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Abstract. This paper presents a theory of test coverage and genera-
tion from specifications written in EFSMs. We investigate a family of
coverage criteria based on the information of control flow and data flow
and characterize them in the branching time temporal logic CTL. We
discuss the complexity of minimal cost test generation and describe a
method for automatic test generation which employs the capability of
model checkers to construct counterexamples. Our approach extends the
range of applications of model checking from formal verification of finite
state systems to test generation from finite state systems.

1 Introduction

Testing has always been an essential activity for validating the correctness of
software and hardware systems. Although testing cannot provide an absolute
guarantee on correctness as is possible with formal verification, a disciplined
use of testing can greatly increase the effectiveness of system validation, espe-
cially when performed by suitable tools. In this paper, we study the problem
of test coverage and generation from specifications written in extended finite
state machines (EFSMs). EFSMs extend finite state machines with variables
and operations on them and are widely used as an underlying model of many
specification languages such as SDL[2], Estelle[4], and Statecharts[12]. Because
an EFSM specification typically allows an infinite number of executions, it is
not possible to determine whether an implementation under test conforms to its
specification by considering all executions of the specification. In the last two
decades, a number of methods and tools have been proposed for test generation
from EFSMs (for survey, see [3I8]) and most of them focus on a family of cover-
age criteria based on the information of control flow (e.g, states and transitions)
and data flow (e.g., definitions and uses of variables).

We show that the problem of test generation from EFSMs based on control
flow and data flow oriented coverage criteria can be formulated as a model check-
ing problem. Given a system model and a temporal logic formula, model checking
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establishes whether the model satisfies the formula. If so, model checkers are ca-
pable of supplying a witness that explains the success of the formula. Conversely,
if the model fails to satisfy the formula, a counterexample is produced. In our
approach, each coverage criterion is associated with a set of temporal logic for-
mulas and the problem of test generation satisfying the criterion is formulated
as finding witnesses for every formula in the set with respect to a given EFSM.
The capability of model checkers to construct witnesses and counterexamples
allows test generation to be automatic.

We illustrate our approach using the temporal logic CTL[7]. First we define
the semantics of EFSMs in terms of Kripke structures. We then describe how to
express each coverage criterion as a set of formulas in CTL, parameterized with
the propositions of a given EFSM. Each formula is defined such that the formula
is satisfied by the EFSM if and only if the EFSM has an execution that covers the
entity described by the formula such as a specific state, transition, or definition-
use association[2]. If the entity can be covered in the EFSM, a witness for the
corresponding formula is constructed. A test suite is a set of finite executions of
the EFSM such that for every formula, the test suite includes a finite execution
which is a witness for the formula. In addition to the coverage criteria that
cover states, transitions, and definition-use associations, we also consider more
complex ones that are based on the affect relation in program slicing]24] and
are applied to protocol conformance testing[22]. They deal with data flow from
input variables to output variables through an arbitrary number of definition-use
associations between local variables. Hence they cannot be characterized as CTL
formulas and we characterize them as least fixpoints of predicate transformers
over CTL formulas. Witnesses for such least fixpoints can be constructed in the
way similar to CTL formulas.

We then discuss the problem of minimal test generation. Typically, a CTL
formula can be represented by several different witnesses. By selecting the right
witness for each formula, one can minimize the size of the test suite according
to two costs: the number of test sequences in the suite or the total length of test
sequences in the suite. We show that these optimization problems are NP-hard
and describe a simple heuristic similar to the test generation method in [I0],
which enables the application of existing CTL model checkers such as SMV[I9]
to automatic test generation.

Related Work. Widely-used system models in the testing literature include finite
state machines (FSMs) and labelled transition systems (LTSs), especially in
hardware testing and protocol conformance testing. Testing methods based on
such models primarily focus on control flow oriented test generation (for survey,
see [BIRITT]). Although these methods are well-suited for hardware circuits and
control portions of communication protocols, they are not powerful enough to
test complex data-dependent behaviors.

