
Temporal Debugging for Concurrent Systems

Elsa Gunter1 and Doron Peled2

1 Department of Computer Science
New Jersey Institute of Technology

Newark, NJ 07102, USA
2 Dept. of Elect. and Computer Eng.
The University of Texas at Austin

Austin, TX 78712, USA

Abstract. Temporal logic is often used as the specification formalism
for the automatic verification of finite state systems. The automatic tem-
poral verification of a system is a procedure that returns a yes/no answer,
and in the latter case also provides a counterexample. In this paper we
suggest a new application for temporal logic, as a way of assisting the
debugging of a concurrent or a sequential program. We employ temporal
logic over finite sequences as a constraint formalism that is used to con-
trol the way we step through the states of the debugged system. Using
such temporal specification and various search strategies, we are able to
traverse the executions of the system and obtain important intuitive in-
formation about its behaviors. We describe an implementation of these
ideas as a debugging tool.

1 Introduction

Temporal logic is a specification formalism that is often used to express prop-
erties of software and hardware systems. Model checking techniques allow us to
check a finite state description of a system against its temporal specification,
and provide a counter example in case the property does not hold.

In this paper we suggest to extend the use of a temporal specification, and
use temporal logic for interactively controlling the debugging of systems. We
allow specifying temporal properties of finite sequences. A debugger is enriched
with the ability to progress from one step to another via a finite sequence of
states that satisfy a temporal property.

The usual mode of debugging involves stepping through the states of a system
(program) by executing one or several transitions (with different granularities,
e.g., a transition can involve the the execution of a procedure). Debugging con-
current systems is harder, since there are several cooperating processes that
need to be monitored. Stepping through the different transitions can be applied
in many different ways. Instead, we allow applying a temporal property that
describes a finite sequence of concurrent events that need to be executed from
the current state, leaping into the next state.

We interpret linear temporal logic (LTL) on finite sequences. The automatic
translation from LTL to finite state automata in [4] is adapted to include the
finite case. We describe various search algorithms that can be used for generating
appropriate paths and states during a debugging session.

J.-P. Katoen and P. Stevens (Eds.): TACAS 2002, LNCS 2280, pp. 431–444, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

432 E. Gunter and D. Peled

2 Defining LTL on Finite Sequences

One of the most popular specification formalisms for concurrent and reactive
systems is Linear Temporal Logic (LTL) [7]. Its syntax is as follows:

ϕ ::= (ϕ) | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | © ϕ | ©ϕ |✷ϕ |✸ϕ | ϕ U ϕ | ϕ V ϕ | p

where p ∈ P, with P a set of propositional letters. We denote a propositional
sequence over 2P by σ, its ith state (where the first state is numbered 0) by
σ(i), and its suffix starting from the ith state by σ(i). Let |σ| be the length of
the sequence Σ, which is a natural number. The semantic interpretation of LTL
is as follows:

• σ |=©ϕ iff |σ| > 1 and σ(1) |= ϕ.
• σ |= ϕ U ψ iff σ(j) |= ψ for some 0 ≤ j < |σ| so that for each 0 ≤ i < j,
σ(i) |= ϕ.

• σ |= ¬ϕ iff it is not the case that σ |= ϕ.
• σ |= ϕ ∨ ψ iff either σ |= ϕ or σ |= ψ.
• σ |= p iff |σ| > 0 and σ(0) |= p.

The rest of the operators can be defined using the above operators. In particular,
©ϕ = ¬©¬ϕ, ϕ∧ψ = ¬((¬ϕ)∨ (¬ψ)), ϕV ψ = ¬((¬ϕ)U (¬ψ)), true = p∨¬p,
false = p ∧ ¬p, ✷ϕ = false V ϕ, and ✸ϕ = true U ϕ. The operator © is a ‘weak’
version of the © operator. Whereas ©ϕ means that ϕ holds in the suffix of
the sequence starting from the next state, ©ϕ means that if the current state
is not the last one in the sequence, then the suffix starting from the next state
satisfies ϕ.

