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Abstract. In symbolic model checking, image computation is the process of com-
puting the successors of a set of states. Containing the cost of image computation
depends critically on controlling the number of variables that appear in the func-
tions being manipulated; this in turn depends on the order in which the basic oper-
ations of image computation—conjunctions and quantifications—are performed.
In this paper we propose an approach to this ordering problem—the conjunction
scheduling problem—that is especially suited to the case in which the transi-
tion relation is specified as the composition of many small relations. (This is the
norm in hardware verification.) Our fine-grain approach leads to the formulation
of conjunction scheduling in terms of minimum max-cut linear arrangement, an
NP-complete problem for which efficient heuristics have been developed. The cut
whose width is minimized is related to the number of variables active during im-
age computation. We also propose a clustering technique that is geared toward the
minimization of the max-cut, and pruning techniques for the transition relation
that benefit especially from the fine-grain approach.

1 Introduction

Reachability analysis computes the set of states of a state-transition system that are
reachable from a set of initial states. Besides explicit methods [18] for traversing states
one by one and SAT-based techniques [1] for deciding distance-bounded reachability
between pairs of state sets, symbolic methods [9,5] are the most commonly used approach
to this problem. Symbolic methods employ BDDs for two purposes: (1) to collect the
set of reachable states for deciding when a fixpoint is reached, and (2) to represent the
systems’ transition relation. Without loss of generality, we will limit our description to
forward state exploration. Because of their symmetry, all methods presented in this paper
are equally applicable to backward state traversal.

Each traversal step consists of an image computation that calculates the set of states
reachable in one transition from a set of current states. For this purpose, the BDD
representing the transition relation is conjoined with the BDD of the current states. This
is followed by an existential quantification of the current state variables to eliminate the
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origin information, and a renaming step to re-encode the state set in terms of the current-
state variables. Except for small systems, the transition relation can seldom be stored
as a single BDD. Instead, it is represented in a partitioned manner. The conjunctively
partitioned transition relation [4] is the most common form and consists of a set of
conjuncts. The advantage of the partitioned form is that the image step can be performed
step-wise by a series of And operations between the current-state BDD and the individual
conjuncts of the transition relation. This allows the application of early quantification to
eliminate variables as soon as they become dead, i.e., they become unreferenced by any
of the following conjuncts. This significantly alleviates the computational complexity
of the image computation step.

The partitioned implementation of the image computation step poses an optimization
problem with two interdependent goals: (1) to find a partitioning of the transition relation
that has small BDD representations for the individual conjuncts, and (2) to determine a
conjunction and early quantification schedule that minimizes the maximum BDDs size
of the intermediate results. This problem is referred to as the conjunction scheduling
problem; a simplified version of it is NP-complete [14].

Traditional approaches to the conjunction scheduling problem are based on coarse-
grain methods [12,17,15,8]. Their motivation comes from the incentive to avoid the large
number of intermediate variables that are needed for a finer grain partitioning. Coarse-
grain methods start from large conjuncts, typically entire next-state functions, and try to
further cluster them with the goal of finding a schedule that can eliminate a maximum
number of variables as early as possible. Only if the BDD for a next-state function cannot
be built within a given memory limit, cutpoints are applied to partition its clusters [2].
In these methods the insertion of cutpoints is driven by BDD size limits only and does
not take into account its effect on the clustering result.

In this paper we propose a different approach to the clustering and scheduling prob-
lem. Instead of starting from large clusters that represent significant fractions of the
next-state functions, we begin the process with a fine-grain partitioning based on single
gates or small fanout-free sub-circuits. The resulting large number of conjuncts is then
carefully clustered with the objective to minimize the maximum number of variables
that are alive during image computation, and to further eliminate as many variables as
possible by making them local to single conjuncts. This variable elimination process can
also be used to remove state variables, which in turn prunes the corresponding registers
from the transition relation.

