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Abstract. In this paper, we exend timed automata with asynchronous
processes i.e. tasks triggered by events as a model for real-time systems.
The model is expressive enough to describe concurrency and synchroniza-
tion, and real time tasks which may be periodic, sporadic, preemptive
or non-preemptive. We generalize the classic notion of schedulability to
timed automata. An automaton is schedulable if there exists a schedul-
ing strategy such that all possible sequences of events accepted by the
automaton are schedulable in the sense that all associated tasks can be
computed within their deadlines. We believe that the model may serve as
a bridge between scheduling theory and automata-theoretic approaches
to system modeling and analysis. Our main result is that the schedula-
bility checking problem is decidable. To our knowledge, this is the first
general decidability result on dense-time models for real time schedul-
ing without assuming that preemptions occur only at integer time points.
The proof is based on a decidable class of updatable automata: timed au-
tomata with subtraction in which clocks may be updated by subtractions
within a bounded zone. The crucial observation is that the schedulabil-
ity checking problem can be encoded as a reachability problem for such
automata. Based on the proof, we have developed a symbolic technique
and a prototype tool for schedulability analysis.

1 Introduction

One of the most important issues in developing real time systems is schedu-
lability analysis prior to implementation. In the area of real time scheduling,
there are well-studied methods [8] e.g. rate monotonic scheduling, that are
widely applied in the analysis of periodic tasks with deterministic behaviours.
For non-periodic tasks with non-deterministic behaviours, there are no satisfac-
tory solutions. There are approximative methods with pessimistic analysis e.g.
using periodic tasks to model sporadic tasks when control structures of tasks
are not considered. The advantage with automata-theoretic approches e.g. us-
ing timed automata in modeling systems is that one may specify general timing
constraints on events and model other behavioural aspects such as concurrency
and synchronization. However, it is not clear how timed automata can be used
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for schedulability analysis because there is no support for specifying resource
requirements and hard time constraints on computations e.g. deadlines.

Following the work of [11], we study an extended version of timed automata
with asynchronous processes i.e. tasks triggered by events. A task is an exe-
cutable program characterized by its worst case execution time and deadline,
and possibly other parameters such as priorities etc for scheduling. The main
idea is to associate each location of an automaton with a task (or a set of tasks
in the general case). Intuitively a transition leading to a location in the au-
tomaton denotes an event triggering the task and the guard (clock constraints)
on the transition specifies the possible arrival times of the event. Semantically,
an automaton may perform two types of transitions. Delay transitions corre-
spond to the execution of running tasks (with highest priority) and idling for
the other waiting tasks. Discrete transitions correspond to the arrival of new task
instances. Whenever a task is triggered, it will be put in the scheduling queue
for execution (i.e. the ready queue in operating systems). We assume that the
tasks will be executed according to a given scheduling strategy e.g. FPS (fixed
priority scheduling) or EDF (earliest deadline first). Thus during the execution
of an automaton, there may be a number of processes (released tasks) running
in parallel (logically).

Fig. 1. Timed automaton with asynchronous processes.

For example, consider the automaton shown in Figure[dl It has three locations
lo, 11,12, and two tasks P and @ (triggered by a and b) with computing time
and relative deadline in brackets (2,10), and (4, 8) respectively. The automaton
models a system starting in /[y may move to [; by event a at any time, which
triggers the task P. In [y, as long as the constraints x > 10 and y < 40 hold
and event a occurs, a copy of task P will be created and put in the scheduling
queue. However, in [y, it can not create more than 5 instances of P because
the constraint y < 40 will be violated after 40 time units. In fact, every copy
will be computed before the next instance arrives and the scheduling queue may
contain at most one task instance and no task instance will miss its deadline in
l1. In 1, the system is also able to accept b, trigger Q and then switch to Is.
In I3, because there is no constraints labelled on the b-transition, it may accept
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any number of b’s, and create any number of @’s in 0 time. This is the so-called
zeno-behavior. However, after more than two copies of @), the queue will be
non-schedulable. This means that the system is non-schedulable. Thus, zeno-
behaviour will correspond to non-schedulability, which is a natural property of
the model.

