Simulation as Coarsest Partition Problem

Raffaella Gentilini, Carla Piazza, and Alberto Policriti

Dip. di Matematica e Informatica,
Universita di Udine
Via Le Scienze 206, 33100 Udine - Italy.
{gentilini|piazza|policriti}@dimi.uniud.it

Abstract. The problem of determining the coarsest partition stable
with respect to a given binary relation, is known to be equivalent to the
problem of finding the maximal bisimulation on a given structure. Such
an equivalence has suggested efficient algorithms for the computation of
the maximal bisimulation relation.

In this paper the simulation problem is rewritten in terms of coarsest
stable partition problem allowing a more algebraic understanding of the
simulation equivalence. On this ground, a new algorithm for deciding
simulation is proposed. Such a procedure improves on either space or
time complexity of previous simulation algorithms.

1 Introduction

In this work we deal with the problem of determining the so-called simulation
relation on a given (Kripke) labeled structure G = (N, E, X). Such a problem
consists, given G, in getting to the (unique) maximal binary relation <, such
that

1. a node can simulate another one only if they have the same label;
2. if a node m simulates another node n, then any successor of n can be simu-
lated by some successor of m.

On the ground of the above definition the notion of sim-equivalence =, is in-
troduced: m =4 n iff m <; n and n <; m. In particular, we are interested in
computing the similarity quotient G/ =;.

The notion of simulation is very similar (less demanding, in fact) to the notion
of bisimulation: an extremely pervasive idea proposed in many different fields,
such as Modal Logic, Concurrency Theory, Set Theory, Automata Theory, etc.
(cf. [TJI5ITTIT4]). Two nodes m and n are bisimilar (m =, n) iff:

1. they have the same label;
2. any successor of n is bisimilar to some successor of m, and vice-versa.

If the naturalness of the concept of bisimulation explains its large usage—
especially in connection with circular structures—, from a computational point of
view the main reasons for its fortune and for its best solution lie in the possibility
of re-formulating a bisimulation problem in purely (elementary) algebraic terms:

J.-P. Katoen and P. Stevens (Eds.): TACAS 2002, LNCS 2280, pp. 415-30] 2002.
© Springer-Verlag Berlin Heidelberg 2002

416 R. Gentilini, C. Piazza, and A. Policriti

a bisimulation is the coarsest partition finer than an input one and stable
with respect to the relation E of the graph (a partition is stable with
respect to F iff any of its classes is either sent by E entirely within or
entirely outside any other of its classes).

Both bisimulation and simulation (as well as other possible relations of the
same sort) are used in order to simplify the input structure by collapsing all
the nodes of the same equivalence class into a single node. As explained in [13]
“in many cases, neither trace equivalence nor bisimilarity, but similarity is the
appropriate abstraction for computer-aided verification . ..”. In the case of finite-
state systems the similarity quotient G/ =, can be computed in polynomial time,
while this is not the case for trace equivalence quotient. In the case of infinite-
state systems, finitely represented using hybrid automaton and other formalisms,
the similarity quotients can be computed symbolically and in many cases the
quotients are finite (see [13]). Since the conditions in the definition of simulation
are weaker than the ones in the definition of bisimulation, simulation provides
a better space reduction than bisimulation (i.e., |G/ = | < |G/ = |) and it is
still adequate for the verification of all the formulae of the branching temporal
logic without quantifiers switches (e.g. the formulae of ACTL*, see [16]).

Several polynomial-time algorithms for computing similarity quotients on fi-
nite graphs have been proposed: the ones presented in [2], [5], and [6] achieve
time complexities of the orders O(|N|®|E|), O(|N|* E|), and O(|E|?), respec-
tively. A simulation procedure running in O(|N||E|) time was independently
discovered in [13] and [3]. All of the algorithms just mentioned ([2], [5], [6], [3],
[13]) obtain the similarity quotient as a by-product of the computation of the
entire similarity relation on the set of states N. Their space complexity is then
limited from below by O(|N|?).

Recently Bustan and Grumberg in [4] and Cleaveland and Tan in [7] improved
the above results.

The procedure by Bustan and Grumberg [4] gives in output the quotient
structure with respect to =; and the simulation relation among the classes of
M = N/=_, without computing the entire simulation on N. Hence, its space
requirements (often more critical, especially in the field of verification) depends
on the size of M and are lower than the ones of the algorithms in [2], [5], [6],
[B], and [I3]. In more detail, the so-called Partitioning Algorithm described in
[A] uses only O(|M|? +|N|log(|M]|)) space whereas its time complexity is rather
heavy: it is O(IM[(|E| + [M[2) + [M2|N|(IN] + [M]2)).