2 Motivation

We motivate the fine-grain approach of this paper by demonstrating the effect of different
clusterings on the complexity of the transition relation and quantification schedule. We
use a logic circuit example as it best demonstrates our intention; however, the proposed
approach is equally applicable to structures that model other systems. Fig. 1(a) shows
a sequential circuit with two primary inputs, one primary output, and three registers
storing the circuit state. Part (b) gives the corresponding state-transition graph of the
circuit with an initial state described by the predicate I = ¬x1 ∧ ¬x2 ∧ ¬x3.
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Fig. 1. Example to illustrate the impact of clustering on register pruning: (a) circuit structure, (b)
state-transition diagram, (c) original partitioned transition relation, (d) transition relation after one
pruning step, (e) quantification schedule used for reachability analysis, (f) state sets visited during
breath-first forward traversal

The transition relation T is constructed using one pair of variables for each state
holding element. In the example, {x1, x2, x3} and {y1, y2, y3} denote the current-state
variables and next-state variables, respectively. For the input variables and individual
conjuncts of the partitioned transition relation we use {w1, w2} and {C1, C2, C3}, re-
spectively. The transition relation T for the given circuit is shown in Fig. 1(c).

Since the primary input variables w1 and w2 occur only locally within C2 and C3,
respectively, T can immediately be pruned by existential quantification resulting in T ′

(Fig. 1(d)). The elimination of w1 causes C2 to become a tautology, which can be
removed from T . As a result the current-state variable x2 is no longer driven by its next-
state variable y2 and becomes unconstrained. This effectively removes the corresponding
register from reachability analysis because x2/y2 are not involved in the renaming step
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and are also not part of the BDD recording the set of reachable states. It should be noted
that this differs from removing peripheral λ-latches [6] because the register x2/y2 feeds
other gates. Since the removal is caused by the disappearance of a next-state variable, we
will refer to this techniques as backward register pruning. In this example, the variable
x2 cannot be further pruned because it occurs in two conjuncts. However, in general
pruning can be applied in multiple iterations.

Fig. 1(e) gives the resulting quantification schedule using the pruned transition re-
lation T ′. As shown, in the first image computation step x2 must be constrained by the
set of initial states. In the following steps x2 remains local to T ′, establishing a relation
betweenC1 andC2 only. Note that in this example, only one backward pruning step was
applied, thus the transition relation for the first and following image step is identical.
However, in general, multiple backward pruning iterations, interleaved with forward
pruning (as described later), can successively remove more registers. Generally, a tran-
sition relation that has been pruned by i forward pruning iterations must not be used
before image computation step i+ 1, otherwise unreachable states could get introduced
in the reachability results. For the given example, Fig. 1(f) depicts the individual sets of
reached states as they are encountered during breadth-first forward traversal.

A different clustering of the transition relation can further reduce the size of its con-
junctive form. Similar to the complete elimination of w1 and w2, additional variables
can be removed by existential quantification if they are made local to a single conjunct.
Fig. 2(a) shows the modified circuit example with the additional variable w3 for par-
titioning the conjuncts C1 and C3 and part (b) gives the updated transition relation.
Besides C1, C2, and C3, which express the next-state relations of the registers, it also
includes the conjunct C4, which relates the variable w3 to its driving function.

This finer grain partitioning provides more freedom to iteratively quantify variables.
As shown in Fig. 2(c-e), multiple pruning steps can successively reduce the transition
relation until it contains only a single, simple conjunct. First, the existential quantification
of w1 and w2 eliminates C2 resulting in T ′. In contrast to the clustering applied in the
previous case, here x2 becomes now local toC4 and can be quantified in the next pruning
step resulting in T ′′. As explained above, T ′′ cannot be applied for the first image
computation since at that point x2 must be constrained by the initial states. Fig. 2(f)
shown the quantification schedule to be used for exact reachability analysis. After the
initial application of T ′ all following steps can use the pruned relation T ′′.

Similar to backward pruning, forward register pruning denotes the removal of regis-
ters based on the disappearance of current-state variables. In the given example, forward
pruning can be applied to remove register x1/y1 since x1 has disappeared from T ′′ as
a result of the previous pruning step. In other words, the absence of the current-state
variable x1 in T ′′ makes the actual binding of the next-state variable from the previous
image step superfluous. Thus y1 can be removed from T ′′ by existential quantification,
which in turn eliminatesC1. As a resultw3 becomes local to the only remaining conjunct
C3 and can also be eliminated producing T ′′′.

