are natural models for recur-
sive programs operating on finite data structures (e.g. [12,4,10,5,3]).

� This work was supported in part by NSF grants EIA-9705998, CCR-9876242, EIA-
9805735, N000140110967, and IIS-0072927.

J.-P. Katoen and P. Stevens (Eds.): TACAS 2002, LNCS 2280, pp. 236–250, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Resource-Constrained Model Checking of Recursive Programs 237

bool g;
procedure main() {

g = false;
while (true) {

flip();
flip();
if (!g)

reach: skip
}

}

procedure flip() {
if (g) {

if (*) {
flip();
flip();
}}

g = !g;
return;

}

void flip(N) {
int (0..7) i;
if (g) {

i = 0;
while (i < 7) i++;

} else if (N > 0) {
flip(N - 1);
flip(N - 1);

}
g = !g;
return;

}
(a) (b) (c)

Fig. 1. Recursive programs with finite-domain variables

In this paper, we consider the problem of LTL model checking of recursive
programs. Models of LTL formulas are usually described in terms of infinite runs
of a system. For push-down systems, the stacks may diverge on some infinite
runs, indicating runs not realizable in any implementation of the system. In
fact, stack-diverging runs may be an artifact of abstractions performed to obtain
finite-data recursive programs. Such abstractions are often performed to obtain
a single program that represents the behaviors of an infinite family of programs.
For instance, consider the finite-domain program shown in Fig. 1(a) and (b).
The example was derived from ones used in [2] and [11]. The procedure flip()
in Fig. 1(b) is an abstraction of procedure flip(N) in Fig. 1(c) (from [11]). In
the program, the statement if (*)... indicates a non-deterministic choice, the
result of abstracting away the conditional expression.

The need for resource-constrained model checking. For the program in
Fig. 1(a,b) consider the verification of the LTL property AGF reach starting
from a state representing the first statement in procedure main. This property
does not hold since the program has a run where it keeps recursively invoking
flip. However, such a run is clearly unfeasible in any concrete implementation
of the program, since the program stack grows without bound.

It is hence natural to restrict our attention to runs where the stacks remain
finite. However, traditional mechanisms to restrict the runs under consideration
such as adding fairness constraints cannot be used to capture stack-finiteness:
separating a run that involves infinite number of unmatched pushes from the
rest cannot be done using a regular language.

Returning to the example in Fig. 1(a,b), observe that the property AGF
reach holds for every run that consumes only a finite stack. It is easy to see
that flip, whenever it terminates, negates the global variable g. Hence two
consecutive calls to flip leave g unchanged, making reach true in every iteration
of the loop in main. Since flip terminates if and only if the program stack
remains finite, AGF reach holds on all finite-stack runs.

Our approach. In this paper, we describe a model checker, called resource-
constrained model checker, that separates the finite-stack runs from stack-

238 S. Basu et al.

diverging runs. Our technique can determine that AGF reach holds for all finite-
stack runs of the program in Fig. 1(a,b), while there are stack-diverging runs
that violate the property. We give a brief overview of our technique below. For
simplicity we assume in the following that the push-down system has a single
control state: i.e., a context-free process. Our formal development in the later
sections considers general push-down systems.

Given a push-down system P and a Büchi automaton B (corresponding to
the given LTL property), we develop a model checker as follows. We first build a
finite graph R, called the R-graph, that abstracts the product of P and B. The
nodes of R are labeled with pairs (b, γ), where γ is a stack alphabet of P and b
is a state in B. Edges in R are labeled with a goodness label (true or false) and
a resource label (0 or 1).

Intuitively, an edge in R, say from (b, γ) to (b′, γ′) corresponds to a finite
sequence of moves that take P from a configuration with γ on top of stack to
one with γ′ on top of stack, and correspondingly moves B from state b to state
b′. The edge is good (i.e. its goodness label is true) if and only if there is some
good state in B that is visited in that corresponding run in B from b to b′. The
resource label on the edge is 0 if the corresponding run in P leaves the size of
the stack unchanged; the resource label is 1 if the stack size increases by 1.

An accepting path in R is an infinite path where good edges appear infinitely
often and only finitely many edges have resource label 1. We show that there is an
accepting path in R if, and only if, there is a finite-stack run of P accepted by B.
The R-graph is analogous to the automaton Abr described in [12]. However, the
resource labels of R distinguish between finite-stack and stack-diverging runs of
P. Thus, ignoring the resource labels in the acceptance criterion ofR, we obtain a
model checker that is, in concept, equivalent to the ones previously defined in the
literature [4,10,12,11]. Although R-graph has much in common with techniques
described in these works in terms of formulation, our implementation strategy
is substantially different, as described below.

Contributions.

– We introduce the notion of resource-constrained model checking of push-
down systems. We formulate this problem in terms of good cycle detection
in R-graph, a finite graph.

– We develop the R-graph R so that the equations defining the edge relation
can be readily specified as a Horn-clause logic program (Section 3). The
transition relation of R can be computed on the fly based on the transition
relations of P and B, which may themselves be derived from more basic
procedures (such as LTL tableaus for Büchi automata construction).