We distinguish between the operator ©, which we call strong nexttime, and
©, which we call weak nexttime. Notice that

(©ϕ) ∧ (©ψ) =©(ϕ ∧ ψ), (1)

since ©ϕ already requires that there will be a next state. Another interesting
observation is that the formula ©false holds in a state that is in deadlock or
termination.

The operators U and V can be characterized using a recursive equation,
which is useful for understanding the transformation algorithm, presented in the
next section. Accordingly, ϕ U ψ = ψ ∨ (ϕ ∧ ©ϕ U ψ) and ϕ V ψ = ψ ∧ (ϕ ∨
©(ϕ V ψ)).

3 Finite LTL Translation Algorithm

We modify the algorithm presented in [4] for translating an LTL formula ϕ into
an automaton B = 〈S, I, δ, F,D,L〉, where S is a set of states, I ⊆ S is a set of
initial states, δ ⊆ S×S is the transition relation, F ⊆ S are the accepting states,
D is a set of state labels, and L : S → D is the labeling function. Note that B is an
automaton on finite words, unlike a Büchi automaton, which is usually resulted

Temporal Debugging for Concurrent Systems 433

from translating LTL formulae over infinite sequences, and which recognizes
infinite sequences.

As a preparatory step, we bring the formula ϕ into negation normal form as
follows. First, we push negation inwards, so that only propositional variables can
appear negated. To do that, we use LTL equivalences, such as ¬✸ψ = ✷¬ψ. One
problem is that pushing negations into until (U) subformulas can explode the size
of the formula. To avoid that, we use the operator release (V), which is the dual of
the operator until. We also remove the eventuality (✸) and always (✷) operators
using the until and release operators and the equivalences ✸ψ = true U ψ and
✷ψ = false V ψ as mentioned before.

The algorithm uses the following fields for every generated node of B:

id A unique identifier of the node.
incoming The set of edges that are pointed into the node.
new A set of subformulas of the translated formula, which need to hold from

the current node and have not yet been processed.
old A set of subformulas as above, which have been processed.
next A set of subformulas of the translated formula, which have to hold for

every successor of the current node.
strong A flag that signals whether the current state must not be the last one

in the sequence.

The algorithm starts with a single node, having one incoming edge from a
dummy node called init. Its field new includes the translated formula ϕ in the
above normal form, and the fields old and next are empty. A list completed-nodes
is initialized as empty. The algorithm proceeds recursively: for a node x not yet
in completed-nodes, it moves a subformula η from new to old. The algorithm
then splits the node x into left and right copies while adding subformulas to the
fields new and next according to the following table. The fields old and incoming
retain their previous values in both copies, while the field strong can be updated
if needed. The algorithm continues recursively with the split copies.

The following split table shows the new values added to the fields new and
next in the left or right copies. The column ‘set strong’ indicates when the current
state cannot be the last one in the sequence, namely the formulas in the next
field are upgraded from weak nexttime to strong nexttime. (There is no need for
‘set strong’ for the right copy, only the left one.) It is sufficient to use the strong
field rather than keeping two separate fields, for the weak and for the strong
nexttime requirements, because of Equation (1).

Formula left new left next set strong left right new right next
µ U η {µ} {µ U η} √ {η} ∅
µ V η {η} {µ V η} {µ, η} ∅
µ ∨ η {µ} ∅ {η} ∅
µ ∧ η {µ, η} ∅ – –
©µ ∅ µ – –
©µ ∅ µ

√
– –

p, ¬p ∅ ∅ – –

434 E. Gunter and D. Peled

When there are no more subformulas in the field new of the current node x,
x is compared against the nodes in the list completed-nodes. If there is a node
y that agrees with x on the fields old and next, one adds to the field incoming
of y the incoming edges of x (hence, one may arrive to the node y from new
directions). Otherwise, one adds x to that list and a new node is initiated as
follows:

(a) id contains a new value,
(b) the incoming field contains an edge from x,
(c) the new field contains the set of the subformulas in the next field of x,
(d) the fields old and next are empty, and
(e) the field strong is initially set to false.