Due to the existential quantification of y1, the use of T ′′′ for forward image compu-
tation results in an over-approximation of the set of resulting states. The corresponding
effect is demonstrated in the top part of Fig. 2(h). As shown, the application of T ′′′ for
the second traversal step produces, among others, the unreachable state (0, 1, 0). Note
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Fig. 2. Example of Fig. 1 using a different partitioning: (a) circuit with additional cut variable
w3, (b) original transition relation, (c-e) transition relation after multiple pruning steps, (f) quan-
tification schedule using T ′ for the first image step and T ′′ for all following steps, (g) pruned
schedule using T ′′′ for the second and following steps, (h) over-approximated reachability result
using pruned schedule (top part) and result after applying one correction step using T ′′
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that the application of a transition relation which has been forward pruned once can
only result in an over-shooting by at most one transition. In other words, in case of sim-
ple forward pruning, the maximum distance of an over-approximated state from a truly
reachable state is one. In general, the application of j forward pruning iterations results
in a maximum over-shooting distance of j. Therefore, the over-approximated reachabil-
ity results can be corrected by applying a sequence of j additional image steps using the
unpruned transition relation. The bottom part of Fig. 2(h) illustrates this correction for
the given example.

In summary, the application of pruning requires that the image computation at step i
must not use a transition relation that has been backward pruned more than i− 1 times.
Furthermore, over-approximated reachability results that are produced by a transition
relation derived from j forward pruning iterations, can be corrected by j application of
the exact transition relation. In Section 3.4 we describe an algorithm that dynamically
prunes the transition relation as the state traversal progresses.

The advantage of the presented approach is that the majority of image computation
steps can use the pruned transition relation. Once a fixpoint is reached, the exact set of
reachable states is determined from the over-approximation by applying one or more
exact steps. Since the computational bottleneck of BDD-based reachability analysis
typically occurs in the middle of the traversal, this methods can significantly improve
the overall efficiency. Further, the over-approximation is tight, in many practical cases
even exact. If a given set of properties can be proven for this tight approximation, the
correction step is not needed.

3 Algorithms

3.1 Preliminaries

We model a sequential circuit as a transition structure K = 〈T, I〉 consisting
of a transition relation T (y, x) and an initial predicate I(x). The binary variables
x = {x1, . . . , xm} are the current state variables, while the binary variables y =
{y1, . . . , ym} are the next state variables. Given a predicate P (x) describing a set of
present states, the set of their successors, S(y), is the image of P (x) and is given by

S(y) = ∃x . P (x) ∧ T (y, x) . (1)

The states of K reachable from the states in I can be computed by successive image
computations. Denoting by EYP (x) the predicate obtained by replacing the y variables
with the x variables in the image of P (x), the reachable states are given by

R(x) = µZ(x) . I(x) ∨ EYZ(x) , (2)

whereµ indicates computation of the least fixpoint. We assume that the transition relation
is given as the composition of elementary relations. If w = {w1, . . . , wn} is a set of
binary internal variables with n ≥ m, our assumption amounts to writing:

T (y, x) = ∃w .
∧

1≤i≤m
(yi ↔ wi) ∧

∧

1≤i≤n
Ti(w, x) . (3)
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The variables in w are usually associated with the outputs of the combinational logic
gates of the sequential circuit; eachTi is called a gate relation because it usually describes
the behavior of a logic gate. For instance, ifwi is the output variable of a two-input AND
gate with inputs wj and xk, then Ti = wi ↔ (wj ∧ xk). If, on the other hand, wi is a
primary input to the circuit, then Ti = 1. Each term of the form yi ↔ wi equates a next
state variable to an internal variable. (The output of the gate feeding the i-th memory
element.)

When computing (2) for large circuits it is seldom practical to evaluateT (y, x) before
computing the images. This is especially true when BDDs [3] are used to represent the
relations. Instead, one substitutes (3) into (1) to get

S(y) = ∃x . ∃w . P (x) ∧
∧

1≤i≤m
(yi ↔ wi) ∧

∧

1≤i≤n
Ti(w, x) . (4)

The main advantage of using (4) stems from the ability to apply early quantification
while conjoining the terms of the transition relation to the set of states. Indeed,

∃a . g(b) ∧ f(a, b) = g(b) ∧ ∃a . f(a, b) , (5)

though, in general, existential quantification does not distribute over conjunction. Ap-
plication of (5) turns an image computation into a series of passes. Each pass replaces
two terms with their conjunction and quantifies all variables that appear in only one of
the resulting terms.