The procedure in [7] combines the fix-point calculation techniques in [3] and
[13] with the bisimulation-minimization algorithm in [I7]. A system, Ga, is de-
termined being or not capable of simulating the behavior of G1, by interleaving
the minimization via bisimulation of the two systems with the computation of
the set of classes in G5 able to simulate each class in G;. The time complexity
achieved is O(|B1||Ba| + |E1|log(|N1|) + |B1l||E2| + |e1]|Bz]|), where ¢; and B;
represent the bisimulation reduced relation and states’space of T;. Compared
with the time complexities of [I3] and [3], the latter expression have many oc-
currences of |N;| and |E;| replaced with |B;| and |e;|. Indeed, the experimental

Simulation as Coarsest Partition Problem 417

results in [7] prove that the procedure by Tan and Cleaveland outperform the
ones in [13] and [3]. The space complexity of [7] depends on the product of the
sizes of the two bisimulation quotients involved. Being bisimulation finer than
simulation, such a space requirement may be more demanding than the one in
[H].

In our work we start by observing that a simulation equivalence can be seen
as a bisimulation in which the condition on the children is weaker than the
condition on the parents: in order to have m = n is sufficient that a back-and-
forth condition involving < is satisfied. In the case of =, instead, in order to
have m =, n any child of m (resp. n) must be in the same relation =, with
some of n’s (resp. m’s) children. This fact is, ultimately, the reason why on the
one hand, the computational steps for determining a simulation must compute
(successive approximations of) both =, and < and, on the other hand, it is
not easy to rephrase the notion of simulation in purely algebraic terms as for
bisimulation.

Here we show that such a rephrasing is in fact possible and that the simulation
problem can be rewritten in terms of a coarsest stable partition problem in
which partitions are also equipped with an acyclic relation over their classes.
The simulation quotient equipped with the partial order induced on it by <g
is shown to correspond to the “coarsest partition-pair” stable w.r.t. a suitable
condition. Such a characterization of = (as well as of <;) gives new insight on
to the algebraic properties of the simulation equivalence. Moreover, it underpins
the designing of a new space-efficient, and not too costly in time, algorithm for
determining M and the simulation among its classes.

The key idea in our approach is that of using, in a sequence of approximation
steps determining M, a graph (the IV-structure, similar to the structures used in
[8]) whose nodes are equivalence classes and whose edges are capable to convey all
the necessary information present in the original structure G. Such information
is captured in a very natural way: since in the approximations nodes are in
fact classes of nodes, we introduce two kind of edges between classes a and o/,
corresponding to the case in which either there is an edge between an element
in « and one in ', or to the case in which all nodes in « are sent in o’ by E.
The stability condition (to be proved) equivalent to the notion of simulation is
the following: a class 3 simulates a class « only if whenever there is an 3-edge
between « and +, then there exists a V-edge between 8 and § simulating ~ (cf.
Figure[d).

The use of the above structure and the formulation of the simulation problem
as a coarsest stable partition problem allows us to define an algorithm computing
the simulation relation as follows:

1. [13] can be used on a suitable 3V-structure to move from an approximation
to the next one, without wasting space (moreover, at any step the partition
X; is modified);

2. the algorithm stops when stability is reached.

The space complexity of our algorithm is O(|M|? + |N|log(|M])), exactly the
same as [4] with which our algorithm shares the general structure. However, due

418 R. Gentilini, C. Piazza, and A. Policriti

to the use of [13] as subroutine, our time complexity turns out to be O(|M|?|E|),
much better than O(|M |*(|E|+ |M|?) 4+ |M|?|N|(|N|+ |M|?)) which is the time
complexity of the algorithm in [4].

All the proofs of the claims in this paper can be found in [12] (available on
the web).

2 Preliminaries

As far as the notions of quasi order and partial order are concerned, we refer to
[9]. We will use Q% to refer to the transitive closure of a relation Q and Q* to
refer to its reflexive and transitive closure.

Definition 1. A triple G = (N, E, X) is said to be a labeled graph if and only
if G- = (N, E) is a finite graph and X is a partition over N. We say that two
nodes ny,ny € N have the same label if they belong to the same class of X.
Given a node n € N we will use [n]x (or [n], if X' is clear from the context) to
denote the class of X' to which n belongs.

Definition 2. Let G = (N, E, X) be a labeled graph. A relation <C N x N is
said to be a simulation over G if and only if:

1. n<m—[n]g=[m]s;

2. (n<mAnEn)— Imi(mEmy Anyp < my).

In this case we say that m simulates n. We also say that m and n are sim-
equivalent (m =g n) if there exist two simulations <1 and <o, such that n <3 m
and m <s n.

A simulation over G = (N, E, X)) is said to be mazimal if it is maximal w.r.t. C.

Proposition 1. Given a labeled graph G = (N,E,X) there always exists a
unique mazximal simulation <g; over G and <, is a quasi order over N.The
relation = (sim-equivalence) is an equivalence relation over N.

Definition 3. Given a labeled graph G = (N, E, X)) the problem of computing
the similarity quotient of G consists in computing the quotient N/ =g, where =
is the sim-equivalence over G.