EFSMs extend FSMs with variables to support the succinct specification of
data-dependent behaviors. If the state space of an EFSM is finite, one can con-
struct the equivalent FSM by unfolding the values of variables. Thus, EFSM-
based testing with finite state space can be reduced in principle to ordinary
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FSM-based testing. Of course, this approach suffers from the well-known state
explosion problem which makes test generation often impractical. Even when
test generation is feasible, this approach is often impractical because of the test
explosion problem, i.e., the number of generated tests might be too large to
be applied to implementations. A promising alternative is to apply conventional
software testing techniques to test generation from EFSMs [22]. In this approach,
an EFSM is transformed into a flow graph that models the flow of both control
and data in the EFSM and tests are generated from the graph by identifying
the flow information. The approach abstracts the values of variables when con-
structing flow graphs and hence it can be applicable even if the state space is
infinite. However, it requires posterior analysis such as symbolic execution or
constraint solving to determine the executability of tests and for the selection of
variable values which make tests executable.

The approach we advocate here is based on constructing Kripke structures
from EFSMs and hence also suffers from state explosion. Our approach, how-
ever, enables the use of symbolic model checking[5] that has been shown to be
effective for controlling state explosion for certain problem domains. Second, our
approach overcomes the test explosion problem by using control and data flow
information of EFSMs like the flow-graph approach. Finally, our approach can
be seen as complementary to the flow-graph approach. In particular, flow graphs
can be constructed from system models whose state space is infinite, whereas
our approach has the advantage that only executable tests are generated which
obviates the need of posterior analysis. Ideally, one would eventually like to be
able to combine these two approaches.

Recently, connection between test generation and model checking has been
considered in the testing literature. [IT]20] use binary decision diagrams (BDDs)
to represent EFSMs and describe symbolic approaches to test generation for
state and transition coverage criteria. [14] describes a test generation method
by adapting local or on-the-fly model checking algorithms. [23] describes an
on-the-fly test generation method which utilizes SPIN[I3] to generate the in-
formation necessary for test generation. Test generation using the capability of
model checkers to construct counterexamples has been applied in several con-
texts. [I] describes the application of model checking to mutation analysis. [69]
generate tests by constructing counterexamples for user-specified temporal for-
mulas. No consideration is given to coverage criteria. [10] generates tests from
SCR specifications using two model checkers SMV and SPIN for control flow
oriented coverage criteria, which are similar to transition coverage criterion. We
are not aware of any work that considers the model checking approach to both
control flow and data flow oriented coverage criteria.

2 Logic: CTL

Syntaz. CTL[7] is a branching time temporal logic widely-used for symbolic
model checking. Formulas in CTL are built from atomic propositions, boolean
connectives, path quantifiers A (for all paths) and E (for some path), and modal
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operators X (next time), U (until), F (eventually), and G (always). Formally,
CTL is the set of state formulas defined as follows:

— Every atomic proposition is a state formula,

— If f and g are state formulas, then —f, f A g are state formulas,

If f and g are state formulas, then X f, fUg, and G f are path formulas,
If f is a path formula, then Ef is a state formula.

The remaining formulas are defined by: EF f = E[trueUf], AXf = -EX~f,
A[fUg] = -E[-gU~fA—g] A “EG—g, AFf = “EG—f, AGf = -EF—f.

Semantics. The semantics of CTL is defined with respect to a Kripke structure
M = (Q,Qo, L, R) where @ is a finite set of states; Qo C @ is the set of initial
states; L: Q — 247 is the function labeling each state with a set of atomic
propositions in AP; and R C Q x @ is the transition relation. A sequence qq,
q1, qo, ... of states is a path if (¢;,qi+1) € R for all i > 0. Given a path 7
and an integer 4, 7(i) denotes the i-th state of w. The satisfaction relation | is
inductively defined as follows:

— M,q=pifpe L(g);

- M, q==¢if ~(q = ¢);

~ Mgl ¢Ad ifql ¢ and ¢

— M,qE Ef if 7 = f for some path 7 such that 7(0) = g;

Mom = X[ if n(1) F f;

M,7 = fUg if 7(i) = g for some ¢ > 0 and 7(j) = f for all 0 < j < i;
- M7= Gfifn(@i)E fforalli>0.

We write M = f if M, qo = f for every initial state go € Q.