– We present a local good-cycle detection algorithm based on Tarjan’s algo-
rithm [18] along the lines of [9], to handle the unique acceptance criteria of
R-graph. The local algorithm detects good cycles as early as possible, ensur-
ing that we explore only those transitions in P and B needed to complete
the proof (Section 4). By evaluating these programs using the XSB logic
programming system [19], we get a local, on-the-fly model checker.

Resource-Constrained Model Checking of Recursive Programs 239

– We show that, using tabled resolution, the model checker runs in O(c× b3×
2g+l) time (where c is the size of program’s control flow graph, b the size of
Büchi automaton and g and l are the maximum number of global and local
variables) and O(c× b2×2g+l) space. Our experiments show that our model
checker is at least as efficient in practice as described in earlier literature,
including the symbolic model checkers (Section 4).

We begin with a review of LTL model checking for push-down systems ig-
noring resource constraints.

2 Model Checking Push-Down Systems

In this section we give an overview of model checking push-down systems (PDS).
PDSs can be used to model programs with procedures and can be extracted from
the control flow graphs of programs. For details refer to [11].

Preliminaries. A PDS is a triple P = (P, Γ,∆) where P is a finite set of control
locations, Γ is a finite set of stack alphabets and ∆ ⊆ (P × Γ)× (P × Γ ∗) is a
finite set of transition rules. We shall use γ, γ′ etc. to denote elements of Γ and
use u, v, w etc. to denote elements of Γ ∗. We write 〈p, γ〉 ↪→ 〈p′, w〉 to mean
that ((p, γ), (p′, w)) ∈ ∆.

We restrict ourselves to PDSs such that for every rule 〈p, γ〉 ↪→ 〈p′, w〉, |w| ≤
2; any PDS can be put into such a form with linear size increase.

A configuration or state of P is a pair 〈p, w〉 where p ∈ P is a control location
and w ∈ Γ ∗ is a stack content. If 〈p, γ〉 ↪→ 〈p′, w〉, then ∀v ∈ Γ ∗ the configuration
〈p′, wv〉 is an immediate successor of 〈p, γv〉. Then we say 〈p, γv〉 has a transition
to 〈p′, wv〉 and denote it by 〈p, γv〉 → 〈p′, wv〉. A run of P is a sequence of
the form 〈p0, w0〉, 〈p1, w1〉, . . . , 〈pn, wn〉, . . . where 〈pi, wi〉 → 〈pi+1, wi+1〉 for all
i ≥ 0. A run denotes a finite or an infinite run.

A Büchi automaton is defined as (Q,−→, Σ,Q0, F) where Q is the finite set
of states, −→⊆ (Q×Σ×Q), Σ is the set of edge labels, Q0 ⊆ Q is the set of start
states and F ⊆ Q is the set of final states. An accepting run in the automaton is
defined to be a sequence q0

σ0−→ q1
σ1−→ . . .

σk−1−→ qk . . . with q0 ∈ Q0 where qk ∈ F
appears infinitely many times.

A Büchi PDS is defined as (Pbp, P0, Γbp, ∆bp, Gbp) where Pbp is the finite set
of control locations, P0 ∈ Pbp is the set of starting control location, Γbp is the
set of stack alphabets, ∆bp ⊆ (Pbp × Γbp) × (Pbp × Γ ∗bp) and Gbp ⊆ Pbp is the
set of good control locations. The subscript bp may be dropped whenever it is
obvious from the context. An accepting run in the Büchi PDS is defined to be
an infinite sequence where configurations with control locations ∈ Gbp appear
infinitely many times.

Let Prop be a finite set of propositions. Given a linear time temporal logic
(LTL) formula φ over Prop, as is well known, one can construct a Büchi au-
tomaton with Σ = 2Prop that accepts the models of the formula φ.

Our aim is to verify PDSs against properties expressed as LTL formulas. Let
P = (P, Γ,∆) be a PDS, and let λ : (P × Γ) → Σ be a labeling function. The

240 S. Basu et al.

truth of a proposition at a configuration is determined by the control location
and the symbol at the top of the stack in that configuration. Thus, any (infinite)
run of P defines a model for LTL over Prop.

In order to solve the model checking problem for PDSs, i.e. determine whether
(the model defined by) every run of P satisfies φ, it is sufficient to construct the
Büchi automaton B corresponding to ¬φ and verify that no run of P is accepted
by that Büchi automaton. This is done by constructing the product of P and B
resulting in a Büchi PDS BP and verifying that it accepts the empty language.
The definition of the system BP is as follows:

1. Pbp = (P ×Q)
2. P0 = {(p, q) ∈ Pbp | q ∈ Q0}
3. Γbp = Γ

4. ∆bp = {〈(p, q), γ〉, 〈(p′, q′), w〉 | 〈p, γ〉 ↪→ 〈p, w〉, q
α−→ q′, and α ⊆ λ(p, γ)}

5. Gbp = {(p, q) | q ∈ F}

In what follows we use ↪→ to denote a transition rule in ∆bp of BP.

Definition 1 Given a Büchi PDS BP, we say that p1 can weakly erase γ and get
to p2 (written (p1, γ, p2) ∈Werase) if there is a run starting at the configuration
〈p1, γ〉 and ending at 〈p2, ε〉. We say that p1 can strongly erase γ and get to
p2 (written (p1, γ, p2) ∈ Serase) if there is a run starting at the configuration
〈p1, γ〉 and ending at 〈p2, ε〉 in which at least one of the intermediate control
states belongs to G.