Early quantification reduces the number of variables that appear in the BDDs obtained
as intermediate results during the computation of (4). Its impact depends largely on the
order in which the terms are conjoined. The conjunction scheduling problem is the
problem of determining an order of the terms in (4) that reduces the time and memory
requirements of image computation. The evaluation of (2) requires in general repeated
image computations. It is usually advantageous to take the conjunctions in (4) that do not
involve P (x) only once before reachability analysis is started. After these conjunctions
have been taken, image computation amounts to evaluating

S(y) = ∃x . ∃w . P (x) ∧
∧

1≤i≤k
Ci(y, w, x) , (6)

where each Ci is a cluster obtained by conjoining one or more terms from (4), and
quantifying w variables not appearing in any other cluster. During the computation,
early quantification is applied according to the following scheme.

S(y) = ∃v1 . (C1 ∧ · · · ∧ ∃vk . (Ck ∧ ∃vk+1 . P )) , (7)

where vi is the set of variables in (x∪w)\⋃i<j≤k vj that do not appear inC1, . . . , Ci−1.
Too many clusters lead to needless recomputation, whereas too few clusters, or ill-

assorted clusters, may adversely affect early quantification. The clustering problem is
the problem of finding a suitable partition of the terms of (4) into clusters that reduces
the time and memory requirements of image computation.

Though in principle the scheduling and clustering problems cannot be separated,
it is common practice to order the conjuncts before clustering them. Clustering is then
restricted to terms that form intervals in the order [17]. (See, however, [14] for a dissenting
voice.)
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3.2 Conjunction Scheduling via Linear Arrangement

We formulate the conjunction scheduling problem in terms of linear arrangement of a
hypergraph.

Definition 1. A hypergraph G = (V,H) consists of a set of vertices V and a multiset of
hyperedgesH . Each hyperedge is a subset of V . A linear arrangement ofG is a bijection
α : V → {1, . . . , |V |}.
The maximum cut-width Γ (G,α) of hypergraph G under linear arrangement α is the
maximum number of hyperedges crossing a section of the graph. Formally,

Γ (G,α) = max
1≤i≤|V |

|{h ∈ H : ∃u ∈ h . ∃v ∈ h . α(u) ≤ i ≤ α(v)}| . (8)

The minimum max-cut problem asks for a linear arrangement α of hypergraph G that
minimizesΓ (G,α). This problem is NP-complete [11], but effective heuristic techniques
have been developed for it.

Given a set of clustersC = {Ci(y, w, x)}, let σ(C) be the set of variables appearing
in the clusters of C. We consider the hypergraph

GC = (C, {{Ci : v ∈ σ({Ci})} : v ∈ y ∪ w ∪ x}) . (9)

In GC each vertex models a cluster, and each hyperedge models a variable. The vertices
connected by a hyperedge are the clusters in which the corresponding variable appears.
Hyperedges may be repeated because several variables may appear in exactly the same
clusters. (This is a slight departure from the standard definition of hypergraphs.)

A linear arrangementα ofGC corresponds to a conjunction schedule for image com-
putation. The maximum cut-width Γ (GC , α) is the maximum number of live variables
during image computation. Solving the minimum max-cut problem for GC is therefore
related to finding a good conjunction schedule.

When the transition relation of structure K is given in the form of a logic circuit,
the list of clusters C is obtained as follows. Initially, one conjunct is created for each
gate in the circuit, and for each next state function as shown in (3). For large circuits,
the resulting large number of conjuncts may hinder the computation of a good linear
arrangement. Therefore, fanout-free regions of the circuit are selectively collapsed.

The same conjunction schedule for a given transition relation is typically used for
the computation of the images of several sets of states. In general, the predicates repre-
senting these states will depend on different sets of variables. We make the conservative
assumption that all current state variables appear in these sets of states. This is achieved
by augmenting C with a dummy cluster that depends on all variables in x. The position
of this cluster is fixed at the beginning of the linear arrangement. Likewise, a second
dummy cluster depending on all next state variables is added to C and its position is
fixed at the end of the linear arrangement.