After the above algorithm terminates, we can construct the component of
the automaton B for the translated automaton ϕ as follows. The states S are
the nodes in completed-nodes. Let P ⊆ P be the set of propositional letters that
appear in the formula ϕ. The set of labels D are the conjunctions of proposi-
tions and negated propositions from P (thus, there are 3P labels in D, since each
proposition may appear, not appear, or appear negated). In the constructed au-
tomaton, each node x ∈ S is labeled by the propositions and negated propositions
in its field old. The initial nodes I are those which have an incoming edge from
the dummy node init. The transition relation δ includes pairs of nodes (s, s′)
if s belongs to the field incoming of s′. The accepting (final) states satisfy the
following:

• For each subformula of ϕ of the form µ U η, either the old field contains the
subformula η, or does not contain µ U η.
• the strong bit is set to false.

We may check that there is at least one path from a state in I to a state in
F . Otherwise, the automaton does not accept any sequence (and no sequence is
accepted by the formula ϕ).

We denote the system automaton by A = 〈X, J,∆,E,G〉, where X are the
states, J ⊆ X are the initial states, ∆ ⊆ X×X is the transition relation, E = 2P
are the set of labels, and G : X → E is the labeling function. Each label l ∈ E
is a subset of the set of propositions P. We can view l as a conjunction, where a
proposition p ∈ P appears nonnegated if p ∈ l, and negated otherwise. Note that
the labels D of B also allow a proposition not to appear. This allows us to com-
bine several assignments to the propositions into one property automaton state.
In the system automaton, this is not necessary, and each system state should
induce a truth assignment to all the propositions. For the system automaton
there are no accepting states (or we can view it as if all the states in X are
accepting).

The set of propositional letters P available is determined by the variables
in the checked program and the set of labeled on nodes in the (automatically
generated) flow graphs of its processes. For a process Pi in the program, and
a node l in the flow graph for that process, we can have a propositional letter
Pi at l. In addition, we can have atoms that correspond to comparisons, e.g., for

Temporal Debugging for Concurrent Systems 435

a variable v occurring in the program, and a possible constant value x, we can
have propositions representing the comparisons v = x, v < x, v > x, v ≤ x, and
v ≥ x. In an automaton A that models the program, each propositional letter
obtains the correct truth value in each state. For example, if p ∈ P corresponds
to v ≤ 3, then p will belong to (or will hold in) exactly all the states where v is
less than or equals 3.

The automata product B ×A has the following components:

• The states R are the elements of S×X where the components have compat-
ible labeling, namely, {(s, x)|G(x) → L(s)}. Note that G(x) → L(s) means
that the assignment G(x) associated with the system state x satisfies the
propositional formula L(s) labeling the property automaton node s.
• The initial states are (I × J) ∩R.
• The transition relation includes the pairs ((s, x), (s′, x′)) ⊆ R × R, where

(s, s′) ∈ δ and (x, x′) ∈ ∆.
• The accepting states of B × A are (F × X) ∩ R. That is, a pair in R is

accepting, when its B component is accepting.
• The labeling of any pair (s, x) ∈ R is that of G(x).

4 The Temporal Debugger

We exploit temporal specification to control stepping through different states
of a concurrent system. The basic operation of a debugger is to step between
different states of a system in an effective way. While doing so, one can obtain
further information about the behavior of the system.

A temporal step consists of a finite sequence of states that satisfies some
temporal property ϕ. Given the current global state of the system s, we are
searching for a sequence ξ = s0s1 . . . sn such that

• s0 = s.
• n is smaller than some limit given (perhaps as a default).
• ξ |= ϕ.