Witnesses. One of the important features of model checking is the ability to
generate witnesses and counterexamples. If a formula Ef is true, we can demon-
strate the success of the formula by finding a witness which is a path « such
that 7 = f. Likewise, if a formula A f is false, there is a counterexample 7 such
that 7 |= = f. We observe that a witness for a formula of the form Ef is also a
counterexample for its negation —Ef. In general, a witness or counterexample is
a set of infinite paths. For example, to demonstrate the success of EGp; A EGps
or the failure of AF—p; V AF-py, we must find two infinite paths m; and
such that m; = Gp; and m = Gps. However, if we consider a subclass of CTL,
which we call WCTL, then it is guaranteed that every witness is a finite path.
A CTL formula f is a WCTL formula if (i) f is in positive normal form, i.e.,
every negation in f is applied only to atomic propositions, (ii) f contains only
EX and EU, and (iii) for every subformula of f of the form f; A ... A f,, every
conjunct f; except at most one is an atomic proposition. For example, EF (p; A
EFp,) is a WCTL formula, while EF(EFp; A EFps) is not.

For a WCTL formula f and a Kripke structure M such that M = f, we
define the set of witnesses for f with respect to M, denoted by W(M, f), as
follows:
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— W(M,true) = Q,

- WM, pAf)={a | q Ep} = WM, f),

- W(Maf\/g) = W(va) or W(M7f\/g) = W(M,g),

- W(MaEXf) = {qOQ1 | q1 ': f} * W(Maf)a

- W(M,E[fUyg)]) = {qoq1---gn | ¢; = f for all 0<i<n and g, = g} * W (M, g),

WM, f) = {m € W(M, f) | 7(0) € Qo},

where Iy * IIy = {7 | 3i : m; € II;, 7" € II5}, m; denotes the prefix of 7 ending
at 7(i), and 7* denotes the suffix of 7 starting from 7(i). We extend the notion
of witnesses to a set of WCTL formulas. A set IT of finite paths is a witness-set
for a set F' of WCTL formulas with respect to M if, for every formula f in F
such that M = f, there exists a finite path 7 in IT that is a witness for f. Note
that IT is a witness-set for F' with respect to M if and only if it is a witness-set
for {f € F| M = f}, or equivalently F\{f € F'| M [~ f}.

3 Model: EFSM

Syntax. An extended finite state machine (EFSM) is a tuple G = (S, Sy, E,V,T)
where S is a finite set of states; Sy C S is the set of initial states; F is a finite
set of events; V is a finite set of variables partitioned into three disjoint subsets
Vi, Vi, and Vp comprising input, local, and output variables, respectively; T is
a finite set of transitions. A transition is a tuple (s,e,g, A, s’) where s,s" € S,
e € E, g is a predicate on V; UV}, and A is a set of assignments to V, U Vp. In
this paper, we consider only deterministic EFSMs. An EFSM is deterministic if,
for every state s and event e, g; A g; = false for all 1 <4, j < n,i # j, where gy,
..., gn are the guards of the transitions whose source state is s and event is e.
Figure M shows a simple coffee vending machine which has S = {IDLE, BUSY},
So = {IDLE}, E = {insert, coffee, done, display}, Vi = {x}, Vi = {m}, and Vp
= {y}. We assume z, m, and y are of integer subrange [0..5].

ti: insertim—+z<5]

/{m:=m+x}
ta: coffee[m>1]
/{m:=m—1}
IDLE BUSY
t3: done
ta: display/{y:=m} ts: display/{y:=m}

Fig. 1. An example of EFSMs

Local variables can be defined and used by the EFSM while input variables
can only be used and output variables can only be defined. Formally, a variable
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v is defined at a transition t = (s, e, g, A, s'), denoted by d7, if v occurs in the left
hand side of an assignment in A, and v is used at ¢, denoted by u}, if v occurs
in the guard g or in the right hand side of an assignment in A. For two variables
v, v, and a transition ¢, we say that u} directly affects dfl at t, denoted by
daf’vl, if v occurs in the guard of ¢ or in the right hand side of the assignment of
t whose left hand side is v’. For a transition ¢, define DEF(t), USE(t), and DA(t)
as the sets of definitions, uses, and directly affects occurring at ¢, respectively.
Define DEF(G), USE(G), and DA(G) as U,cq DEF(t), Uyeq USE(t), and
Uier DA(t), respectively. Table [[] shows the classification of the variables in
Figure [ as definitions, uses, and directly affects.