Once the initial list of clusters C is obtained, we invoke CAPO, [7] to obtain a
single-row placement of the vertices of GC . CAPO produces a linear arrangement with
a small maximum cut-width, while also trying to reduce the total wire length. The length
of a (non-empty) hyperedge is the maximum distance in the arrangement between two
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vertices belonging to the hyperedge. In the context of image computation, the maximum
cut-width translates into the peak number of variables during image computation, while
the length of a hyperedge corresponds to the lifetime of a variable. Is is noted in [15]
that reducing the average lifetime of variables reduces the sizes of the BDDs and the
cost of operating on them. In terms of the dependency matrix of the transition relation,
a good linear arrangement results in a small bandwidth.

It is also possible to use linear arrangement to produce a static variable order for the
BDDs (cf. [13]). For that we model a variable as a vertex, and a cluster as a hyperedge
connecting all the variables appearing in the cluster. The BDDs of the clusters are ordered
according to the arrangement of the vertices before the clustering algorithm of Section 3.3
is applied.

3.3 Clustering

Clustering reduces the number of conjunctions that must be taken during image compu-
tation by collapsing groups of clusters. Another important objective is to make the early
quantification of variables from the transition relation possible.

The input to clustering is a linearly arranged set of clusters. The output is a reduced
set of clusters. Each output cluster is the conjunction of a set of contiguous input clusters.
In other words, the clustering process respects the given linear arrangement.

Definition 2. Given a linear arrangement α of a set of clusters C, a variable v is dead
outside positions i and j if v appears in cluster Ck only if i ≤ α(Ck) ≤ j. The number
of variables that are dead outside positions i and j is denoted by Di,j . The number of
variables that are not dead outside positions i and j, and that appear in clusters Ck
such that i ≤ α(Ck) ≤ j is denoted by Vi,j .

According to this definition, Di,j is the number of variables that can be quantified if
the clusters between positions i and j are merged, while Vi,j is an upper bound on the
number of variables appearing in the result of the merger after quantification.

Fig. 3 shows a heuristic clustering algorithm. The algorithm iterates until no new
clusters are created in one pass.At each pass, it creates a list of candidates. Each candidate
is a contiguous set of clusters. The list is ordered in decreasing order of Di,j to favor
candidates that allow many variables to be quantified. As a tie-breaker, the upper bound
on the number of variables in the resulting cluster is used. This policy favors the creation
of small clusters that may be merged in subsequent passes.

The number of candidates considered by the algorithm of Fig. 3 is quadratic in the
number of clusters. This may be inefficient. Therefore, the actual implementation limits
the maximum number of clusters in a candidate to 200.

Once the list has been sorted, the candidates are examined in turn. If the result
of merging all the clusters in the candidate is smaller than a specified threshold, the
candidate is accepted and the result of the merger replaces all the clusters in the candidate.
All other candidates having clusters in common with the accepted one are rejected.

To limit the cost of this phase, the conjunction of the clusters in a candidate is
abandoned as soon as it exceeds the threshold (even though conjoining more clusters
may eventually bring the size down again). Furthermore, all candidates that are supersets
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greedyClustering(C) {
while (1) {

Calculate Di,j and Vi,j of C;
nClusteringDone = 0;
F = ();
for (i = 0; i < |C|; i++) {

used[i] = new[i] = false;
for (j = i+ 1; j < |C|; j++)

Insert quadruple f = (i, j,Di,j , Vi,j) into F ;
}
Sort F in order of decreasing Di,j

in case of tie, give higher priority to entries with smaller Vi,j ;
for each f in F {

if (used[i] || · · · || used[j]) continue ;
Ci,j = Ci ∧ · · · ∧ Cj ;
if (BddSize(Ci,j) <ThesholdValue) {

nClusteringDone++;
for (k = i; k < j; k++) used[k] = true;
Cj = Ci,j ;
new[j] = true;

} else free Ci,j ;
}
if (nClusteringDone == 0) break ;
Remove from C clusters that are marked used and not new;

}
}

Fig. 3. Greedy clustering algorithm

of the set of clusters whose conjunction exceeded the threshold are discarded. These
details are omitted from the pseudocode of Fig. 3 to avoid clutter.