Proposition 1. Let Erase be the least relation satisfying:

1. (p1, γ1, g, p′) ∈ Erase if 〈p1, γ1〉 ↪→ 〈p′, ε〉, g ≡ p1 ∈ G

2. (p1, γ1, (g ∨ g′), p′) ∈ Erase if 〈p1, γ1〉 ↪→ 〈p, γ〉 and (p, γ, g′, p′) ∈ Erase, g ≡
p1 ∈ G

3. (p1, γ1, (g ∨ g′ ∨ g′′), p′′) ∈ Erase if 〈p1, γ1〉 ↪→ 〈p, γγ2〉, (p, γ, g′, p′) ∈ Erase
and (p′, γ2, g′′, p′′) ∈ Erase, g ≡ p1 ∈ G

Then, (p, γ, p′) ∈Werase iff (p, γ, g, p′) ∈ Erase for some g and (p, γ, p′) ∈ Serase
iff (p, γ, true, p′) ∈ Erase. Thus, Serase and Werase are computable.

In what follows, we shall often write Erase(x, y, z) instead of (x, y, z) ∈ Erase.
Erase corresponds to pre∗(P) in [10]. Since Erase is the least fixed point of

its defining equations, the following corollary is immediate.

Corollary 1. There is an integer k such that, for any pair of control locations
p, p′ and any stack symbol γ whenever (p, γ, p′) ∈ Werase(Serase), there is wit-
nessing run from (p, γ) to (p′, ε) in which the size of the stack is bounded by k.

The Erase relation for the Büchi PDS in Fig. 2(a) is given in Fig. 2(b).

Resource-Constrained Model Checking of Recursive Programs 241

Definition 2 Given a Büchi PDS BP, we associate with it two binary relations
W◦−→ and

S◦−→, over the set P × Γ , as follows: (p, γ)
W◦−→ (p′, γ′) iff there is a

run from 〈p, γ〉 to 〈p′, γ′w〉 for some w ∈ Γ ∗. (p, γ)
S◦−→ (p′, γ′) iff there is a run

from 〈p, γ〉 to 〈p′, γ′w〉, for some w ∈ Γ ∗, that visits at least one configuration
whose control location belongs to G.

Proposition 2. Let the relation =⇒⊆ P × Γ × {false, true} × P × Γ be the
least relation satisfying:

1. (p1, γ1)
p1∈G=⇒ (p′, γ′) if 〈p1, γ1〉 ↪→ 〈p′, γ′〉

2. (p1, γ1)
p1∈G=⇒ (p′, γ′) if 〈p1, γ1〉 ↪→ 〈p′, γ′γ′′〉

3. (p1, γ1)
p1∈G∨g=⇒ (p′, γ′) if 〈p1, γ1〉 ↪→ 〈p, γγ′〉 and Erase(p, γ, g, p′)

Then, (p, γ)
W◦−→ (p′, γ′) iff (p, γ) =⇒∗ (p′, γ′) and (p, γ)

S◦−→ (p′, γ′) iff

(p, γ) =⇒∗ true=⇒=⇒∗ (p′, γ′) where =⇒=
false
=⇒ ∪ true=⇒.

Thus the relations
S◦−→ and

W◦−→ are computable.

The following theorem, [12], shows that, given the above proposition, the empti-
ness problem for any Büchi push-down system is decidable. We present the proof
here since its details inspire the definition of resource constrained model checking
(Section 3).

Theorem 1 A Büchi PDS BP accepts some word iff there are p, γ, p′, γ′ such
that p ∈ P0, (p, γ)

W◦−→ (p′, γ′) and (p′, γ′)
S◦−→ (p′, γ′).

Proof : The following observation is useful.

Observation: If 〈p0, γ0w0〉 ∗→ 〈pn, γnwn〉 is a run where for each i with 0 ≤ i ≤ n,

|γiwi| ≥ |γ0w0|, then (p0, γ0)
W◦−→ (pn, γn) and further if this run involves a

configuration with pi ∈ G then (p0, γ0)
S◦−→ (pn, γn). (In either case given run

itself serves as a witness to this membership.)
Let the accepting run of BP be S = 〈p0, γ0〉, 〈p1, γ1w1〉, . . . 〈pn, γnwn〉

The proof proceeds by considering two cases.
Case 1: For any integer d the set {wi | |wi| = d} is finite(i.e. the stack size
grows “monotonically”).

Let id be the largest integer such that |wid | = d. Clearly, id is monotonic on
d. Let 〈qi, γivi〉 = 〈pdi , wdi〉, ∀i ≥ 1. Then, 〈qi, γi〉 ∗→ 〈qj , γjwj〉 ∀j > i via the
subrun of the given run and further at every point in this run the size of the stack
is at least |γivi|. Thus, by the above observation, (qi, γi)

W◦−→ (qj , γj) ∀i < j.
Further since the set of control locations and the stack alphabet are finite, there
must be an infinite sequence j1, j2, . . . with q′ = qj1 = qj2 = . . . and γ′ = γj1 =
γj2 = . . . and clearly there is a k such that in the subrun from 〈qj1 , γj1vj1〉 to
〈qjk , γjkvjk〉 at least one of the intermediate configurations involves a control

location from G. Thus, from the above observation (q′, γ′)
S◦−→ (q′, γ′). Once

242 S. Basu et al.

again using the above observation, (p, γ)
W◦−→ (qi, γi) for each i ≥ 0 and hence

(p, γ)
W◦−→ (q′, γ′) and this completes the proof of this case.