Table 1. The definitions, uses, and directly affects in the coffee vending machine

[transitions[ DEF(t)] USE(t) | DA(t) |
t {div}y [{uiy, wit}{da;™, daii™}
ta {din} | fuiz} {day,™}
i3 0 [ [
ta {di,} | {uiy) {da;,"}
ts {din} | {ui} {da;; "}

Semantics. For a set V of variables, a valuation o over V is a function mapping
variables to their values. The set of valuations over V is denoted by Xy . For a
set A of assignments, A(c) denotes the valuation defined by A(o)(v) = value if
there exists an assignment of the form v:=exp in A and value is the value of exp
evaluated over o, and A(c)(v) = o(v) otherwise.

We view EFSMs as Kripke structures to characterize the problems of test
coverage and generation in CTL. We call each element in @ of a Kripke Structure
a global state to distinguish it from a state of EFSMs. Similarly, we call each
element in R a global transition. The Kripke structure corresponding to an EFSM
Gis (S x Ex Xy x (TU{0}), So x E x Xy x {0}, L, R) where

— for every (s,e,0,t) € S x E x Xy x (TU{0}), L((s,e,0,t)) = {s} U {e} U
{v=c(v) |v eV} U{t} U{d!|di € DEF(t)} U{u? |ul € USE(t)} U
{daj"" | da}"”" € DA(1)},

— ((s,e,0,t), (s',€',0',t')) € R if and only if there exists a transition ¢’ =
(s,e,g,A,s") satisfying o = g and o/ = A(0).

A global state (s,e,o,t) captures (i) the current state in which the EFSM is,
(ii) the event generated, (iii) the values of variables, and (iv) the transition
taken. A global transition ((s,e,o,t), (s',¢’,0’,t')) represents the execution of
its corresponding transition ¢’.

Test Sequences. Since it is impossible to test infinite executions, we define a test
sequence of an EFSM as a finite path of its Kripke structure. A test suite is a
finite set of test sequences. Moreover, we require that the execution of every test
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sequence end at a specific state, if the state is designated by a tester as the exit
state of the EFSM. If an initial state of an EFSM is reachable from every state,
we oftern require a test sequence end at the initial state because it is convenient
to execute another test sequence without resetting an implementation under test
into the initial state. In general, a tester may designate an arbitrary state as the
exit state and distinguish test sequences ending at that state from others by
interpreting the sequences as completed tasks of the EFSM.

4 Test Coverage

This section investigates a family of coverage criteria for EFSMs and character-
izes them in terms of witness-sets. For the remainder of the paper, we fix an
EFSM G with exit condition ezit, denoted by (G, exit). The condition ezit is
defined as s, if s, is the exit state designated by a tester, and true otherwise.

4.1 Control Flow Oriented Coverage Criteria

Obviously, the strongest coverage criterion for determining the conformance of an
implementation to its EFSM specification is path coverage which requires that all
paths of the Kripke structure corresponding to the EFSM be traversed. Because
there is an infinite number of paths, it is impossible to achieve exhaustive testing
and we need to have coverage criteria that select a reasonable and finite number
of test sequences. Included are control flow oriented coverage criteria that require
that every state or transition be traversed at least once during testing.

State Coverage. A state s of (G, exit) is testable if there exists a test sequence
qo---qn such that ¢; = s for some i and ¢,, = exit. In this case, the test sequence
is said to cover s. It is easy to see that a test sequence covers s if and only if it
is a witness of EF(s A EFexit), because the set of witnesses for the formula is
{q0---gn | @i E s N EF(exit) for some i and ¢, = exit}.

A test suite IT of (G, exit) satisfies state coverage criterion if every testable
state is covered by a test sequence in I1. We characterize test suites satisfying
state coverage criterion as follows. A test suite IT of (G,ewit) satisfies state
coverage criterion if and only if it is a witness-set for

{EF(s N EFezit) | s € S}

Note that IT is a witness-set for {EF(s A EFezit) | s € S} if and only if it is a
witness-set for {EF(s A EFexit) | s € S and s is testable}.