In [4] it has also been proved that there always exists a unique smallest labeled
graph that is simulation equivalent to G, i.e. there is a unique way to put a
minimum number of edges between the elements of N/ =, in order to obtain a
labeled graph similar to G.

3 Simulation as Coarsest Partition Problem

In this section we introduce the Generalized (Stable) Coarsest Partition Problem
(GCPP) which is the central notion in our approach. We call it generalized
because we are not only going to deal with partitions to be refined (as in the
classical coarsest partition problems [I8IT7/I4]), but with pairs constituted of
a partition and a relation over the partition. The equivalence of the similarity
quotient problem and the GCPP will be proved at the end of this section.

Simulation as Coarsest Partition Problem 419

Definition 4. Let G = (N, E) be a finite graph. A partition-pair over G is a
pair (X, P) in which X is a partition over N, and P C X? is a reflexive and
acyclic relation over X.
Given a labeled graph G = (N, E,Y) an example of a partition-pair over G is
given by the pair (¥, I), where I is the identity relation over X.

Given two partitions IT and X, such that IT is finer than X, and a relation
P over X, we use the notation P(IT) to refer to the relation induced on IT by
P ie.:

VapB € II((a,8) € P(II) < ' ((a Ca' ABC B A(d,B) € P)).

Denoting by P(G) the set of partition-pairs over G, we now introduce the partial
order we need in order to be able to define the notion “(X, P) is coarser than
(11,Q)".

Definition 5. Let (X, P),(II,Q) € P(G):

(I1, Q) T (X, P) iff II is finer than X and Q C P(II).

The following definition introduces structures that in the algorithm, will sug-
gest us the use of a subroutine based on the simulation algorithm by Henzinger,
Henzinger, and Kopke in [13]. The use of such a subroutine guarantees a weak
form of stability (see Definition [[0)) in the intermediate stages and is one of the
keys in the improved time performance of our algorithm w.r.t. the one by Bustan
and Grumberg [4].

Definition 6. Let G = (N, E) be a graph and II be a partition of N. The 3-
quotient structure over II is the graph I3 = (I, E3), where

aFB3f iff Indmn € aAm e fAREmM).
The V-quotient structure over II is the graph Iy = (II, Ey), where
abyB iff VYn(n € o — Im(m € B AnEmM)).

The 3V-quotient structure over II is the structure IIsy = (I, E3, Ey).

Notice that aEyf iff « C E71(3) and aE33 iff anE~1(3) # 0. Similar notations
(called relation transformers and abstract transition relations) were introduced
in [§] in order to combine Model Checking and Abstract Interpretation.

We introduce here a definition, strongly connected to the definition of the
quotient structures, that we will use later in the description of our algorithm
(see Section [)).

Definition 7. Given a graph, G = (N, E), and two partitions of N, X and II,
with IT finer than X, the IV-induced quotient structure over IT is the structure
Zay(IT) = (I, B3 (IT), BZ(I1))), where:

aBF(INBiff anE-Y(B)# 0
aE\f(H)ﬁ iff aEEE(H)ﬁ AN aCEYNB)AN BCpeEX

with a, 6 € II.

420 R. Gentilini, C. Piazza, and A. Policriti

We are now ready to introduce the fundamental notion in the generalized coarsest
partition problems, that is the notion of stability of a partition-pair w.r.t. a
relation:

Definition 8. Given a graph G = (N, E), we say that a partition-pair (X, P)
over G is stable w.r.t. the relation E if and only if

Vo, 3,7 € X((o, f) € PN aEzy — 36 € X((7,0) € PABEYS)). (1)
Condition () in the previous definition is equivalent to:
Va,B,7 € X((a,8) € PAaNE™ () #0 — 35 € ¥((7,6) € PABC E™'(6))). (2)

The stability condition is exactly the condition which holds between the classes
of N/ =s:if o, f € N/ =5 with a < 3 (i.e. all the elements of v are simulated by
all the elements of 3), and an element a in « reaches an element c in +, then all
the elements b of § must reach at least one element d which simulates c¢. Taking,
in particular, all the maximal (w.r.t. <) elements d simulating ¢ reached by
elements in 3, we have that all the elements in 8 reach a class § which simulates
c and, hence, which simulates ~.

In Figure [we give a graphical representation of the notion of stability using
both the characterizations (1) and ().

(oB) in P o (o.B) inP

@ .
’

(1,9) inP Y (1,8) inP B

Fig. 1. The Stability Condition.

We will use the notion of stability of a partition-pair w.r.t. a relation in the
definition of generalized coarsest partition problem, in the same way in which
the notion of stability of a partition w.r.t. a relation is used in the definition of
coarsest partition problem.

Definition 9 (Generalized Coarsest Partition Prob. — GCPP). Let G =
(N, E) be a graph and (X, P) be a partition-pair over G the generalized coarsest
partition problem consists in finding a partition-pair (M, <) such that:

(a) (M,=)C (X, P*) and (M, =) is stable w.r.t. G;

(b) (M, =) is C-mazimal satisfying (a).