The temporal stack consists of the different sequences, used in the simulation
or debugging obtained so far. It contains several temporal steps, each correspond-
ing to some temporal formula that was satisfied. The end state of a temporal
step is also the start state of the next step. We search for a temporal step that
satisfies a current temporal formula. When such a step is found, it is added to
the temporal stack. We can then have several options of how to continue the
search, as detailed below.

Searching a path can be done using search on pairs: a state from the joint
state space of the system, and a state of the property automaton. Furthermore,
each new temporal formula requires a new copy of the search space. Recursion is
handled within that space. Thus, when starting the search for formula ϕ1, we use
one copy of the state space. When seeking a new temporal step for ϕ2, we start
a fresh copy. If we backtrack on the second step, we backtrack the second search,
looking for a new finite sequence that satisfies ϕ2. If we remove the last step,
going back to the formula ϕ1, we remove the second state space information, and

436 E. Gunter and D. Peled

backtrack the first state space search. For this reason, we need to keep enough
information that will enable us to resume a search after other temporal steps
where exercised and backtracked.

The temporal stack contains one path, consisting of the concatenation of the
various temporal steps. The last system state component of one temporal step
is the first system state component of the next step. For the first step, the first
system state is an initial one from the set of initial states J (we may usually
assume that there is a unique initial system state). When we start the search
for the kth temporal step, we translate the kth temporal property ϕk into a
property automaton Bk. We start the search for the kth temporal step with
an initial state of Bk and the last system state on the temporal stack (the last
system state of the previous state). We allow the user to observe the sequence
of system states that appear on the temporal stack.

The debugging session consists of searching the system through the temporal
stack. At each point we may do one of the following (see Figure 1):

• Introduce a new temporal formula and attempt to search for a temporal step
from the current state. The new temporal step is added to the search stack.
A new automaton for the temporal formula is created, and the product of
that automaton with the system automaton with new initial state of the
current state is formed. The temporal step is found by finding a path to an
accepting state in this product automaton.
• Remove a step. In this case, we are back one step in the stack. We forget

about the most recent temporal formula given, and can replace it by a new
one in order to continue the search. We also discard the temporal automaton
and product automaton generated for that temporal step.
• Backtrack the most recent step. The search process of the latest step resumes

from the place it was stopped using the automaton originally created for this
temporal step. This is an attempt to find another way of satisfying the last
given formula. We either find a new temporal step that replaces the previous
one, or report that no such step exists (in this case, we are back one step in
the stack and discard the automata created for this step).
• We allow also simple debugger steps, e.g., executing one statement in one

process. Such steps can be described as trivial temporal steps (using the
nexttime temporal operator).

5 Stepping Modes

A debugger or a simulator allows stepping from one state to another by executing
a transition enabled from the current state. Given that there are several enabled
transitions, some choice is left to the user. We extend this capability and allow
performing ‘temporal steps’, which are finite sequences of states that satisfy a
given temporal formula ϕ. We are thus confronted with several choices:

1. The size of the step. This can be either a maximal length sequence of states
(starting from the current one) that satisfies ϕ, or a minimal length sequence
of states. We may also want to limit the possible number of states in a step,
using some user-defined constant value.

Temporal Debugging for Concurrent Systems 437


 







 












ξ2

ξ2
′

ξ2

ξ1 ξ1 ξ1 ξ1

Stack Remove Backtrack Add

ξ3

Fig. 1. Temporal stack operations

2. The transfer between different temporal steps. That is, the order in which
the system finds the temporal steps. This is greatly affected by the search
algorithm that is used.

The order between paths is the prefix order ‘�’. Thus, ρ � σ if there exists
ρ′ such that σ = ρ.ρ′. A path generated during the search contains pairs of the
form (s, x), where s is a property automaton state and x is a system state. A
situation can exist, where there is an infinite sequence of increasingly bigger steps
σ1 � σ2 � . . ., all of them satisfying the current step formula ϕ. For example,
consider the property ✷p and a cyclic path in which all the system states satisfy
p. It is possible to identify during a search when such a cycle exists and report
it to the user.