Transition Coverage. A transition t of (G, exit) is testable if there exits a test
sequence qo...qn, such that ¢; |= t for some ¢ and ¢,, |= exit. In this case, the test
sequence is said to covert. A test suite II of (G, exit) satisfies transition coverage
criterion if every testable transition is covered by a test sequence in II. A test
suite II satisfies transition coverage criterion if and only if it is a witness-set for

{EF(t A EFezit) |t € T}
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4.2 Data Flow Oriented Coverage Criteria

Data flow oriented coverage criteria establish associations between definitions
and uses of variables and require that these associations are examined at least
once during testing. We consider two types of associations: definition-use pairs
and affect pairs that are centeral notions in data flow analysis and program
slicing, respectively.

Data Flow among Local Variables. For a definition dj and use uy of the
same variable v, we say that (d},u},) is a definition-use pair (in short, du-pair)
if there exists a test sequence qo...q,, such that ¢; = df and ¢; = uj, for some
0<i<j<m,and g = ~def(v) for all i < k < j, where def(v) = \/d:GDEF(G)
dy. In addition, if g,, = exit, the du-pair is testable. In this case, the test sequence
is said to cover (df,u} ) and the subpath g;...q; is called a definition-clear path
of (dy,uy). It can be shown that a test sequence covers (dy,u} ) if and only if
it is a witness of EF(dj A EXE[-def(v)U(u}, A EFexit)]). Table 2] shows the
du-pairs in Figure[D. For example, (di", u;}) is a du-pair whereas (d", u;?) is
not because there is no definition-clear path with respect to m from t; to t5.

Table 2. The du-pairs in the coffee vending machine

lvariablesH du-pairs ‘

Lom (45, wih), (diy, i), (diy, wiiy), (diy, wiy), (diy, uiy), (diy, uiy), (df, uiy)]

All-def Coverage. A test suite IT of (G, exit) satisfies all-def coverage criterion
if, for every definition d}, some testable du-pair (df,u},) is covered by a test
sequence in I1. A test suite IT satisfies all-def coverage criterion if and only if it
is a witness-set for

{ '\  EF(d} AEXE[~def(v)Uuj, AEFezit)]) | df € DEF(G)}
u?, EUSE(G)

All-use Coverage. A test suite IT of (G, exit) satisfies all-use coverage criterion
if, for every definition d}, every testable du-pair (dy,u} ) is covered by a test
sequence in I1. A test suite I1 satisfies all-use coverage criterion if and only if
it is a witness-set for

{EF(d{ N EXE[~def (v)U(uy, A EFexit)]) | df € DEF(G),u;, € USE(G)}

Data Flow among Input and Output Variables. For a use uy of variable
v and a definition d}, of variable v’, we say that u} affects d}, if (i) either t = ¢
and u? directly affects d?’, or (ii) there exists a du-pair (d¢",u%, ) such that u?
directly affects dg” and uf,l,/ affects df,'. We say that (u}, }5’,/) is an affect-pair if
u? affects d¥ . A data-flow chain (in short df-chain) of an affect-pair (u?, d ) is
a sequence of du-pairs (dy}, ug;) (di7, uiy), -y (d7, g, ), n > 0, such that

tn
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— t1 = t and wy, directly affects di, t,41 = t" and u” | directly affects dv’
and for every 1 <i <mn, ug  directly affects d Vit

— there exists a test sequence qo .¢m such that for every 1 < ¢ < n, there
exists a subpath m; of qq...q,, satisfying last(m;) = first(m;+1) and 7; is a

v;

definition-clear path of (d;7, us}, ).

t+17

In addition, if ¢,, = exit, the affect pair (u?, d¥) is testable. In this case, the
test sequence is said to cover (uy, dy, ) Table[d shows the affect-pairs in Figure [l
For example, from the affect-pair (utl, d{,), we observe that the use of z at t;
affects the definition of y at ¢4 through a df-chain, say (di",u{}).