Simulation as Coarsest Partition Problem 421

If (I1, Q) is a partition-pair which satisfies (a) only, we say that it is a stable
refinement of (X, P).

Notice that in the above definition (M, <) is a refinement of (X', PT), while it
can be the case that it is not a refinement of (X', P). In particular this happens
always in case (X, P) is not stable while (X, PT) is stable. In this case (X, PT)
itself is a solution of the GCPP. In general, the solution of the GCPP can always
be found by a suitable sequence of splits (of classes) and adequate completion
of the relation in order to take the newly generated classes into account.

Remark 1. Notice that it is important that < is reflexive (it is reflexive, since
(M, =) is a partition-pair). This is necessary in order to prove that the maximal
solution is unique. Given G = (N, E) with N = {ny,ns} and E = {(n1,n2)}, and
(X, P) with ¥ = {N} and P = {(N, N)}. It holds that both (¥, () and (II,Q)
with [T = {{n1},{na}} and Q = {({n1},{n1}), ({n2}, {n2}), {n2},{n1})} are
maximal solutions of the partition problem, but the first is not a partition-
pair. Similarly, the acyclicity condition is important because otherwise we could
coarsen the partition by merging all the classes which form cycles.

We prove that a GCPP has always a unique solution and then we spell out the
connection between similarity quotient problems and GCPP’s.

Theorem 1. The GCPP over G and (X, P) has a unique solution (M, =) and
the relation < is a partial order over M.

The proof of this theorem is carried out by proving that each generalized coarsest
partition problem has a unique solution which can be determined by solving a
similarity quotient problem.

Also the opposite direction is true: a similarity quotient problem can be
solved using a generalized coarsest partition problem.
Theorem 2. Let G = (N, E,X) be a labeled graph. Let (M, <) be the solution
of the GCPP over G~ = (N, E) and the partition-pair (X,I), where I is the
identity relation over Y. M is the simulation quotient of G and

Vn,m € Nn <g;m iff [n]ar < [m]ar.

Hence, in order to solve the problem of determining the similarity quotient of a
labeled graph G = (N, E, X) we can, equivalently, solve the generalized coarsest
partition problem over (N, E) and (X, I). If (M, <) is the solution of the GCPP
(i.e. the maximal refinement of (X, I) stable w.r.t. E), then the relation < s <)
defined as

Vn,m € N(n <<y m iff [n]pr = [m]ar)

is the maximal simulation over GG, and M is the partition which corresponds to
the sim-equivalence = (c.f. Definition BI).

4 Computing a Solution to the GCPP

We now introduce an operator ¢ mapping partition-pairs into partition-pairs,
which will turn out to be the engine of our algorithm. The results in this section

422 R. Gentilini, C. Piazza, and A. Policriti

will allow us to conclude that a procedure which computes o can be used to
solve GCPP’s and, hence, to compute similarity quotients: it is only necessary
to iterate the computation of o at most |M| times.

In particular, the operator o is defined in such a way that it refines the
partition-pair (X', P) obtaining a partition-pair (II, Q) which is more stable than
(X, P) and is never finer than the solution of the GCPP over (X, P). In the first
condition of ¢ we impose to split the classes of X which do not respect the
stability condition w.r.t. themselves: if a class « is such that aF3v and it does
not exists a class § such that (v,9) € P and aEvyd, then the pair (o, «) does
not respect the stability condition, hence we must split . The first condition
is used to build I, and then the second and the third conditions are in ¢ used
to define @ using the IT already obtained. Intuitively, the second and the third
conditions allow to obtain @ from P by starting from P(IT) and removing the
minimum number of pairs which contradict stability.

Definition 10. Let G = (N, E) be a graph and (X, P) be a partition-pair over
G, the partition-pair (I, Q) = oc({X, P)) is defined as:
(o) II is the coarsest partition finer than X such that

(a) Va € I Vv € X(aE3y — 35 € X((v,0) € P A aEyd));

(20) Q is the mazimal relation over II such that Q C P(IT) and if (o, 3) € Q,
then:

(b) Vv € X(aByy — 3 € X((v,7') € PABEY)) and

(c) Vy € (aByy — 3y € II((v,7') € @ A BE3Y)).

By abuse of notation we use £5 and Fy also when the classes belong to different
partitions.