Case 2: Otherwise, there is a least d such that there are infinitely many i with
|wi| = d. Then, clearly there is an N such that ∀j ≥ N |wj | ≥ d. Therefore, there
is an infinite sequence j1 < j2 < . . ., with d < j1 with |wji | = d. Let wji = γjivji .
Further, there is a sequence j1 < j2 < . . . such that q′ = qj1 = qj2 = . . . and
γ′ = γj1 = γj2 = Once again, using the above observation (since the size
of the stack at any configuration beginning at 〈qj1 , γj1〉 ≥ d) we conclude that

(q′, γ′)
S◦−→ (q′, γ′) and the proof follows as above.

For the converse, (p, γ)
W◦−→ (p′, γ′) and (p′, γ′)

S◦−→ (p′, γ′), then it is easy
to see that there is an accepting run of the form 〈p = p1, γ = γ1〉 ∗→ 〈p′, γ′v0〉 ∗→
〈p′, γ′v1v0〉 ∗→ 〈p′, γ′v1v1v0〉 ✷

3 Resource-Constrained Model Checking

In Section 2, an accepting sequence in BP is defined without regard to the size
of the stack in that sequence. This allows accepting sequences where the stack
may diverge denoting an unfeasible run in any implementation of the program
modeled by a PDS P. We now focus only on runs where the stack size remains
finite. We call the problem of determining whether a Büchi PDS has a finite-
stack accepting run as the resource constrained model checking problem. Note
that we do not bound the stack size a priori but consider all runs that have
finite stack size.

We define two relations
W◦−→0 and

S◦−→0 similar to those in Definition 2.

Definition 3 Given a Büchi PDS BP, we associate with it a binary relation
S◦−→0, over the set P × Γ , as follows: (p, γ)

S◦−→0 (p′, γ′) iff there is a run
from 〈p, γ〉 to 〈p′, γ′〉, that visits at least one configuration whose control location
belongs to G. Further

S◦−→0 corresponds to finite runs without net change in the
stack size.

Hence we have the following theorem.

Theorem 2 A given Büchi PDS BP has a finite stack accepting run iff there is
p, γ, p′, γ′ such that p ∈ P0, (p, γ)

W◦−→ (p′, γ′) and (p′, γ′)
S◦−→0 (p′, γ′).

In order to show that the resource constrained model checking problem is decid-
able we need to show that the

S◦−→0 relation is computable.

Proposition 3. Given a Büchi PDS BP we define a relation =⇒0⊆ P × Γ ×
{false, true} × {0, 1} × P × Γ as the least relation satisfying:

1. (p1, γ1)
p1∈G=⇒0 (p′, γ′) if 〈p1, γ1〉 ↪→ 〈p′, γ′〉

2. (p1, γ1)
p1∈G∨g=⇒0 (p′, γ′) if 〈p1, γ1〉 ↪→ 〈p, γγ′〉 and Erase(p, γ, g, p′)

Resource-Constrained Model Checking of Recursive Programs 243

Then, (p, γ)
S◦−→0 (p′, γ′) iff (p, γ) =⇒0

∗ true=⇒0=⇒0
∗ (p′, γ′). Hence,

S◦−→0 is
computable.

Proof : Let (p, γ)
S◦−→0 (p′, γ′) and let 〈p = p1, γ = γ1〉 → 〈p2, γ2w2〉 . . . →

〈p′ = pn, γ
′ = γn〉 be the derivation witnessing this. Thus, there is an i such that

pi ∈ G.
We show that (p, γ) =⇒0

∗ true=⇒0=⇒0
∗ (p′, γ′) by induction on n. For n = 0,

it must be the case that p = p′, γ = γ′ and p ∈ G and thus there is nothing to
prove.

Suppose the result holds for all computations of length less than n. Now,
there are two cases, if w2 = ε, then, by induction hypothesis, either p ∈ G and
(p2, γ2) =⇒0

∗ (pn, γn) or (p2, γ2) =⇒0
∗ true=⇒0=⇒0

∗ (pn, γn). In either case we
have the desired result.

Now, suppose w2 �= ε. Then w2 = γ̂ for some γ̂ ∈ Γ . By the definition of a run
for a PDS, it then follows that there is a least j > 2 such that γj = γ̂ and wj = ε.
Thus, p2 erases γ2 and reaches pj . Hence, depending on whether 1 ≤ i < j

or not, we either have (p1, γ1)
true=⇒0 (pj , γj) =⇒0

∗ (pn, γn) or (p1, γ1) =⇒0

(pjγj) =⇒0
∗ true=⇒0=⇒0

∗ (pn, γn). In either case we have the desired result.

The converse is an easy induction on the iterative definition of
g

=⇒0 and the
details are omitted. ✷

Theorem 2 shows that resource constrained model checking of a Büchi PDS
can be reduced to checking for cycles in a graph induced by finite relations

W◦−→
and

S◦−→0. Such a graph called an R-graph is defined as follows.