We shall formalize the notion of schedulability in terms of reachable states.
A state of an extended automaton will be a triple (I, u, q) consisting of a location
l, a clock assignment u and a task queue . The task queue contains pairs of
remaining computing times and relative deadlines for all released tasks. Natu-
rally, a state (I,u,q) is schedulable if ¢ is schedulable in the sense there exists
a scheduling strategy with which all tasks in ¢ can be computed within their
deadlines. An automaton is schedulable if all reachable states of the automaton
are schedulable. Note that the notion of schedulability here is relative to the
scheduling strategy. A task queue which is not schedulable with one schedul-
ing strategy, may be schedulable with another strategy. In [I1], we have shown
that under the assumption that the tasks are non-preemptive, the schedulabil-
ity checking problem can be transformed to a reachability problem for ordinary
timed automata and thus it is decidable. The result essentially means that given
an automaton it is possible to check whether the automaton is schedulable with
any non-preemptive scheduling strategy. For preemptive scheduling strategies,
it has been suspected that the schedulability checking problem is undecidable
because in preemptive scheduling we must use stop-watches to accumulate com-
puting times for tasks. It appears that the computation model behind preemptive
scheduling is stop-watch automata for which it is known that the reachability
problem is undecidable. Surprisingly the above intuition is wrong. In this pa-
per, we establish that the schedulability checking problem for extended timed
automata is decidable for preemptive scheduling. In fact, our result applies to
not only preemptive scheduling, but any scheduling strategy. That is, for a given
extended timed automata, it is checkable if there exists a scheduling strategy
(preemtive or non-preemtive) with which the automaton is schedulable. The
crucial observation in the proof is that the schedulability checking problem can
be translated to a reachability problem for a decidable class of updatable au-
tomata, that is, timed automata with subtraction where clocks may be updated
with subtraction only in a bounded zone.

The rest of this paper is organized as follows: Section 2 presents the syn-
tax and semantics of timed automata extended with tasks. Section 3 describes
scheduling problems related to the model. Section 4 is devoted to the main proof
that the schedulability checking problem for preemptive scheduling is decidable.
Section 5 concludes the paper with summarized results and future work, as well
as a brief summary and comparison with related work.

2 Timed Automata with Tasks

Let P, ranged over by P, Q, R, denote a finite set of task types. A task type may
have different instances that are copies of the same program with different inputs.
We further assume that the worst case execution times and hard deadlines of
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tasks in P are known[]. Thus, each task P is characterized as a pair of natural
numbers denoted P(C, D) with C' < D, where C is the worst case execution
time of P and D is the relative deadline for P. We shall use C'(P) and D(P) to
denote the worst case execution time and relative deadline of P respectively.
As in timed automata, assume a finite alphabet Act ranged over by a,b etc
and a finite set of real-valued clocks C ranged over by x1,z2 etc. We use B(C)
ranged over by g to denote the set of conjunctive formulas of atomic constraints
in the form: ;~C or z; — xj~D where z;,z; € C are clocks, ~ € {<, <, >, >},
and C, D are natural numbers. The elements of B(C) are called clock constraints.

Definition 1. A timed automaton extended with tasks, over actions Act, clocks
C and tasks P is a tuple (N, ly, E, I, M) where

— (N, ly, E, I) is a timed automaton where
e N is a finite set of locations ranged over by [, m,n,
lo € N is the initial location, and
E C N x B(C) x Act x 2 x N is the set of edges.
I: N — B(C) is a function assigning each location with a clock constraint
(a location invariant).
— M : N — P is a partial function assigning locations with taskd.

Intuitively, a discrete transition in an automaton denotes an event triggering a
task annotated in the target location, and the guard on the transition specifies
all the possible arrival times of the event (or the annotated task). Whenever a
task is triggered, it will be put in the scheduling (or task) queue for execution
(corresponding to the ready queue in operating systems).