Consider now a specification of type ✷p. A temporal step includes a sequence
in which every state satisfies p. We may prefer that such a sequence will be
maximal, since a longer sequence gives us more states that satisfy p. Hence more
information on how p is preserved (recall that for our finite interpretation of LTL,
✷p does not mean an infinite sequence in which every state satisfies p). Similarly,
we may prefer that a search based on ✸p will result in a minimal sequence that
ends with a state that satisfies p. We allow the user to select between searching
for a minimal or a maximal search.

Assume for the moment that the search we use is Depth First Search. Search-
ing for a minimal temporal step starting from a pair (s, x), where s is a prop-
erty automaton state, and x is a system state, is performed by by applying

438 E. Gunter and D. Peled

DFS min(s, x). We assume that accept(s) holds exactly when s ∈ F , i.e., is an
accepting state of B.

DFS min(s, x):
if accept(s) then

report sequence of system elements from stack;
wait until Backtrack is requested;

else for each (s′, x′) such that (s, s′) ∈ δ, (x, x′) ∈ ∆, G(x)→ L(s)
and (s′, x′) is new to the search, then DFS min(s′, x′);

end DFS min.

Note that if backtracking is requested by the user, i.e., an alternative tempo-
ral step, we do not attempt to continue the search from the current point. If we
did, we might have found a longer path satisfying the current temporal formula,
which violates the attempt to find only minimal steps.

Similarly, when searching for a maximal step, we use DFS max (s, x), as
follows. In this case, saved size is a global variable, which maintain the size of
the recursion stack from one call to the other. It is set to the current stack size
when an accepting state is reached. When backtracking to an accepting state,
we check whether the current stack size is the same as the one in saved size. If
this is the case, we did not find a longer temporal step while searching forward,
and thus the current contents of the stack is a maximal step.

DFS max (s, x):
if accept(s) then

set saved size to current size of recursion stack;
for each (s′, x′) such that (s, s′) ∈ δ, (x, x′) ∈ ∆, G(x)→ L(s)

and (s′, x′) is new to the search, then DFS max (s′, x′);
if accept(s) and saved size equals current stack size then

report sequence of system elements from stack;
wait until Backtrack is requested;

end DFS max ;

Notice that we may reach a state in two directions: forward, when entering
it, at the beginning of the DFS min call, and backward, when backtracking from
successor states. When we enter an accepting state forward, we set saved size
to the current size of the search stack. Upon backtracking, we check whether
this variable still holds the value of the current size. If this is not the case, we
must have found a longer sequence, which contains the current search stack, and
satisfies the checked property. Hence the current contents of the search stack
is not maximal. Note that when entering an accepting state forward, we do
not check the value of saved size, ignoring possible longer sequences that were
generated in different search paths.

Search and Backtracking Options

There are further parameters for the choice of temporal steps, besides the mini-
mality and maximality of the step.

Temporal Debugging for Concurrent Systems 439

• Allowing or disallowing a different step that ends with the same system state
as before. In the former case, we may request an alternative step and reach
exactly the same system state, but passes through a different path on the
way. The latter case is easily obtained by adding a special flag to each system
state that was found during the search.
• Allowing or disallowing the same sequence of system states (recall that we

denoted the system as an automaton A) to repeat. Such a repetition can
happen, for example, in the following situation. The specification is of the
form (✸p)∨ (✸q). Consider a sequence of system states in which (¬p)∧ (¬q)
holds until some state in which both p and q start to hold, simultaneously.
Such a sequence can be paired up with different property automaton states
to generate two different paths. Eliminating the repetition of such a sequence
of system states can be obtained by keeping a tree T of nodes that participate
in temporal steps reported so far (for a single given temporal step formula).
Each node in the tree consists of a system state and a repetition counter
(since the same state x ∈ X can participate in one path as many times
as |S|, the number of states of the property automaton). Each time a new
temporal step is reported, the tree is updated. A new step is reported only
if during the search, we deviate at least once from the paths already existing
in T . Upon finding a new path, the tree T is updated.
• Allowing all possible paths with sequence of system states that satisfy the