3.4 Pruning

During the initial linear arrangement and clustering the assumption is made that all
current state variables will appear in the predicateP (x) whose image must be computed.
As seen in Section 2, relaxing this assumption may lead to more extensive application
of early quantification. We now describe how this process is carried out.

The algorithm of Fig. 4 applies pruning while computing the states reachable from
I according to the transition relation described by C.

Theorem 1. If forward pruning is excluded, then algorithm reachable of Fig. 4 cor-
rectly computes the states reachable from I according to C.

Proof. We show by induction that at the i-th iterations of the main loop R(x) describes
the states reachable from I in i steps or less. This trivially holds for i = 0. For the
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reachable (C, I) {
R(x) = P (x) = I(x);
while (1) {

prune (C,P );
S(x) = EY P (x);
N(x) = S(x) ∧ ¬R(x);
if (N(x) = 0) return R(x);
R(x) = R(x) ∨N(x);
P (x) = pick (N(x), S(x)); // choose a small BDD for P such that N ≤ P ≤ S
existentially quantify from P (x) the variables not in S(x);

}
}

prune (C,P ) {
X = {xj : yj 	∈ σ(C) ∧ xj 	∈ σ({P}) ∧ ∃i . xj ∈ σ({Ci}) ∧ xj 	∈ σ(C \ {Ci})};
C = ∃X . C; // backward pruning
Y = {yj : xj 	∈ σ(C) ∧ ∃i . yj ∈ σ({Ci}) ∧ yj 	∈ σ(C \ {Ci})};
C = ∃Y . C; // forward pruning
do { // intermediate variable quantification

W = {wj : ∃i . wj ∈ σ({Ci}) ∧ wj 	∈ σ(C \ {Ci})};
C = ∃W . C;

} while (W 	= ∅);
}

Fig. 4. Reachability analysis algorithm

inductive step, we prove that pruning the transition relation does not change the result
of successive image computations. Since pruning consists of existential quantifications,
the new transition relation contains the old one. Hence, no state is dropped from S(x).

To see that no states are added, assume that at the start of the i-th iteration,P describes
states reachable from I in exactly i− 1 steps, and the states reachable in i or more steps
can be correctly computed using the current C.

Suppose xj is pruned at the i-th iteration. Then, it does not appear inP , and it appears
in exactly one Ci. Therefore, if the original C were used for image computation, early
quantification would apply, and pruning of xj would occur as part of image computation.
Hence, pruning of xj does not affect S. By simple induction on the number of pruned
variables one concludes that backward pruning does not change the result of image
computation. (Quantifying wj obviously does not change the result if wj appears in
exactly one Ci.)

Since yj does not appear in C if xj is pruned, then xj does not appear in S(x).
Furthermore, the choice of P for the next iteration preserves this property. Since P ≤ S,
after quantification of the variables not in S from P , the result is still contained in S.
Since the variables not in the incoming P are not in the new P either, the pruning at
iteration i is valid also at successive iterations. ��
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Notice that the quantification of the variables not in S from P is can be avoided at the
expense of complicating the proof. Moreover, the restrict operator [10] can be used to
select P so that no variables not in S appears in P .

It should be noted that the effectiveness of pruning is enhanced by the ability of the
clustering algorithm to reduce the number of terms in which a variable appears.

Lemma 1. Let T0, . . . , Tk the sequence of transition relations generated by forward
pruning. Specifically, let T0 = T , and Ti+1 = ∃Yi . Ti, where Yi is the set of next-state
variables quantified because their corresponding current-state variables Xi are not in
Ti. (That is, Xi ∩ σ(Ti) = ∅ and Yi ∩ Yj = ∅ for 0 ≤ j < i.) Let EYi compute the
successors of a set of states using transition relation Ti. Then

∃Xi . EYi Z(x) = EYi+1 Z(x) .

Lemma 2. Ri+1(x) ∨ ∃Xi . I(x) = ∃Xi . Ri(x).

Proof. Expanding both sides, and observing that I(x) ≤ ∃Xi . I(x), we get

∃Xi . I(x) ∨
∨

j>0

EYji+1 I(x) = ∃Xi . I(x) ∨
∨

j>0

∃Xi . EYji I(x) .