Clearly extended timed automata are at least as expressive as timed au-
tomata; in particular, if M is the empty mapping, we will have ordinary timed
automata. It is a rather general and expressive model. For example, it may
model time-triggered periodic tasks as a simple automaton as shown in Fig-
ure [2(a) where P is a periodic task with computing time 2, deadline 8 and
period 20. More generally it may model systems containing both periodic and
sporadic tasks as shown in Figure 2(b) which is a system consisting of 4 tasks
as annotation on locations, where P; and P, are periodic with periods 10 and
20 respectively (specified by the constraints: x=10 and x=20), and Q; and Q5
are sporadic or event driven by event a and b respectively.

In general, there may be a number of released tasks running logically in
parallel. For example, an instance of (o may be released before the preceding
instance of P is finished because there is no constraint on the arrival time of bs.
This means that the queue may contains at least P; and Q2. In fact, instances
of all four task types may appear in the queue at the same time.

! Tasks may have other parameters such as fixed priority for scheduling and other
resource requirements e.g. on memory consumption. For simplicity, in this paper, we
only consider computing time and deadline.

2 Note that M is a partial function meaning that some of the locations may have no
task. Note also that we may also associate a location with a set of tasks instead of
a single one. It will not introduce technical difficulties.
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Shared Variables. To have a more general model, we may introduce data vari-
ables shared among automata and tasks. For example, shared variables can be
used to model precedence relations and synchronization between tasks. Note that
the sharing will not add technical difficulties as long as their domiains are finite.
For simplicity, we will not consider sharing in this paper. The only requirement
on the completion of a task is given by the deadline. The time when a task is
finished does not effect the control behavior specified in the automaton.

(a)

Fig. 2. Modeling Periodic and Sporadic Tasks.

Parallel Composition. To handle concurrency and synchronization, a parallel
composition of extended timed automata may be defined as a product automaton
in the same way as for ordinary timed automata (e.g. see [16]). Note that the
parallel composition here is only an operator to construct models of systems
based on their components. It has nothing to do with multi-processor scheduling.
A product automaton may be scheduled to run on a one- or multi-processor
system.

Semantically, an automaton may perform two types of transitions. Delay
transitions correspond to the execution of running tasks with highest priority
(or earliest deadline) and idling for the other tasks waiting to run. Discrete
transitions corresponds to the arrivals of new task instances.

We represent the values of clocks as functions (i.e. clock assignments) from
C to the non-negative reals R>o. We denote by V the set of clock assign-
ments for C. Naturally, a semantic state of an automaton is a triple (I,u,q)
where [ is the current location, u € V denotes the current values of clocks, and
q is the current task queue. We assume that the task queue takes the form:
[P1(co,do), Pa(c1,d1)...Pp(cn, dy)] where P;(c;,d;) denotes a released instance of
task type P; with remaining computing time ¢; and relative deadline d;.

Assume that there are a fixed number of processors running the released task
instances according to a certain scheduling strategy Sch e.g. FPS (fixed priority
scheduling) or EDF (earliest deadline first) which sorts the task queue whenever
new tasks arrives according to task parameters e.g. deadlines. An action tran-
sition will result in a sorted queue including the newly released tasks by the
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transition. A delay transition with ¢ time units is to execute the task in the first
positon of the queue with ¢ time units. Thus the delay transition will decrease
the computing time of the first task with ¢. If its computation time becomes
0, the task should be removed from the queue. Moreover, all deadlines in the
queue will be decreased by ¢ (time has progressed by t). To summarize the above
intuition, we introduce the following functions on task queues:

— Sch is a sorting function for task queues (or lists), that may change the order-
ing of the queue elements only. For example, EDF([P(3.1,10),Q(4,5.3)]) =
[Q(4,5.3), P(3.1,10)]). We call such sorting functions a scheduling strategy
that may be preemptive or non—preemptiv%.

— Run is a function which given a real number ¢ and a task queue ¢ returns
the resulted queue after ¢ time units of execution according to available
resources. For simplicity, we assume that only one processor is availabldd.
Then the meaning of Run(g,t) should be obvious and it can be defined in-
ductively as follows: Run(gq,0) = ¢, Run([Py(co,do), Pi(c1,d1)...Pp(Cn, dn)],t)
= Run([P1(c1,d1 —¢p) ... Pp(cn,dn—co)],t—co) if co <t and Run([Py(co,dp)
e Po(en,dn))st) = [Pi(co —t,do—t) ... Pplcy,dn —1)]if ¢g > t. For example,
let ¢ = [Q(4,5), P(3,10)]. Then Run(g,6) = [P(1,4)] in which the first task
is finished and the second has been executed for 2 time units.