temporal step formula ϕ or only a subset of them. Typical searches like depth
first or breadth first search do not pass through all possible paths that satisfy
a given formula ϕ. If a state (in our case, a pair) participated before in the
search, we do not continue the search in that direction. For this reason, the
number of paths that can be obtained in this way is limited, and, on the other
hand, the search is efficient. There are topological cases where requiring all
the paths results in exponentially more paths than obtained with the above
mentioned search strategies, see e.g., the case in Figure 2.

The case where similar sequences are generated as a result of repeated backtrack-
ing may seem at first to be less useful for debugging. Intuitively, we may give up
exhaustiveness for the possibility of stepping through quite different sequences.
However, there is a very practical case in which we may have less choice in select-
ing the kind of search and the effect of backtracking. Specifically, in many cases
keeping several states in memory at the same time and comparing different states
may be impractical. In this case, we may want to perform memoryless search,
as developed for the Verisoft system [5]. In this case, we may perform breadth
first search with increasingly higher depth (up to some user defined limit). We
keep in the search stack only information that allows us to generate different
sequences according to some order, and to regenerate a state. Such information
may include the identification of the transitions that were executed from the
initial states.

6 An Example

We exemplify the use of our system. Consider Dekker’s solution to Dijkstra’s
mutual exclusion algorithm. The code for the two processes is shown in Figure 3

440 E. Gunter and D. Peled

✚✙
✛✘✚✙
✛✘

✚✙
✛✘✚✙
✛✘

✚✙
✛✘
✚✙
✛✘

✚✙
✛✘

✟✟
✟✯

❍❍❍❥

❍❍❍❥

✟✟
✟✯

✟✟
✟✯

❍❍❍❥

❍❍❍❥

✟✟
✟✯

✯

❥

Fig. 2. Exponential number of sequences

and the corresponding flow graphs are shown in Figure 4 (the figures were gener-
ated automatically by our system, with the assistance of the DOT program [3]).
We show some experiments with the temporal debugger, which allow gaining
intuition about the behavior of the algorithm. Note that the critical sections of
the processes P0 and P1 are labeled in Figure 4 by m8 and n8, respectively.

Process P0: Process P1:

begin
c0:=1;
while true do
begin
c0:=0;
while c1=0 do
begin

if turn=1 then
begin
c0:=1;
wait turn=1;
c0:=0

end
end;
critical:=0;
c0:=1;
turn:=1

end
end.

begin
c1:=1;
while true do
begin
c1:=0;
while c0=0 do
begin

if turn=0 then
begin
c1:=1;
wait turn=0;
c1:=0

end
end;
critical:=1;
c1:=1;
turn:=0

end
end.

Fig. 3. Code for Dekker’s Algorithm

At first look at the code, we may be able to identify that the variable turn is
assigned according to the process that has priority to get to the critical section.
The variable ci for i = 0, 1 is set to 1 when a process does not attempt to get
to the critical section (or does not insist on doing that) and 0 otherwise. The
system provides us with automatic translation of the code to a flow graph, and

Temporal Debugging for Concurrent Systems 441

a labeling of the nodes. We use the notation Pi at l to denote the predicate that
asserts that process Pi is at label l.

m0: START

m1: c0 := 1

m11: true ?

m2: c0 := 0

yes

m12: END

no

m7: c1 = 0 ?

m6: turn = 1 ?

yes

m8: critical := 0

nono

m3: c0 := 1

yes

m9: c0 := 1

m4: turn = 1!