Table 3. The affect-pairs in the coffee vending machine

variables [ [ affect-pairs
z, m (ufw d;r;) (ut17 )7
x, Y (utu )7 (utu ):
m7 m (u;ﬂ 7”)7 ( ;71L7 7”)7 ;721/7 m)7 ( 77L Tﬂ)
m,Yy (u?llz da) (utla )a ( )7 ( )7 (ut4> ) (“;Za d‘ZZs)

In contrast to du-pairs, affect-pairs cannot be characterized in terms of
WCTL formulas because they require an arbitrary number of du-pairs. Instead,
we characterize them using a least fixpoint of an appropriate predicate trans-
former over WCTL formulas. Note that the computation of fixpoints can be
implemented efficiently in symbolic model checking.

For a testable affect-pair (u?, d¥), we use Q(u?, d¥) to denote the set of
global states g such that ¢o = u} and there exists a test sequence ¢oqj ... covering
the affect-pair. By the definition of affect-pairs, we have the following equation.

Quy, d¥) = (u? Ada’" A EFexit) v

wn \/  EXE[def(") U\ Qupy.dp))

v"”€DA(t,v) u?) EUSE(G)

where DA(t,v) is the set of variables directly affected by v at ¢.
We identify every WCTL formula f with the predicate {q | M, q |= f} in 2%,
Let 7 : 29 — 29 be a predicate transformer defined as follows.

7(Z) = (uf Ada}"”" A EFexit) v
@A \/ EXE[def)U \/  ZWp"/v,t"/H])
’U/’EDA(t,U) uf,’,’EUSE(G)

where Z[v" /v, t" /t'] is the formula obtained by replacing each occurrence of v
and t in Z by v and t”, respectively.



336 H.S. Hong et al.

Theorem 1 Q(u?, d¥)) is the least fizpoint of T.

PROOF It is easy to see that 7 is monotonic.

Let Z; be Q(uf, di’,/). Suppose that g9 = 7(Zy), then there exists a path
qog1... such that either go |= (uf A da’" A EFezit), that is, u? directly affects
03 or ao = (uf AV ey BXE[def(0 VU Vo gy Zbo" o, 0"/1]),
that is, there exists a du-pair (d?",u%,) such that u? directly affects d and
ul, affects dY . Hence, qo = u? and qogi... covers (u?, d), that is, ¢y = Zs.
Therefore, we have 7(Z5) C Z;. Similarly, we can show that if gy = Z¢, then
go = 7(Zy). Consequently, Z; is a fixpoint of 7.

To prove that Z is the least fixpoint of 7, it is sufficient to show that Zy =
U;T%(false), where 79(Z) = Z and 77Y(Z) = 7(7%(Z)). It is easy to show by
induction on i that for every i, 7¢(false) C Z¢. Hence, we have the first direction
U;T*(false) C Z;. The other direction, Z; C U;7*(false), is shown by induction
on the number of du-pairs of the df-chain of (u}, df,/). Suppose that gy = Zy,
then there exists a path ¢oqi... covering (u}, f,/). Let 57 > 0 be the number of
du-pairs of in the df-chain of (u}, f,l). We show by induction on j that for
every j > 0, qo € /T (false). For the base case, suppose that j = 0, that is, u?
directly affects d, . Then qo = (u? A daf’v/ A EFezit) and hence qo € 7! (false).
For the inductive step, suppose that qo € 79! (false) for j = n. Let j = n + 1
and g be the global state in the path ¢pg;... at which the first du-pair in
the df-chain ends. Hence, there exist m du-pairs from ¢p and we have that
qr € T""1(false) by the induction hypothesis. Therefore, go € (uf A \/u”eDA(t,v)
EXE[~def(v") U \/uz//lerSE(G) 7 (false)[v” Jv, " /t]]) and qo € T2 (false). ]

Among the particular affect-pairs of interest to our coverage criteria are those
starting with an input variable and ending with an output variable. We say that
an affect-pair (uf, d9) is an io-pair if i is an input variable and o is an output
variable. For example, in Table 3] there are two io-pairs (uf , df,) and (uf,, df, ),
that is, the use of x at t; affects the definition of y at t4 and t5. The rationale
here is to identify functionality specified by the EFSM in terms of the effects of
input variables accepted from its environment on output variables offered to its
environment.