We use u = ¢ to denote that the clock assignment u satisfies the constraint g.
For t € R>¢, we use u+1t to denote the clock assignment which maps each clock
x to the value u(x) + t, and u[r — 0] for r C C, to denote the clock assignment
which maps each clock in r to 0 and agrees with u for the other clocks (i.e.
C\r). Now we are ready to present the operational semantics for extended timed
automata by transition rules:

Definition 2. Given a scheduling strategy Sch, the semantics of an automaton
(N, lo, E, I, M) with initial state (o, ug, qo) is a labelled transition system defined
by the following rules:

— (1,1, q)—sen(m, ulr — 0], Sch(M(m) == q)) if | 25 m and u |= g
— (Lu,g)~Sosen(lu + 1, Run(q, 8)) if (u+ 1) = 1(1)

where M(m) :: ¢ denotes the queue with M(m) inserted in q.

Note that the transition rules are parameterized by Sch (scheduling strategy).
and Run (function representing the available computing resources). According
to the transition rules, the task queue is growing with action transitions and
shrinking with delay transitions. Multiple copies (instances) of the same task
type may appear in the queue.

3 A non-preemptive strategy will never change the position of the first element of a
queue and a preemtive strategy may change the ordering of task types only, but
never change the ordering of task instances of the same type.

4 The semantics may be extended to multi-processor setting by modifying the function
Run according the number of processors available.
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Whenever it is understood from the context, we shall omit Sch from the
transition relation. Consider the automaton in Figure 2(b). Assume that pre-
emptive earliest deadline first (EDF) is used to schedule the task queue. Then
the automaton with initial state (mq, [z = 0], [Q1(1,2)]) may demonstrate the
following sequence of typical transitions:

3

2, [z =0],[Q2(0.7,3.7), P»(2,10), P,(3.5,19.2)])

- (mlv ["E = 1]7 [Ql(ov 1)]) = (mh [‘T = 1]’ [])
95, (mq, [x = 10.5],[])
=5 (na, [w = 0, [P (4, 20)))
95 (ny, [z = 0.5, [P1(3.5,19.5)])
2, (ma, [z = 0.5],[Q2(1,4), P1(3.5,19.5)])
93, (g, [z = 0.8],[Q2(0.7,3.7), P1(3.5,19.2)])
(
(
(

This is only a partial behaviour of the automaton. A question of interest is
whether it can perform a sequence of transitions leading to a state where the
task queue is non-schedulable.

3 Schedulability Analysis

In this section we study verification problems related to the model presented in
the previous section. First, we have the same notion of reachability as for timed
automata.

Definition 3. We shall write (1,u, q)— (', ', ¢") if (l,u,q)—=",,q') for an
action a or (1, u, q)#(l’, u',q") for a delay t. For an automaton with initial state
(lo, w0, q0), (I,u,q) is reachable iff (lo, wo,q0)—" (1, u, q).

In general, the task queue is unbounded though the constraints of a givn
automaton may restrict the possibility of reaching states with infinitely many
different task queues. This makes the analysis of automata more difficult. How-
ever, for certain analysis, e.g. verification of safety properties that are not related
to the task queue, we may only be interested in the reachability of locations. A
nice property of our extension is that the location reachability problem can be
checked by the same technique as for timed automata [I419]. So we may view
the original timed automaton (without task assignment) as an abstraction of its
extended version preserving location reachability. The existing model checking
tools such as [20/[17] can be applied directly to verify the abstract models.

But if properties related to the task queue are of interests, we need to develop
new verification techniques. One of the most interesting properties of extended
automata related to the task queue is schedulability.
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Definition 4. (Schedulability) A state (l,u,q) with ¢ = [Pi(c1,dy)...
P.(cn,dy)] is a failure denoted (I,u,Error) if there exists i such that ¢; >
0 and d; < 0, that is, a task failed in meeting its deadline. Naturally
an automaton A with initial state (lo,up,qo) is non-schedulable with Sch iff
(lo, 10, go)(—sch)* (I, u, Error) for some l and u. Otherwise, we say that A is
schedulable with Sch. More generally, we say that A is schedulable iff there ex-
ists a scheduling strategy Sch with which A is schedulable.