Condition (a) in (1) imposes to opportunely split the classes of the partition
X: these splits are forced by the fact that we are looking for a partition-pair
stable w.r.t. the relation of the given graph and we know that in each partition-
pair (¥, P) the second component is reflexive (i.e. Vo € Y(«, @) € P). Using
condition (b) in (20), together with condition (a) in (1o) and exploiting the fact
that P is acyclic, it is possible to prove that) is acyclic: the acyclicity of P
ensures that a cycle could arise only among classes of IT which are all contained
in a unique class of X, then using condition (a) in (1¢) and (b) in (20)) we obtain
a contradiction. Condition (c) is fundamental, together with condition (a), in
order to obtain the result in Theorem [if it holds that aEyy, then no matter
how we split o one of the subclasses generated from « has a chance (in the
solution of GCPP) to be in relation with at least one of the subclasses generated
from (3 only if 3E37’ and + is in relation with 4/. The following results guarantee
the correctness of o and, hence, of our approach.
Theorem 3. Let G = (N, E) be a graph and (X, P) be a partition-pair over G.
There always exists a unique partition-pair (IT, Q) which satisfies the conditions
in Definition[ID, i.e. o is always uniquely defined.
Now that we have obtained that given a partition-pair (X P), there exists a

unique o({(X, P)), we can link fix-points of the operator o with solutions of
GCPP’s.

Simulation as Coarsest Partition Problem 423

Lemma 1. Let (¥, P) and (I, Q) be two partition-pairs and let (M, =) be the
solution of the GCPP owver the graph G and (X, P). If (M,=) C (I1,Q), then
(M, =) Co((I1,Q))

Theorem 4. Let G = (N, E) be a graph and (¥, P) a partition-pair over G with
P transitive. Let (M, <) be the solution of the GCPP over G and (¥, P). If i is
such that UZ(<Z,P>) = <E“ Pz> and Ji+1(<2, P>) = <Zi,P1‘+1>, then Pi+1 = Pl

The meaning of this theorem is that if (X, P) is a partition-pair over a graph
G such that P is transitive, then there exists an i such that o'((¥, P)) =
oL ((X, P)), and o ({X, P)) is the solution of the GCPP over G and (¥, P). In
particular, when we iteratively apply the operator o until we reach a fix-point,
at each iteration we refine the partition and we remove pairs from the relation.
What we proved in the above theorem is that it is never the case that there
exists an iteration in which we do not refine the partition, but only remove pairs
from the relation. In a certain sense this means that the two conditions (b) and
(¢) we gave in (20) to remove pairs are optimal. This property gives us the upper
bound to the index ¢ which is at most |X;|, which in the worst case is O(|N]).

Corollary 1. The solution (M, <) of the GCPP over a graph G and a partition-
pair (X, P) can be computed using at most |M| times the operator o.

Notice that, given a graph G and a partition-pair (X, P), the solution of the
GPPC over G and (X, P) corresponds to the solution of the GPPC over G and
(X, PT).

The characterizations obtained in this section allow us to conclude that if
we are able to define a procedure which, given a partition-pair (X', P) computes
o((X, P)), then we can use it to solve GCPP’s and hence to compute similarity
quotients. In particular we recall that given a similarity quotient problem over a
labeled graph G = (N, E, X)), in order to solve it it is sufficient solve the GCPP
over G and (X, 1) (I is trivially transitive).

Moreover, the last corollary ensures that it will be necessary to iterate the
procedure which computes o at most |M| times. This is a first improvement on
the time complexity w.r.t. the algorithm presented in [4]: in a certain sense [4]
computes an operator which refines the partition-pair less than o, and hence it
is possible that the computation has to be iterated up to |M|? times.

In the next section we present the procedure which computes o.

5 The Algorithm

In this section we outline an algorithm which solves the generalized coarsest
partition problem we have presented in the previous section. The Stable Sim-
ulation Algorithm takes as input a graph G = (N, E) and a partition-pair
(¥, P), with P transitive, calls the two functions Refine and Update until a
fix-point is reached, and returns the partition-pair (M, <) which is the solution
of the GCPP over G and (X, P). In order to solve the GCPP over G and (X, P)

424 R. Gentilini, C. Piazza, and A. Policriti

with P not transitive, it is sufficient to first compute P and the cost of this
operation is O(X?3) which, hence, does not affect the global cost of our algo-
rithm. The function Refine takes as input a partition-pair (X;, P;) and returns
the partition X;; which is the coarsest that satisfies the condition (a) in (1) of
Definition The function Update takes as input a partition-pair (X;, ;) and
the refinement X; ;1 and it produces the reflexive and acyclic relation over X; 14
which is the largest that satisfies conditions (b) and (c¢) in (20) of Definition [I0]
In particular, at the end of each iteration of the while-loop in the Stable Simu-
lation Algorithm we have that (X; 11, P;y1) = o((X;, B;)). It is immediate to

Stable Simulation Algorithm((N, E), (¥, P))

change := T;
1= 0;
while change do

change := 1;

Yit1 := Refine(X;, P;, change);
Pl‘+1 = Update(Ei, Pi, 2i+1)§
ii=1+ 1

Fig. 2. The Stable Simulation Algorithm.

see that the Refine function works exactly as described in the proof of Theorem
Bl (see [12]), and hence it produces the partition which is the first element of
o(X,Pi).

Corollary 2. If c({X;,P;)) = (II,Q), then I = X; ;.