All-input Coverage. A test suite IT of (G, exit) satisfies all-input coverage crite-
rion if, for every use u! of every input variable 4, some testable io-pair (uf,d?)
is covered by a test sequence in I1. A test suite II satisfies all-input coverage
criterion if and only if it is a witness-set for

{ \V EFQ(u},d})) | u} € USE(G),| i € V;}

d%,eDEF(G),0€Vo

All-output Coverage. A test suite IT of (G,exit) satisfies all-output coverage
criterion if, for every use uy of every input variable 4, every testable io-pair
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(uf,d?) is covered by a test sequence in II. A test suite II satisfies all-output
coverage criterion if and only if it is a witness-set for

{(EFQ(u!,d?) | ui € USE(G),i € V;,d% € DEF(G),0 € Vo}

5 Test Generation

This section defines two optimization problems of minimal cost test generation.
They are shown to be NP-hard and a heuristic algorithm is described.

5.1 Complexity

To generate a test suite for a given EFSM and coverage criterion, we construct
a Kripke structure M corresponding to the EFSM and a set F' of WCTL formu-
las (or WCTL formulas with a least fixpoint operator). We wish to generate a
minimal test suite IT with respect to one of the two costs: (i) the number of test
sequences in IT or (ii) the total length of test sequences in I7. After finishing the
execution of a test sequence, an implementation under test should be reset into
its initial state from which another test sequence can be applied. It is appropri-
ate to use the first cost if the reset operation is expensive, and the second one
otherwise.

Let Wy be the set of witnesses for a formula f in F'. First we consider the
Minimal Number Test Generation (MNTG) problem which is an optimization
problem defined by: given a collection of sets Wy, generate a minimal witness-set
IT in the number of witnesses in II. We show this problem to be NP-hard by
considering its corresponding decision problem MNTG’: given a collection of Wy
and positive integer k, is there a witness-set IT with |IT| < k? We prove that
MNTG’ is NP-complete by reducing the Hitting Set problem, which is known to
be NP-complete[I5], to MNTG’. The Hitting Set problem is defined by: given a
collection of subsets C; of a finite set S and positive integer k, is there a subset
S' C S, called hitting set, such that |S’| < k and S’ contains at least one element
from each C;?

Theorem 2 MNTG' is NP-complete.

PROOF It is easy to show that MNTG’ is in NP. Given an instant of the Hitting
Set problem, we construct a Kripke structure (@, Qo, L, R) such that @ = {qo}
U{g | ceUCi}, Qo = {go}, and R = {(go,4c) | ¢ € |JC;}. This reduction is
linear in the size of S. For every subset C;, we construct a set W, of witnesses
as follows: qoq. is in W; if and only if ¢ € C;. Clearly, there exists a hitting set
S’ with |S’| < k for the collection of C; if and only if there exists a witness-set
IT = {qogs | s € S’} with |II] < k for the collection of W;. 0

Second we consider the Minimal Length Test Generation (MLTG) problem
defined by: given a collection of Wy, generate a minimal witness-set II in the total
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length of witnesses in II. Its corresponding decision problem MLTG’ is defined
by: given a collection of sets Wy and positive integer £, is there a witness-set 11
such that » . |7| < k7

Theorem 3 MLTG' is NP-complete.

PROOF It is easy to show that MLTG’ is in NP. We use the same reduction
used as in Theorem 2. Since all paths in @) are of length one, the minimum
total-length of the witness-set IT is achieved when IT contains the minimum
number of witnesses. Therefore, a solution for the MLTG problem in this case
will yield the same witness-set which also is a solution to the MNTG problem.
Hence there exists a hitting set S’ with |S’| < k if and only if there exists a
witness-set [T with ) |7 < k. 0

5.2 Heuristic

Because of NP-hardness of the problems, we do not expect optimal solutions
to them. Instead we describe a greedy algorithm which can be applied to both
MNTG and MLTG problems. Figure[2lshows how the greedy algorithm is applied
to state coverage criterion. The algorithm can also be applied to other coverage
criteria by changing the set of covered entities to transitions, du-pairs, or io-pairs.