The schedulability of a state may be checked by the standard test. We say
that (I,u,q) is schedulable with Sch if Sch(q) = [Pi(c1,d1) ... Pu(cn,d,)] and
(>0;<p i) < di for all k& < n. Alternatively, an automaton is schedulable with
Sch if all its reachable states are schedulable with Sch.

Checking schedulability of a state is a trivial task according to the definition.
But checking the relative schedulability of an automaton with respects to a
given scheduling strategy is not easy, and checking the general schedulability
(equivalent to finding a scheduling strategy to schedule the automaton) is even
more difficult.

Fortunately the queues of all schedulable states of an automaton are bounded.
First note that a task instance that has been started can not be preempted by
another instance of the same task type. This means that there is only one instance
of each task type in the queue whose computing time can be a real number and it
can be arbitrarily small. Thus the number of instances of each task type P € P,
in a schedulable queue is bounded by [D(P)/C(P)] and the size of schedulable
queues is bounded by Y. [D(P)/C(P)].

We will code schedulability checking problems as reachability problems. First,
we consider the case of non-preemptive scheduling to introduce the problems.
We have the following positive result.

Theorem 1. The problem of checking schedulability relative to non-preemptive
scheduling strategy for extended timed automata is decidable.

Proof. A detailed proof is given in [11]. We sketch the proof idea here. It is to
code the given scheduling strategy as a timed automaton (called the scheduler)
denoted E(Sch) which uses clocks to remember computing times and relative
deadlines for released tasks. The scheduler automaton is constructed as follows:
Whenever a task instance P; is released by an event release;, a clock d; is reset to
0. Whenever a task is started to run, a clock c is reset to 0. Whenever the con-
straint d; = 0 is satisfied, and P; is not running, an error-state (non-schedulable)
should be reached. We also need to transform the original automaton A to E(A)
to synchronize with the scheduler that P; is released whenever a location, say [
to which P; is associated, is reached. This is done simply by replacing actions la-
beled on transitions leading to [ with release;. Finally we construct the product
automaton F(Sch)||E(A) in which both E(Sch) and E(A) can only synchro-
nize on identical action symbols namely release;’s. It can be proved that if an
error-state of the product automaton is reachable, the original extended timed
automaton is non-schedulable.

For preemptive scheduling strategies, it has been conjectured that the schedu-
lability checking problem is undecidable. The reason is that if we use the same
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ideas as for non-preemptive scheduling to encode a preemptive scheduling strat-
egy, we must use stop-watches (or integrators) to add up computing times for
suspended tasks. It appears that the computation model behind preemptive
scheduling is stop-watch automata for which it is known that the reachability
problem is undecidable. Surprisingly this conjecture is wrong.

Theorem 2. The problem of checking schedulability relative to a preemptive
scheduling strategy for extended timed automata is decidable.

The rest of this paper will be devoted to the proof of this theorem. It follows
from Lemma Bl [, and Blestablished in the following section. Before we go further,
we state a more general result that follows from the above theorem.

Theorem 3. The problem of checking schedulability for extended timed au-
tomata is decidable.

From scheduling theory [§], we know that the preemptive version of Earliest
Deadline First scheduling (EDF) is optimal in the sense that if a task queue is
non-schedulable with EDF, it can not be schedulable with any other scheduling
strategy (preemptive or non-preemptive). Thus, the general schedulability check-
ing problem is equivalent to the relative schedulability checking with respects to
EDF.

4 Decidability and Proofs

We shall encode the schedulability checking problem as a reachability problem.
For the case of non-preemptive scheduling, the expressive power of timed au-
tomata is enough. For preemptive scheduling, we need a more expressive model.

4.1 Timed Automata with Subtraction

Definition 5. A timed automaton with subtraction is a timed automaton in
which clocks may be updated by subtraction in the form x := x — C in addition
to reset of the form x := 0, where C' is a natural number.