The deletion of “wrong” pairs is performed by Update through two calls to the
function New_HHK, which is a version of [13] adapted to our purposes here.
The function Update removes pairs from P;(X; ;1) = Ind;;1 in order to obtain
the relation P;;1q which satisfies condition (20) of Definition In particular
Ref;+1 (obtained after the first call to New_HHK only) satisfies the first of the
two conditions but not necessarily the second one.

Notice that the space complexity of the calls to New_HHK remains limited
since they are made on quotient stuctures. This function is based on the use of
the two structures X;gy(X;4+1) (cf. Definition [) and X;13v (cf. Definition @),
and on the following equivalent formulation of condition (2¢).

Proposition 2. Let G = (N, E) be a graph, (X, P) be a partition-pair and IT
be a partition finer than Y. Q satisfies (20) of Definition I if and only if Q is
the mazimal relation over I such that Q C P(II) and if (o, B) € Q, then:

Vy € H(aEy (IT)y — 3y € II((v,7) € P(IT) A BES (IT)Y')) A
Vy € H(aBEyy — 3 € II((v,7) € Q A BEzY)),

where BF (II) and EZ (II) are the edges of the 3V-induced quotient structure,
while E5 and Ey are the edges of the Y quotient structure.

Simulation as Coarsest Partition Problem 425

Refine(X;, P;, change)
ig1 =Xy
for each 3 € X; 41 do Stable(3) := 0);
for each a € X; do Row(a) := {7 | (a,7) € Ps)};
Let Sort be a topological sorting of (X, P;);
while Sort # 0 do
a := dequeue(Sort);
A= (;
Split(a) := {8 € Ziy1 | BEza};
for each 3 € Split(a), Stable(3) N Row(a) = () do
Br:=BNE ()
B2 :=p \ B1;
if B2 # () then change := T;
Yit1 = T \ {8}
A:=AU {/61752};
Stable(3;) := Stable(8) U {a};
Stable(32) := Stable(8);
Yig1 =21 U A;
Sort := Sort \ {a};

return X; 11

Fig. 3. The Refine Function.

Update(X;,P;, Xit1)
Ind;t1 := {(a1, 1) |1, B1 € Xit1,01 C o, 1 C B, B) € Pi};
Liav(Zig1) = (Zix1, B3 (Zig1), B (Zig));
Ref¢+1 = NeW,HHK(Eﬂv(EiJrl), Ind¢+17 J_);
Xit1av = (Ziy1, F3, By);
Pi+1 = NeW,HHK(E(i+1)gv, RefH_l, T),
return P;4+1

Fig. 4. The Update Function.

In Figure B we present the conditions described in Proposition 2 on the 3V-
induced quotient structure and on the 3V-quotient structure. As a consequence
of Theorem [these conditions are weaker than the stability condition.

The computation performed by Update correspond to determine the largest
relation included in P; and satisfying conditions (20), thereby getting us closer
to stability. Such a computation is proved correct as a fix-point computation of
an operator 7 defined as follows:

Definition 11. Let D = (S, Ry, R2) be such that Ry C Ry, and let K C S x S.
We define 7p(K) = K\ {(b,¢) | Ja(bRea AVd(cR1d — (a,d) ¢ K))}. We use
Fix(rp)(K) to denote the greatest fiz-point of Tp smaller than K.

Corollary 3. Let G = (N,E) be a graph, and (X, P) be a partition-pair. If
o((X,P)) = <H7 Q), then Q = Fix(THav)(TEBV(H)(P(H)))'

Now we complete the connection between the operator 7 and the function
New_HHK presented in Figure[Gl

426 R. Gentilini, C. Piazza, and A. Policriti

(0p) inQ

(1:9) inQ

(0uf) inQ

(:9) inQ

Fig. 5. The conditions in (20) on the quotient structures.

New_HHK((S, R1, R2), K,U)
P =K;
for each a € S do
sim(a) := {e| (a,e) € K};
rem(a) := S\ prei(sim(a));
while {a | rem(a) # 0} # 0 do
let a € {a|rem(a) # 0}
for each b € prez(a),c € rem(a), c € sim(b) do
sim(b) := sim(b) \ {c};
Pi=P\{(b)}
if U then for each c¢1 € prei(c) do
if posti(c1) N sim(b) = (@ then rem(b) := rem(b) U {c1};
rem(a) := 0;
return P

Fig. 6. The New_HHK Function.

Lemma 2.
New HHK(D, K, 1) =71p(K) and New HHK(D, K, T) = Fiz(rp)(K).

Recalling that on the ground of Corollary Bl P;; can be computed from P; as
fix-point, the correctness of the procedures Update and Refine is based on:
Theorem 5. <Ei+1, Pi+1> = O'(<EZ', Pz))
As a consequence of Theorem [and of Corollary [Tl since the Stable Simulation
Algorithm terminates whenever X;,1 = X;, we can conclude that it computes
the solution (M, <) of the GCPP over G and (X, P) performing at most |M|
iterations of the while-loop.