Definition 4 An R-graph of BP is defined as R = ((P × Γ),=⇒) where nodes
are labeled by pair of control location and stack alphabet and set of edges are la-
beled by a pair (goodness label, resource label) with goodness label ∈ {true, false},
resource label ∈ {0, 1}.
The edge relation is such that there is an edge between nodes s1 and s2 iff

s1
g

=⇒ s2, where =⇒ is as defined in Proposition 2. g is called the goodness label
of the edge.
The resource label of the edge is 0 if s1

g
=⇒0 s2 where =⇒0 is as defined in

Proposition 3, and 1 otherwise.

A cycle in R-graph is said to be good if there is at least one edge in the cycle
with goodness label true and resource labels of all edges in the cycle are 0 . A
path in R-graph starting at (p, γ) is said to be good if it reaches a good cycle.

Proposition 4. A given Büchi PDS BP has a finite stack accepting run iff there
is a good path in the corresponding R-graph.

The R-graph corresponding to the Büchi PDS in Fig. 2(a) is shown in
Fig. 2(c).

244 S. Basu et al.

P = {p, q}
P0 = {p}
Γ = {m0,m1, s0, s1, s2}
G = {q}
∆ = 〈p,m0〉 ↪→ 〈p, s0m1〉

〈p,m1〉 ↪→ 〈p,m1〉
〈q,m1〉 ↪→ 〈q,m1〉
〈p, s0〉 ↪→ 〈p, s1〉
〈p, s1〉 ↪→ 〈p, s0s2〉
〈p, s2〉 ↪→ 〈q, ε〉

Erase relation
(p, s0, false, p)
(p, s2, false, q)
(p, s1, false, q)
(p, s0, false, q)

g
=⇒r relation

(p,m0)
false
=⇒1 (p, s0)

(p,m1)
false
=⇒0 (p,m1)

(q,m1)
true=⇒0 (q,m1)

(p, s0)
false
=⇒0 (p, s1)

(p, s1)
false
=⇒1 (p, s0)

(p,m0)
false
=⇒0 (p,m1)

(p,m0)
false
=⇒0 (q,m1)

(p, s1)
false
=⇒0 (p, s2)

(p, s1)
false
=⇒0 (q, s2)

(a) (b) (c)

Fig. 2. (a) Büchi PDS, (b) corresponding Erase relation and (c) its R-graph

4 Implementation

We now describe the salient aspects of an implementation of the model checker
developed in the previous sections using logic programming. Encoding the var-
ious relations such as Erase as a logic program, and evaluating the program in
a goal-directed fashion, we get a local (exploring only the needed states) and
on-the-fly (constructing states on demand) model checker.

From program to R-graph. Given a control flow graph representation of a
program, it is straightforward to construct the equivalent PDS. Following [11],
the valuation of global variables form the control states while the current node
label and the valuation of local variables form the stack alphabet. We illustrate
the construction for a call statement below. A transition 〈p, γ〉 ↪→ 〈p1, γ1γ2〉 is
represented below as pds trans(p, γ, p1, [γ1, γ2]).

pds_trans(G1, f(S1, L1), G2, [f(S,FL), f(S2,L1)]) :-
cfg_node(S1, call(Proc, Params)),
entry(Proc, S, Params, FL),
cfg_edge(S1, _, S2).

In the fragment above, cfg_edge denotes the edge relation of a CFG (the
2-nd argument is a guard on the edge) and cfg_node denotes the mapping
between node labels and the statements. The relation entry associates with
each procedure Proc its entry point, formal parameters and local variables (which
include the formals). Values are transformed at a basic level by transfer functions
describing the behavior of statements such as assignments; the other statements
propagate these changes.

A Büchi automaton can also be encoded with rules similar to those encoding
a PDS. In fact, Horn clauses can be used to describe the construction of an
automaton from the negation of an LTL formula [13]. Product construction to

Resource-Constrained Model Checking of Recursive Programs 245

erase(B1, Gamma, Good, B2) :-
bpds_trans(B1, Gamma, B2, []),
good_beuchi_state(B1, Good).

erase(B1, Gamma, Good, B2) :-
bpds_trans(B1, Gamma, B3, [Gamma1]),
erase(B3, Gamma1, G1, B2),
good_beuchi_state(B1, G2), or(G1, G2, Good).

erase(B1, Gamma, Good, B2) :-
bpds_trans(B1, Gamma, B3, [Gamma1, Gamma2]),
erase(B3, Gamma1, G1, B4),
erase(B4, Gamma2, G2, B2),
good_beuchi_state(B1, G3), or(G1, G2, Gt), or(Gt, G3, Good).

edge(s(B1, Gamma1), l(Good, 0), s(B2, Gamma2)) :-
bpds_trans(B1, Gamma1, B2, [Gamma2]),
good_beuchi_state(B1, Good).

edge(s(B1, Gamma1), l(Good, 1), s(B2, Gamma2)) :-
bpds_trans(B2, Gamma1, B2, [Gamma2, _]),
good_beuchi_state(B1, Good).

edge(s(B1, Gamma1), l(Good, 0), s(B2, Gamma2)) :-
bpds_trans(B1, Gamma1, B3, [Gamma, Gamma2]),
erase(B3, Gamma, G1, B2),
good_beuchi_state(B1, G2), or(G1, G2, Good).