This is the so called updatable automata [7]. It is known that the reachability
problem for this class of automata is undecidable. However, for the following class
of suspension automata, location reachability is decidable.

Definition 6. (Bounded Timed Automata with Subtraction) A timed automaton
is bounded iff for all its reachable states (1, u,q), there is a mazimal constant C,,
for each clock x such that

1. u(z) > 0 for all clocks x, i.e. clock values should not be negative and
2. u(z) < Cyp if l Z5 1 for some I and C such that g(u) and (x := xz —C) € 7.
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In general, it may be difficult to compute the maximal constants from the
syntax of an automaton. But we shall see that we can compute the constants for
our encoding of scheduling problems.

Because subtractions on clocks are performed only within a bounded area,
the region equivalence is preserved by the operation. We adopt the standard
definition due to Alur and Dill [5].

Definition 7. (Region Equivalence denoted ~) For a clock x € C, let C,, be a
constant (the ceiling of clock x). For a real numbert, let {t} denote the fractional
part of t, and |t] denote its integer part. For clock assignments u,v € V, u,v
are region-equivalent denote u~v iff

1. for each clock x, either |u(x)] = |v(x)] or u(x) > Cy and v(z) > Cy), and
2. for all clocks x,y if u(z) < Cy and u(y) < C, then
a) (fu(z)} =0 iff {v(x)} = 0 and
b) {u(z)} < {uly)} iff {v(z)} < {v(y)}
It is known that region equivalence is preserved by the delay (addition) and
reset. In the following, we establish that region equivalence is also preserved by

subtraction for clocks that are bounded as defined in Definition [6l For a clock
assignment u, let u(z — C) denote the assignment: u(z — C)(z) = u(x) — C and

u(z — C)(y) = u(y) for y # .

X Bounded area alowed

for subtraction
- Y4

u
v

£

>I<04 ——-—---0
-

o¥ -1+ ——c0

V(x-1)

Fig. 3. Region equivalence preserved by subtraction when clocks are bounded.

Lemma 1. Let u,v € V. Then u~v implies

1. u+t~v+t for a positive real number t, and
2. ulx — 0]~v[z — 0] for a clock x and
3. u(x — C)~v(x — C) for all natural numbers C' such that C < u(zx) < C,.

Proof. Tt is given in the full version of this paper [13].

In fact, region equivalence over clock assignments induces a bisimulation over
reachable states of automata, which can be used to partition the whole state
space as a finite number of equivalence classes.
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Lemma 2. Assume a bounded timed automaton with subtraction, a location [
and clock assignments u and v. Then u~v implies that

1. whenever (I,u) — (I',u) then (I,v) — (I',v") for some v' s.t. u'~v'" and
2. whenever (I,v) — (I',v") then (I,u) — (I',u') for some v’ s.t. u'~v'.

Proof. It follows from Lemma [

The above lemma essentially states that if u~v then (I,u) and (I,v) are
bisimular, which implies the following result.

Lemma 3. The location reachability problem for bounded timed automata with
subtraction, whose clocks are bounded with known maximal constants is decidable.

Proof. Because each clock of the automaton is bounded by a maximal constant,
it follows from lemma [ that for each location I, there is a finite number of
equivalence classes of states which are equivalent in the sense that they will
reach the same equivalence classes of states. Because the number of locations of
an automaton is finite, the whole state space of an automaton can be partitioned
into finite number of such equivalence classes.

4.2 Encoding of Schedulability as Reachability

Assume an automaton A extended with tasks, and a preemptive scheduling
strategy Sch. The aim is to check if A is schedulable with Sch. As for the case
of non-preemptive scheduling (Theorem [II), we construct E(A) and E(Sch), and
check a pre-defined error-state in the product automaton of the two. The con-
struction is illustrated in figure @

E(A) is constructed as a timed automaton which is exactly the same as for
the non-preemptive case (Theorem [[) and E(Sch) will be constructed as a timed
automaton with subtraction.

1
1Extended Timed Automaton,
a |

1
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Fig. 4. Encoding of schelulability problem.
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We introduce some notation. Let C(i) and D(i) stand for the worst case
execution time and relative deadline respectively for each task type P;. We use
P;; to denote the jth instance of task type F;.