The complexity analysis is based on the following result:
Theorem 6. Let G = (N, E) and (X, P) be a partition-pair with P transitive.
Stable Simulation Algorithm computes the solution (M,=<) of the GCPP
over them in time O(|M|?|E|) and in space O(|M|? + |N|log(|M])).

Simulation as Coarsest Partition Problem 427
6 Related Works

Recently the simulation relation has been algorithmically revisited in [4] and
in [7]. Both works exploit a partition refinement argument in order to im-
prove on the simulation algorithms in [13] and [3]. Given a labeled graph
G = (N,E,Y), the latter ([I3[3]) can be used to obtain the simulation quo-
tient over N in O(|N||E|) time and O(|N|?) space. The main aim of the au-
thors of [4] is that of keeping as low as possible the space requirements of
their simulation algorithm. Indeed, despite its rather heavy time complexity
(O(IM*(|E| + |MJ?) + [M]*|N|(|N| + |M]|?))), the routine in [4] has a space
complexity depending only on the size of the simulation quotient, |M], given in
output: O(|M|?+|N|log(|M])). As well as in [4], the space parameter is carefully
thought of in the algorithm we have presented in this work: our major aim is
that of designing a highly space-efficient procedure for deciding simulation equiv-
alence that is not too costly in time. Our Stable Simulation Algorithm, as
the one in [4], gives in output the simulation quotient together with the simula-
tion partial order over its classes. Moreover it shares with [4] the same structure:
each iteration consists of a step of partition’s refinement followed by an update
of a relation over such a partition. Indeed, the two algorithms have exactly the
same space requirements but the procedure presented here has a better time
complexity. While the Partitioning Algorithm in [4] need O(|M|?) iterations
to get to a fix-point, our Stable Simulation Algorithms ends after O(|M])
iterations only (cf. Theorem [B]). Intuitively, on the ground of the characterization
of the simulation given in Theorem [our algorithm updates “deeper” the rela-
tion over the partition so that in each refinement step at least one class must be
split. Moreover, both the refinement and the update steps in the Stable Simu-
lation Algorithm are less time-demanding than the corresponding functions in
[]. So, as stated in Theorem[6, the time complexity of our routine is O(| M |?|E|).
Above we show an example in which our algorithm requires few iterations than
the one in [].

Ezample 1. Parts a), b) and ¢) of Figure [0 reflect, respectively, the partition-
pairs on the depicted labeled graph after: a) the initialization phase of the Sta-
ble Simulation Algorithm; b) and c¢) the first and the second call to the
subroutine NewHHK during the first call to the procedure Update. The Sta-
ble Simulation Algorithm needs only O(1) iterations to get to the simulation
quotient of the graph in[7 whereas the procedure in [4] needs O(N) iterations.
More in detail using [4], there are O(N) iterations in which the partition never
changes while the relation over its classes is successively refined.

The simulation algorithm in [7] also takes advantage of a partition refinement
argument. However, while the partitions involved in [4] and in the Stable Sim-
ulation Algorithm are always coarser than the simulation quotient, the ones
refined in [7] are always coarser than the bisimulation quotient. Given in input
two labeled transition transition systems 7} and 75, the algorithm in [7] proceeds
simultaneously minimizing via bisimulation the two graphs and determining the
set of classes in T3 able to simulate each class in T7. The partition over a labeled

428 R. Gentilini, C. Piazza, and A. Policriti

N VOV VNV VOV VY

Fig. 7. Example of computation.

graph induced by the bisimulation equivalence is finer than the partition induced
by the simulation: hence, a relation over its classes may have higher space re-
quirements. However, the former equivalence can be computed faster than the
latter because a “process-the-smallest-half” policy can be used (see [17/14]). Thus
the algorithm proposed by Cleaveland and Tan in [[7] achieves a time complexity
which is today’s state-of-the-art: O(|B1||Bz|+|Ex|log(|N1|)+|B1||E2|+|e1||Bal),
where €; and B; represent the relation and the states’space of the transition sys-
tem T; reduced via bisimulation. Nevertheless, since at least on 77 the entire
bisimulation quotient must be computed, the deeper is the minimizing power of
the simulation equivalence with respect to bisimulation, the less space-efficient
the algorithm in [7] becomes (with respect to 4] as well as to our routine). For
the sake of the argument, a family of examples on which [7] has higher space
requirements than [4] as well than our procedure has the following features:

— T is not reducible via bisimulation whereas the simulation equivalence has
a deep minimizing power on it;
— Ty follows T in the simulation preorder over transition systems.

Figure Rl depicts two transition systems with the above features: whatever are
the initial states of the two systems, T simulates T7. All the states belonging to
the cycle in T3 are simulation-equivalent and pairwise not bisimilar. In 75 there
are neither bisimilar nor similar states; hence, [7] require O(|N|?) space whereas
the space requirement of the Stable Simulation Algorithm is bounded by
O(IN10g(|N])).