m5: c0 := 0

m10: turn := 1

n0: START

n1: c1 := 1

n11: true ?

n2: c1 := 0

yes

n12: END

no

n7: c0 = 0 ?

n6: turn = 0 ?

yes

n8: critical := 1

nono

n3: c1 := 1

yes

n9: c1 := 1

n4: turn = 0!

n5: c1 := 0

n10: turn := 0

Fig. 4. Dekker’s mutual exclusion solution

We can start the debugging with an attempt to understand what happens
when process P0 attempts to enter and P1 does not. We use the formula ϕ1 =
✸(P0 at m2∧P1 at n1) and search for a shortest temporal step satisfying this.
(Our interpretation of at, i.e., that we are at a node, is that the node was the
last to be executed in that process.) We check that at this point, c0 = 0∧c1 = 1.
We can continue from here by using the formula ϕ2 = ✷P1 at n1, i.e., asserting
that process P1 does not move. We can use a search that will step through all
the states that end a finite sequence satisfying this formula. Alternatively, we
may remove the last temporal step and choose ϕ2 = (✷P1 at n1)∧(✸P0 at m8)

442 E. Gunter and D. Peled

to check whether we can get to the critical section without progressing the P1
process.

Consider the case where both processes want to get into the critical section.
Initially, we have turn = 0 (the global initialization is being performed using a
separate process). We clean the temporal stack, and use ϕ1 = ✸(P0 at m2 ∧
P1 at n2). Again, we can check if we can get to the critical section without
process P1 moving, using the formula ϕ2 = (✷P1 at n2) ∧ (✸P0 at m8). This
does not succeed in providing any sequence. We can remove the last temporal
step and use the formula ϕ2 = ✷P1 at n2. As a result, we obtain only the
states m6 and m7. We now remove the last temporal step. We would like to
check whether we can get to the critical section of P0. We can check that by
using ϕ2 = ✸P0 at m8. Observing the paths obtained, we may gain information
about the way we can gain access to the critical section, namely by process P1
progressing to n3, relinquishing its attempt to gain access, by setting c1 = 1.
Then P0 may exit the loop on m6 and m7, and enter the critical section at
m8. We may also want to break this path into several smaller temporal steps,
in order to understand this access better.

We can check other possibilities. For example, after getting to the first state in
the execution where P0 at m2 and P1 at n2, while turn = 0, we can check which
process can get to the critical section first. Checking ¬P0 at m8 U P1 at n8 will
not result in any path, while checking ¬P1 at n8 U P0 at m8 will show a path
in which P0 gets first to its critical section. Similarly, we can check whether one
process can get to its critical section again before the other process was able to
do so from various states in the execution.

7 Implementation

The implementation of the program for our debugger is written in two top-level
pieces: a graphical user interface written in Tcl/Tk, and a back end computing
engine written in SML. The language SML is a higher-order applicative language
with restricted imperative features.

There are several major components to the back end computing engine. We
must be able to translate each of the given LTL formula and the parallel object
programs into finite state automata, and then compute their restricted product.
Having created the restricted product automaton, we must be able to perform
a variety of different searches on it.

Because we are likely to need to construct a number of finite state automata
in the course of a single debugging session, and each of these automata is likely to
be quite large, we take advantage of the higher-order applicative nature of SML
to build a generic lazy implementation of these automata. The implementation
is parameterized by a type of state information, an initial state, a function for
determining when two states should be treated as the same, and a function which,
for a given state, computes a list of the states pointed to from the current state.

Initially, to create the desired automata, we create an initial node containing
the initial state information and a continuation function which will create the
out edges to the next states including a continuation function for each of them
to create their out edges. Every time we visit a state node, if its out edges have

Temporal Debugging for Concurrent Systems 443

not yet been constructed, then we apply the continuation to create the adjacent
states and we update the node with the new information about its out edges.
These details are encapsulated in a abstraction hiding the details of the lazy
structure from subsequent search algorithms.