For each task instance P;;, we have the following state variables: status(s, j)
initialized to free. Let status(i,j) = running stand for that P;; is executing on
the processor, preempted for that P;; is started but not running, and released for
that P;; is released, but not started yet. We use status(4, j) = free to denote that
P;; is not released yet or position (4, j) of the task queue is free.

According to the definition of scheduling strategy, for all 7, there should be
only one j such that status(i, j) = preempted (only one instance of the same task
type is started), and for all 4, j, there should be only one pair (k,1) such that
status(k, ) = running (only one is running for a one-processor system).

We need two clocks for each task instance:

1. ¢(4,7) (a computing clock) is used to remember the accumulated computing
time since P;; was started (when Run(i,j) became true)ﬁ, and subtracted
with C(k) when the running task, say Py, is finished if it was preempted
after it was started.

2. d(i,7) (a deadline clock) is used to remember the deadline and reset to 0
when P;; is released.

We use a triple (c(4,j),d(4,J), status(i, j)) to represent each task instance,
and the task queue will contain such triples. We use ¢ to denote the task queue.
Note that the maximal number of instances of P, appearing in a schedulable
queue is [D(4)/C(i)]. We have a bound on the size of queue as claimed earlier,
which is > p p [D(i)/C(i)]. We shall say that queue is empty denoted empty(q)
if status(i, j) = free for all 4, j.

For a given scheduling strategy Sch, we use the predicate Run(m, n) to denote
that task instance P,,, is scheduled to run according to Sch. For a given Sch,
it can be coded as a constraint over the state variables. For example, for EDF,
Run(m,n) is the conjunction of the following constraints:

1. d(k,l) < D(k) for all k, I such that status(k, ) # free: no deadline is violated
yet

2. status(m,n) # free: P, is released or preempted

3. D(m) —d(m,n) < D(i) — d(i,7) for all (i,7): Pny has the shortest deadline

E(Sch) contains three type of locations: ldling, Running and Error with
Running being parameterized with (i, j) representing the running task instance.

1. Idling denotes that the task queue is empty.

2. Running(i, j) denotes that task instance P;; is running, that is, status(i, j) =
running. We have an invariant for each Running(s,j): c(i,j) < C(i) and
(i, j) < D(i).

3. Error denotes that the task queues are non-schedulable with Sch.

There are five types of edges labeled as follows:

5 In fact, for each task type, we need only one clock for computing time because only
one instance of the same task type may be started.
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1. Idling to Running(i, j): there is an edge labeled by
— guard: none
— action: release;
— reset: ¢(i,7) := 0, d(4,) := 0, and status(i, j) := running
2. Running(i, ) to Idling: there is only one edge labeled with
— guard: empty(q) that is, status(i,j) = free for all 4,5 (all positions are

free).
— action: none
— reset: none

3. Running(, j) to Running(m,n): there are two types of edges.
a) The running task P;; is finished, and P, is scheduled to run by
Run(m,n). There are two cases:
i. P, was preempted earlier:
— guard: (i, j) = C(4), status(m,n) = preempted and Run(m,n)
— action: none
— reset: status(i,j) := free, {c(k,l) := c(k,l) — C(i)|status(k,l) =
preempted}, and status(m,n) := running
ii. P, was released, but never preempted (not started yet):
— guard: ¢(4,j) = C(i), status(m,n) = released and Run(m,n)
— action: none
— reset: status(i,j) := free, {c(k,l) := c(k,l) — C(i)|status(k,l) =
preempted}, ¢(m,n) := 0,d(m,n) := 0 and status(m,n) :=
running
b) A new task P,,, is released, which preempts the running task P;;:
— guard: status(m,n) = free, and Run(m,n)
— action: released,,
— reset: status(m,n) := running, ¢(m,n) := 0, d(m,n) := 0, and
status(i, j) := preempted
4. Running(%, j) to Running(i, j). There is only one edge representing the case
when a new task is released, and the running task P;; will continue to run:
— guard: status(k,!) = free, and Run(i, 7)
— action: released,,
— reset: status(k, ) := released and d(k,[) :==0
5. Running(i, j) to Error: for each pair (k, 1), there is an edge labeled by d(k, 1) >
D(k) and status(k,l) # free meaning that the task Py; which is released (or
preempted) fails in meeting its deadline.