Fig. 3. Generation of R-graphs from PDS models

derive Büchi PDS is also straightforward and omitted. We assume that the tran-
sitions of a Büchi PDS are given by a relation bpds_trans(P1,Gamma1,P2,Dest)
where Dest is a list of up to two elements with nil representing ε transitions.

Finally, the Erase relation (Definition 1) as well as the edge relation of the
R-graph(Definition 4) are directly encoded as logic programs, as shown in Fig. 3.
We use the relation good_beuchi_state(B,G) to determine if B is an accepting
state of B.

Complexity. The crucial predicate in the encoding is erase. When evaluated
with tabled resolution [17,6], erase can be computed in O(|∆bp|×|Pbp|2), where
∆bp and Pbp are the number of transitions and control states, respectively, in
the Büchi PDS. To derive the space and time complexity in terms of the input
program’s size, let c be the size of the control flow graph, b the size of the
Büchi automaton, and g and l be the (maximum) number of global and local
variables. Then the time complexity of computing erase is O(c×b3×2g+l). The
cubic factor comes from the last rule of erase which performs a join and hence
effectively iterates once over all states in the Büchi automaton (note that B4 is
drawn only from the states of B) for each tuple in the relation. The size of erase
relation is O(c× b2 × 2g+l).

It can also be readily seen that the time taken to completely evaluate edge
is O(c × b × 2g+l) once erase has been computed. The size of the R-graph
is also O(c × b × 2g+l). Good cycles in the R-graph can be detected in time
proportional to the size of the graph and hence the overall time to model check
is O(c× b3× 2g+l), matching the best-known algorithms. The time complexities
assume unit-time table lookups. Organizing the tuples of the relations as binary
trees would increase the complexity by a factor of O((log(c) + log(b))(g + l)). In
an implementation platform, such as the XSB logic programming system [19],

246 S. Basu et al.

the tuples are a factor of O((log(c)+log(b))(g+ l)). In a realistic implementation
platform, such as the XSB logic programming system, the tuples are organized
using trie data structures, giving close to unit-time lookups in practice. The tries
sometimes induce parts of tuple representations to be shared, reducing the space
complexity.

The analysis does not take into account the locality due to the goal-
directedness of tabled evaluation, since it does not appear to reduce the worst
case complexity. However, if the transfer functions were monotonic (as in data-
flow analyses), the factor of 2g+l will be brought to g(g + l)2 with goal-directed
evaluation. We now present a local cycle detection algorithm that exploits the
locality, by invoking edge and, in turn, erase only until a good cycle is found.

Local detection of good cycles. The final step in model checking is determining
if there is a reachable good cycle in the R-graph. Recall that a good cycle is
defined as one which has at least one edge with goodness label being true while
all edges in the cycle have resource labels 0. The first condition is a disjunctive
property: a cycle has a good edge if and only if an SCC has a good edge. Tarjan’s
SCC algorithm [18] can be adapted to perform local good-cycle detection when
the acceptance condition is a disjunctive property: e.g., Couvreur’s algorithm
in [9]. The second condition, however, cannot be cast as a property of SCC.
We present a local algorithm that incorporates both conditions. The algorithm,
presented in Fig. 4, uses a modification of Couvreur’s algorithm as a subroutine.

We handle the “all 0-edges” condition by partitioning the depth first search
where we explore all edges with a 0 resource label before looking at any with
a 1 resource label. Given a graph with nodes in set S and a starting node v0,
this partitions the nodes into sets S0 and S′0, where S0 consists of all (and only)
those nodes that are reachable from v0 using edges with 0 resource labels, and
S′0 = S−S0. We do this partitioning while looking for good cycles in the subgraph
induced by S0 using a modification of the algorithm in [9]. If no good cycles are
found, we pick a node, say v1 from S′0 that is reachable from some node in S0
via a edge with resource label 1. We use v1 to partition S′0 into S1 and S′1, and
so on. This procedure will partition the graph into subgraphs containing only
0-edges where the subgraphs are connected by 1-edges. If a good “all 0-edge”
cycle exists it will be within one subgraph since there are no 0-edges from a node
Si to a node in Sj if j > i.

In the algorithm in Fig. 4, we use two global stacks: Sstack , the stack of
DFS numbers of current SCC roots, and Lstack that summarizes the labels on
edges in/between each of the components rooted in Sstack . These stacks guide
the local detection of good cycles within a single subgraph. While exploring a
subgraph, when a previously visited node in an incomplete SCC is seen via a
0-edge, say from v to w, then we combine the SCC roots of v and w. While doing
so we update the status of labels in the combined SCC and return immediately
if the summary indicates a true label (lines 15–23 in good cycle()). We use a set
pending to record nodes reachable via a 1-edge from the current subgraph. Thus,
at the end of exploring a subgraph Si, pending contains exactly the set of nodes
in Si+1. The algorithm also maintains various marks on each node: visited and
complete, both initially false and dfsnum that records the node’s DFS number.