As a result of the lazy nature of the construction of the nodes in the various
automata we need, as we explore further and further along possible execution
paths in the concurrent system, increasingly more of the state space for the
system is constructed, potentially growing until the full automaton has been
realized. However, for each of the LTL formulae that we use in taking temporal
steps, we only construct as much of the automaton corresponding to the LTL
formula and as much of the restricted product automaton as is necessary to find
the path, making up the desired temporal step. In the worst case, we could be
forced to unfold the full automata, but in general there should be considerable
space saving achieved by not expanding all the nodes.

8 Discussion

Temporal logic in conjunction with a search is employed by model checking [1,2]
techniques. There, we want to check whether all executions (sometimes including
infinite ones) starting with a given system state (usually an initial state) satisfy a
given property. In our context, we are using temporal specification is a different
way, to control the stepping between system states. We are looking for finite
sequences of states that satisfy a given temporal specification, and move the
current control to the last state of the sequence.

In some sense, our approach is related to the choppy temporal logic of Pnueli
and Rosner [8]. There, one can use temporal specification over finite sequences
and combine them using the chop (C) operator. We are effectively stepping
through different finite sequences and progressing through the execution. Note
that in the temporal semantics of [8], ϕ1Cϕ2 holds for a path that concatenates
two shorter paths, where the first satisfies ϕ1 and the second satisfies ϕ2, respec-
tively. In our case, the last state of one temporal step is the first state of the
next step. Thus, to obtain the same effect as in the choppy logic, we may want
to use ϕ1 and ©ϕ2.

We could have bundled different temporal steps into an equivalent linear
temporal property about the entire system. Then we could perform LTL model
checking as in SPIN [6]. The property would not look the same in the standard
version of temporal logic, since there is no operator that sequentially combines
finite temporal assertions. In this case, we either obtain a confirmation for the
property, or a single (often lengthy) counterexample that starts from the initial
state. In our approach, we examine the behavior of the system in a stepwise
manner, and, through the developed tool, were capable of keeping track of the
current state, allowing us to zoom quickly into potential programming errors.
In fact, we suggest our approach as an extension to LTL based model checkers
such as SPIN.

444 E. Gunter and D. Peled

References

1. E. M. Clarke, E. A. Emerson, Design and synthesis of synchronization skeletons
using branching time temporal logic. Workshop on Logic of Programs, Yorktown
Heights, NY, Lecture Notes in Computer Science 131, Springer-Verlag, 1981, 52–
71.

2. E. A. Emerson, E. M. Clarke, Characterizing correctness properties of parallel
programs using fixpoints, International Colloquium on Automata, Languages and
Programming, Lecture Notes in Computer Science 85, Springer-Verlag, July 1980,
169–181.

3. E.R. Gansner, S.C. North, An open graph visualization system and its appli-
cations to software engineering, Software – Practice and Experience, 30(2000),
1203–1233.

4. R. Gerth, D. Peled, M.Y. Vardi, P. Wolper, Simple On-the-fly Automatic Ver-
ification of Linear Temporal Logic, PSTV95, Protocol Specification Testing and
Verification, 3–18, Chapman & Hall, 1995, Warsaw, Poland.

5. P. Godefroid, Model checking for programming languages using Verisoft, POPL
1997, 174–186.

6. G. Holzmann, Design and Validation of Computer Protocol, Prentice Hall.
7. A. Pnueli, The temporal logic of programs, 18th IEEE symposium on Foundation
of Computer Science, 1977, 46–57.

8. A. Pnueli, R. Rosner, A Choppy Logic, Logic in Computer Science 1986, Cam-
bridge, Massachusetts, 1986, 306–318.

	Temporal Debugging for Concurrent Systems
	Introduction
	Defining LTL on Finite Sequences
	Finite LTL Translation Algorithm
	The Temporal Debugger
	Stepping Modes
	An Example
	Implementation
	Discussion
	References