INPUT: a set F' of formulas and a Kripke structure M
OUTPUT: a test suite [T satisfying state coverage criterion

1: mark every state in S as uncovered,

2: IT := 0

3: repeat

4: choose a state s € S marked as uncovered,

5: model check the negation of f = EF(s A EFexit) in F against M;
6: iftME~f

7 mark s as untestable;

8: else /x M [ —f x/

9: let 7™ be the counterexample for —f (equivalently the witness for f);
10: let S be the set of states covered by 7;

11: mark every state in S as covered;

12: IT:=1nu{r}

13: for all 7’ € II such that S, C Sx

14: =1 - {r'};

15: until every state in S is marked as covered or untestable

16: return I7;

Fig. 2. A greedy algorithm for state coverage criterion

In the algorithm, we directly employ the capability of model checkers to con-
struct counterexamples because a witness for a WCTL formula or a formula of
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the form EFQ(u}, ;’,,) is also a counterexample for its negation. Basically we
generate a witness for every formula f in F' by model checking the negation —f
and constructing its counterexample. The resulting set of witnesses constitutes
a test suite. This naive method would generate a number of redundant witnesses
because a witness may cover more than one state at the same time. We remove
such redundant witnesses by considering only states which are not already cov-
ered by an exiting witness (Line 4) and by removing an existing witness if all
the states covered by it are also covered by a new witness (Line 13 and 14).

6 Conclusion and Future Work

We have presented a temporal logic based approach to automatic test genera-
tion from specifications written in EFSMs. Our approach considers a family of
coverage criteria based on the information of both control flow and data flow.
We associate each coverage criterion with a set of CTL formulas and generate a
test suite by finding a set of witnesses for each formula in the set. The result-
ing test suite provides the capability of determining whether an implementation
establishes the required flow of control and data prescribed in its EFSM speci-
fication. We show that the optimization problems of finding minimal test suites
are NP-hard and describe a method for automatic test generation.

Our ultimate goal is to develop an integrated environment for testing reactive
systems. Testing reactive systems is a hard multi-faceted problem. We have just
touched the surface of the wealth of issues associated with it. Listed below are
some possible extensions that we plan to explore.

Nondeterminism. This paper considered only deterministic EFSMs. In the case
of non-deterministic EFSMs, there may be more than one possible execution
for a given input event sequence. In this situation, a single witness constructed
by model checkers is not enough for the input event sequence, since it identifies
only one execution among all possible ones. One possible solution to this problem
is to treat the witness as prescribing only the input event sequence. An extra
step is then necessary to find all executions corresponding to this input event
sequence. If we have a model checker that produces multiple (or all) witnesses
to a formula, we can express the input event sequence as a formula and give it
to the model checker. The resulting set of witnesses constructed by the model
checker will contain all possible executions.

Other Coverage Criteria. A number of other coverage criteria based on control
and data flow have been proposed in the software testing literature (for example,
see [21I]). Some of these coverage criteria require that all paths that cover a
certain entity be considered as test sequences. For example, all-du-path coverage
criterion requires that all definition-clear paths for every definition-use pair be
examined. To generate tests for this criterion in our approach, we need to obtain
all witnesses to a CTL formula instead of only one.
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Other Formalisms. Our characterization of coverage criteria as collections of
CTL formulas is language-independent and is applicable with minor modifica-
tions to any kind of specification languages based on EFSMs, e.g., SDL, Estelle,
and Statecharts. In fact, semantic differences in such languages affect only the
way these models are transformed into input to model checkers. However, when
we allow a specification language to express concurrent EFSMs, a number of
complications arise. First, the construction of a single Kripke structure from
several concurrent EFSMs may result in state explosion. Second, the resulting
Kripke structure will likely be nondeterministic due to the interleaving of con-
current events. Often, these interleavings are not controllable by testers.

Other Logics. We showed that CTL is not capable of expressing the coverage
criteria based on the affect relation and resolved this problem by extending CTL
with least fixpoints of specific predicate transformers so that they can be imple-
mented efficiently in symbolic model checking. However, a more elegant way may
be to employ a more expressive temporal logic than CTL. We are currently work-
ing with a subset of p-calculus [16]. The presence of explicit fixpoint operators
in p-calculus makes it possible to characterize all coverage criteria considered in
this paper in a more uniform way.
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