Resource-Constrained Model Checking of Recursive Programs 247

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

Boolean good path(v0)
begin

pending := { v0 };
while (v ∈ pending)

pending := pending −{v};
DFSnum := 1;
Sstack := empty;
Lstack := empty;
push(Lstack , false);
if (good cycle(v)) then

return true;
end while
return false;

end

1.
2.
3.
4.
5.
6.
7.
8.
9.

procedure mark(v)
begin
if not v .complete then

v .complete := true;
forall (w such that there is

an edge from v to w)
mark(w);

end forall
end

1.
2.
3.
4.
5.
6.
7.
8.
9.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

Boolean good cycle(v)
begin

v .visited := true;
v .dfsnum := DFSnum++;
push(Sstack , v .dfsnum);
forall (G,w such that there is an edge

from v to w with goodness label G
and resource label 0)

if (not w .visited) then
push(Lstack , G);
if good cycle(w) then

return true;
else if not w .complete then

if (G) then
return true;

else
while (top(Sstack) > w .dfsnum)

if (top(Lstack)) then
return true

else
pop(Lstack); pop(Sstack);

end while
end forall
if (top(Sstack) = v .dfsnum) then

pop(Sstack); pop(LStack);
mark(v);

forall (w such that there is an edge
from v to w with resource label 1
and not w .visited)

pending := pending + {w};
end forall
return false;

end

Fig. 4. Local Good-cycle detection algorithm

It is easy to show that the local algorithm is linear. Although the algorithm
only determines whether or not a good path exists, it can be readily modified
to output such a path. Finally, by organizing pending as a queue, we can ensure
that we will find a path with the smallest amount of stack consumed in the
initial segment leading up to the good cycle.

Performance. We tested the performance of our model checker on an exam-
ple program, shown in Fig. 1(a,c) with one modification: main (Fig 1(a)) calls
flip(N) instead of flip. The procedure in Fig. 1(c) is a concrete version of the
one shown in Fig. 1(b) with the recursion control parameter left unabstracted.
Note that in the concrete version calls to the procedure flip from main is done
with the recursion depth parameter N. We verified the property AGF reach for
different values of the recursion depth parameter N. Fig. 5(a) shows the running
time and space statistics for model checking when the global variable g initialized
to false. With this initial value the property is true, and there are no good cycles
in the corresponding R-graph(recall that we check for negation of the property).
Fig. 5(b) shows the performance of our model checker with g left uninitialized
(thus exploring both true and false valuations). In this case, which is identical
to the one reported in [2] and [11], the property is false, and we exit the model
checker as soon as we see the first good cycle in the R-graph.

248 S. Basu et al.

(g initially false: no good cycle)
Space

N CPU Time Total Table
1K 0.5s 10M 5M
2K 1.1s 19M 10M
4K 2.1s 37M 20M
8K 4.4s 74M 40M
16K 8.9s 148M 81M
32K 17.2s 295M 161M

(g initially undefined : ∃ good cycle)
Space

N CPU Time Total Table
8K 0.6s 19M 13M
16K 1.2s 37M 27M
32K 2.2s 74M 54M
64K 4.8s 147M 108M
128K 9.6s 294M 216M
256K 19.0s 587M 431M

(a) (b)

Fig. 5. Performance of our model checker on AGF reach for program in Fig. 1(a,c) for
g initialized to false (a) and left uninitialized (b). Measurements taken using XSB2.4
& Mandrake Linux 8.1 running on a 1.7GHz Xeon with 2GB memory.

The performance numbers are preliminary and only serve to highlight the
unique aspects of our model checker. First of all, the figures show the impact
of local model checking on this problem, with more than 7-fold difference in
running time. Secondly, even though the performance reported here and in [11]
were collected on different hardware platforms, the raw times in Fig. 5(a) are
about 5 times smaller than those given in [11], indicating that a local explicit
state checker can offer performance comparable to a symbolic one even when
the entire state space is explored. Thirdly, the time and space performance for
both cases is linear in the size of the input program, indicating no hidden costs
in computing over a logic programming engine.

Finally, we ran our model checker on the abstract program shown in
Fig. 1(a,b): the time and space consumption was too small to measure. That
experiment shows the utility of resource-constrained checking: we have in effect
shown the validity of the AGF reach for all values of the recursion parameter
N in negligible time. It should be noted that program in Fig. 1(a,b) is natural
abstraction of the case whose verification results are shown in Fig. 5(a).

5 Discussion

As mentioned earlier, our formulation of resource-constrained model checking
is closely related to the works of [12,4,10,11], where efficient algorithms have
been described for model checking PDSs. Apart from the annotation of resource
consumption on the edges of the R-graph, we provide a considerably different
implementation strategy. For instance, [10] presents a model checking technique
where Pre∗ relation (analogous to our Erase) is used in two phases: one to identify
good cycles (repeating heads) and another to check if such cycles are reachable.
The subsequent paper [11] presents a symbolic algorithm for model checking
PDSs. In contrast, we encode our model checker so as to derive a local (explicit-
state) algorithm, and avoid the second use of Erase.

Recent works in [1,3] show that (recursive or hierarchical) state machines can
be used to model control flow of sequential programs consisting of recursive calls.

Resource-Constrained Model Checking of Recursive Programs 249

Both works give model checking algorithms that, when used for model checking
push-down systems, run in time cubic in the size of the Büchi automaton and
linear in the size of the push-down system. Furthermore, [3] describes special
classes of state machines for which the model checking algorithms have better
complexity. The main essence of both these works is to compute summary edges
that reveal the relationship between the entry and exit points of each state
machine. In addition, [1] points out that identifying edges that lead to increase in
stack size, model checking can be restricted to finite-stack paths. The important
similarities between [1,3] and our work are as follows:

– Summary edges are analogous to =⇒0 relation as computed in Proposition 3.
– Edges Fa and Fu as computed in [1], revealing finite- and infinite-stack paths

respectively, are identical to
S◦−→0 and =⇒1.