We conclude by observing that, in a minimization framework, choosing the
simulation equivalence rather than the bisimulation one is paying only if the
simulation’s power of reduction strongly overcomes bisimulation’s one (because
bisimulation is less time demanding than simulation). In other words simulation
becomes worthwhile when |M| << |B|, i.e. when the routine in 7] and the one
proposed here have comparable time complexities.

Simulation as Coarsest Partition Problem 429

a a a a
T, a e LAY T, a i a
a a a a
a a a a
e e
a®- o2 a®.__ o 22
o ol
be ae

Fig. 8. Space Requirements.

7 Conclusions and Further Work

We think that the circle of ideas presented here can be useful in the study of fast
simulation algorithm developed to operate in situations in which strong space
constraint are present. Moreover, the use of the V3-structure and the definition
of coarsest partition problems on them, seem to be a methodology with some
potential in all those situations in which a fix-point in the lattice of equivalence
relations is to be computed.

We plain to work on a symbolic implementation of our algorithm which is
naturally suggested by the fact that our algorithm always works on sets of nodes
(the classes of the partitions).

An attempt to combine negative and positive strategies to solve the coarsest
partition problem presented here (as, in the case of bisimulation, has been done
in [10]) is under study.

References

1. J. van Benthem. Modal Correspondence Theory. PhD thesis, Universiteit van
Amsterdam, Instituut voor Logica en Grondslagenonderzoek van Exacte Weten-
schappen, 1976.

2. B. Bloom. Ready Simulation, Bisimulation, and the Semantics of CCS-like Lan-
guages. PhD thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 1989.

3. Bard Bloom and Robert Paige. Transformational design and implementation of
a new efficient solution to the ready simulation problem. Science of Computer
Programming, 24(3):189-220, 1995.

4. D. Bustan and O. Grumberg. Simulation based minimization. In D.A. McAllester,
editor, Proc. 17th Int’l Conference on Automated Deduction (CADE’00), volume
1831 of LNCS, pages 255—270. Springer, 2000.

5. R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A Seman-
tics Based Tool for the Verification of Concurrent Systems. ACM Transactions on
Programming Languages and Systems, 15(1):36-72, 1993.

430

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

R. Gentilini, C. Piazza, and A. Policriti

R. Cleaveland and B. Steffen. A linear-time model-checking algorithm for the
alternation-free modal mu-calculus. In K.G. Larsen and A. Skou, editors, Proceed-
ings of Computer Aided Verification (CAV’91), volume 575 of LNCS, pages 48-58.
Springer, 1992.

R. Cleaveland and L. Tan. Simulation revised. In T. Margaria and W. Yi, edi-
tors, Proc. 7th Int’l Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’01), volume 2031 of LNCS, pages 480—495. Springer,
2001.

D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.
ACM Transactions on Programming Languages and Systems, 19(2):253-291, 1997.
N. Dershowitz and J.-P. Jouannaud. Rewrite Systems, volume B, chapter 6, pages
244-320. Elsevier/MIT press, 1990.

A. Dovier, C. Piazza, and A. Policriti. A fast bisimulation algorithm. In G. Berry,
H. Comon, and A. Finkel, editors, Proceedings of Computer Aided Verification
(CAV’01), volume 2102 of LNCS, pages 79-90. Springer, 2001.

M. Forti and F. Honsell. Set theory with free construction principles. Annali
Scuola Normale Superiore di Pisa, Cl. Sc., IV(10):493-522, 1983.

R. Gentilini, C. Piazza, and A. Policriti. Simulation as coarsest partition problem.
RR 04-01, Dep. of Computer Science, University of Udine, Italy, 2001. Available
at http://www.dimi.uniud.it/ " piazza/simul.ps.gz.

M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations on
finite and infinite graphs. In 36th Annual Symposium on Foundations of Computer
Science (FOCS’95), pages 453-462. IEEE Computer Society Press, 1995.

J.E. Hopcroft. An nlogn algorithm for minimizing states in a finite automaton. In
Theory of Machines and Computations, Ed. by Zvi Kohavi and Azaria Paz, pages
189-196. Academic Press, 1971.

R. Milner. A calculus of communicating systems. In G. Goos and J. Hartmanis,
editors, Lecture Notes on Computer Science, volume 92. Springer, 1980.

O. Grumberg and D.E. Long. Model checking and modular verification. ACM
Transactions on Programming Languages and systems, 16(3):843-871, 1994.

R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM Journal
on Computing, 16(6):973-989, 1987.

R. Paige, R. E. Tarjan, and R. Bonic. A linear time solution to the single function
coarsest partition problem. Theoretical Computer Science, 40(1):67-84, 1985.

	Simulation as Coarsest Partition Problem
	Introduction
	Preliminaries
	Simulation as Coarsest Partition Problem
	Computing a Solution to the GCPP
	The Algorithm
	Related Works
	Conclusions and Further Work
	References