The two sides can be shown to be identical by recursive application of Lemma 1. ��

Theorem 2. Let R+(x) be the result produced by reachability with forward pruning.
Then the reachable states are given by

R(x) = νZ(x) . R+(x) ∧ (I(x) ∨ EYZ(x)) . (10)

Proof. Let Ri(x) be the result of reachability analysis using Ti. We have:

Ri(x) = I(x) ∨ EYiRi(x) ,

which, applying (5) and Lemma 2, becomes

Ri(x) = I(x) ∨ EYiRi+1(x) . (11)

Therefore, we can compute the exact reachable states R(x) = R0(x) by starting with
R+(x) = Rk(x), and iteratively applying (11). We now observe that Ti ≥ T for
0 ≤ i ≤ k, and consequently,

R0(x) ≤ I(x) ∨ EYRi+1(x) ≤ Ri(x) .

Therefore, R0(x) = νZ(x) . R+(x)∧ (I(x)∨EYZ(x)). Convergence is guaranteed in
k iterations. ��

Theorem 3. Procedure reachable computes the reachable states of K = 〈T, I〉.
Proof (sketch). To account for the interleaving of backward and forward pruning, we
observe that each transition relation Ti obtained by forward pruning is applied from
a set of set of states that is between I(x) and Ri−1(x) ≤ Ri(x). Hence, if used to
convergence, it computes Ri(x). ��
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4 Experiments

We implemented the proposed method inVIS [2]. Experiments are conducted on 1.7GHz
Pentium 4 with 1GB of RAM running Linux. We compare the fine-grain method (denoted
by FG) to the IWLS95 [17], Hybrid [16], and MLP [15] methods. In these experiments,
we turned on dynamic variable ordering for BDDs and we set the data size limit to
700MB. Figure 5 compares the four methods in the context of reachability analysis.
Each experiment was allotted 20,000 seconds.

The experiments show overall improvements in CPU time and memory usage. The
proposed method outperforms the IWLS95, Hybrid, and MLP methods in most hard
benchmark examples, such as s4863, am2901, prolog, and s3330. In the case of ro-
tate32, which is the 32-bit rotator, all the transition functions contain all the present state
variables. It means that there is no good quantification schedule without intermediate
variables. The good result for FG witnesses its ability to choose a good set of intermediate
variables.
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Fig. 5. Performance comparison

Table 1 reports the number of state variables before and after applying pruning. We
can prune all the state variables in the case of s4863 and s4863opt; hence, the transition
relations can be reduced to the constant 1. This means that the reachability analysis step
is trivial. However, the recovery step is hard because it computes the exact reachable
states from the set of all states. In Fig. 5, most CPU time of s4863 and s4863opt is
consumed by the recovery step.
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Table 1. Number of state variables before and after optimization

Before After
Design Present State Next State Present State Next State

prolog 136 136 114 112
s1269 37 37 36 36
s1423 74 74 72 72
s1512 57 57 46 46
s3271 116 116 115 115
s3330 132 132 113 112
s3384 183 183 120 119
s4863 104 104 0 0

s4863opt 88 88 0 5
s5378 179 179 159 159

s5378opt 121 121 83 83
s6669 239 239 175 164

s6669opt 231 231 167 148

5 Conclusions

We have presented an approach to image computation for symbolic reachability analysis
that exploits the fine-grain structure of the transition relation. In the case of hardware
circuits, such structure is represented by the combinational gates that make up the next-
state functions; the approach, however, is general. The advantage of a fine-grain approach
is the ability to accurately place intermediate variables in the transition relation so as
to promote extensive early quantification. We have presented three techniques that rely
on this feature: A procedure for the computation of the conjunction schedule based on
minimum max-cut linear arrangement; a clustering algorithm, and a variable pruning
algorithm that works in conjunction with the standard symbolic reachability analysis
procedure.

Preliminary experimental results show great promise for the fine-grain approach,
especially in cases when the circuit implementing the transition relations are deep and
have large BDDs. In these cases other image computation procedures tend to place
intermediate variables suboptimally. There is still considerable work to be done to reduce
the overhead of our clustering algorithm.
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