– Optimization techniques involving forward and backward analysis of sum-
mary edges as discussed in these papers can be directly incorporated in our
work.

The distinguishing aspect of our work is that we concretely describe a high-
level yet efficient implementation of a local, on-the-fly model checker that can
distinguish finite-stack runs from arbitrary runs of a push-down system.

The idea behind of Erase and R-graph appears to be more universal than
model checking of PDSs. For instance, inter-procedural data flow analysis tech-
niques define summaries of calls, which are simply variants of Erase. Closer in-
spection of data flow techniques reveal striking (although not surprising) similar-
ities. These similarities are best exhibited by [15] and related works, where data
flow analysis is formulated in terms of graph-reachability. Some of the analogies
are listed below:

– Same Level Inter-procedurally valid paths (SLIVP): All the calls in the path
is matched by the corresponding return. This is analogous to ◦−→0 that we
use to define a good cycle in R-graph.

– Inter-procedurally valid path (realizable path IVP) : All returns are matched
but not all calls. This is similar to ◦−→1.

– Path Edge ⊂ SLIVP: This is =⇒0
∗ and ◦−→0

– Summary Edge ⊂ SLIVP: This is =⇒0 restricted to call nodes.

Although the interplay between data flow analysis and model checking has
been widely recognized (e.g. [16]), the closeness in the details of algorithms used
indicates a potential for furthering the practice in both areas through a better
understanding of the interactions. Finally, although model checking of recursive
programs using mu-calculus has been explored [5], the techniques appear to have
an exponential blowup to handle recursion. It will be interesting to explore the
relationship between these techniques and the ones presented in this paper, and
is a topic of current research.

References

1. R. Alur, K. Etessami, and M. Yannakakis. Analysis of recursive state machines.
In Computer-Aided Verification (CAV 2001). Springer-Verlag, 2001.

250 S. Basu et al.

2. T. Ball and S. Rajamani. Bebop: A symbolic model checker for boolean programs.
In SPIN00: SPIN Workshop, volume 1885 of Lecture Notes in Computer Science,
pages 113–130, 2000.

3. M. Benedikt, P. Godefroid, and T. Reps. Model checking unrestricted hierarchi-
cal state machines. In Twenty-Eighth Int. Colloq. on Automata, Languages, and
Programming(ICALP 2001). Springer-Verlag, 2001.

4. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown
automata: Application to model checking. In Concurrency Theory (CON-
CURR 1997), 1997.

5. O. Burkart and B. Steffen. Model checking the full-modal mu-calculus for infinite
sequential processes. In Proceedings of ICALP’97, volume 1256 of Lecture Notes
in Computer Science, pages 419–429, 1997.

6. W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic
programs. Journal of the ACM, 43(1):20–74, January 1996.

7. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skele-
tons using branching-time temporal logic. In D. Kozen, editor, Proceedings of the
Workshop on Logic of Programs, Yorktown Heights, volume 131 of Lecture Notes
in Computer Science, pages 52–71. Springer Verlag, 1981.

8. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM TOPLAS, 8(2),
1986.

9. J.-M. Couvreur. On-the-fly verification of linear temporal logic. In Proceedings of
FM’99, volume 1708 of Lecture Notes in Computer Science, pages 253–271, 1999.

10. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. In Computer-Aided Verification (CAV 2000),
pages 232–247. Springer-Verlag, 2000.

11. J. Esparza and S. Schwoon. A bdd-based model checker for recursive programs. In
Computer-Aided Verification (CAV 2001), pages 324–336. Springer-Verlag, 2001.

12. A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model
checking pushdown systems. In Second International Workshop on Verification of
Infinite State Systems(INFINITY 1997), volume 9. Elsevier Science, 1997.

13. L.R. Pokorny and C.R. Ramakrishnan. LTL model checking using tabled logic
programming. InWorkshop on Tabling in Parsing and Deduction, 2000. Available
from http://www.cs.sunysb.edu/∼cram/papers.

14. J. P. Queille and J. Sifakis. Specification and verification of concurrent systems
in Cesar. In Proceedings of the International Symposium in Programming, volume
137 of Lecture Notes in Computer Science, Berlin, 1982. Springer-Verlag.

15. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In Twenty-Second ACM Symposium on Principles of Program-
ming Languages, pages 49–61, 1995.

16. D. A. Schmidt and B. Steffen. Program analysis as model checking of abstract
interpretations. In Static Analysis Symposium, pages 351–380, 1998.

17. H. Tamaki and T. Sato. OLDT resolution with tabulation. In International Con-
ference on Logic Programming, pages 84–98. MIT Press, 1986.

18. R. E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal of
Computing, 1(2):146–160, 1972.

19. XSB. The XSB logic programming system. Available from
http://xsb.sourceforge.net.

	Resource-Constrained Model Checking of Recursive Programs
	Introduction
	Model Checking Push-Down Systems
	Resource-Constrained Model Checking
	Implementation
	Discussion
	References