The third step of the encoding is to construct the product automaton
E(Sch) || E(A) in which both E(Sch) and E(A) can only synchronize on iden-
tical action symbols. Now we show that the product automaton is bounded.

Lemma 4. All clocks of E(Sch) in E(Sch) || E(A) are bounded and non-
negative.

Proof. Tt is given in the full version of this paper [13].

Now we have the correctness lemma, for our encoding. Assume, without losing
generality, that the initial task queue of an automaton is empty.
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Lemma 5. Let A be an extended timed automaton and Sch a scheduling strategy.
Assume that (Lo, ug,qo) and ({lg,ldling), up) are the initial states of A and the
product automaton E(A)||E(Sch) respectively where ly is the initial location of
A, ug and vy are clock assignments assigning all clocks with 0 and qq is the
empty task queue. Then for alll and u:

(lo, wo, o) —" (1, u, Error) iff ({lo, ldling), ug Uvg)—*({l, Error), wUwv)for some v
Proof. Tt is by induction on the length of transition sequence.

The above lemma states that the schedulability analysis problem can be
solved by reachability analysis for timed automata extended with subtraction.
From Lemma H] we know that E(Sch) is bounded. Because the reachability
problem is decidable due to Lemma 3], we complete the proof for our main result
stated in Theorem 2.

5 Conclusions and Related Work

We have studied a model of timed systems, which unifies timed automata with
the classic task models from scheduling theory. The model can be used to specify
resource requirements and hard time constraints on computations, in addition
to features offered by timed automata. It is general and expressive enough to
describe concurrency and synchronization, and tasks which may be periodic, spo-
radic, preemptive and (or) non-preemptive. The classic notion of schedulability
is naturally extended to automata model.

Our main technical contribution is the proof that the schedulability checking
problem is decidable. The problem has been suspected to be undecidable due to
the nature of preemptive scheduling. To our knowledge, this is the first decid-
ability result for preemptive scheduling in dense-time models. Based the proof,
we have developed a symbolic schedulability checking algorithm using the DBM
techniques extended with a subtraction operation. It has been implemented in
a prototype tool [6]. We believe that our work is one step forward to bridge
scheduling theory and automata-theoretic approaches to system modeling and
analysis. A challenge is to make the results an applicable technique combined
with classic methods such as rate monotonic scheduling. We need new algorithms
and data structures to represent and manipulate the dynamic task queue con-
sisting of time and resource constraints. As another direction of future work,
we shall study the schedule synthesis problem. More precisely given an automa-
ton, it is desirable to characterize the set of schedulable traces accepted by the
automaton.

Related work. Scheduling is a well-established area. Various analysis methods
have been published in the literature. For systems restricted to periodic tasks,
algorithms such as rate monotonic scheduling are widely used and efficient meth-
ods for schedulability checking exist, see e.g. [8]. These techniques can be used to
handle non-periodic tasks. The standard way is to consider non-periodic tasks as
periodic using the estimated minimal inter-arrival times as task periods. Clearly,
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the analysis based on such a task model would be pessimistic in many cases, e.g.
a task set which is schedulable may be considered as non-schedulable as the inter-
arrival times of the tasks may vary over time, that are not necessary minimal.
Our work is more related to work on timed systems and scheduling.

A nice work on relating classic scheduling theory to timed systems is the
controller synthesis approach [2)3]. The idea is to achieve schedulability by
construction. A general framework to characterize scheduling contstraints as
invariants and synthesize scheduled systems by decomposition of constraints is
presented in [3]. However, algorithmic aspects are not discussed in these work.
Timed automata has been used to solve non-preemptive scheduling problems
mainly for job-shop scheduling[TT2IT5]. These techniques specify pre-defined
locations of an automaton as goals to achieve by scheduling and use reachability
analysis to construct traces leading to the goal locations. The traces are used
as schedules. There have been several work e.g. [I8[10/9] on using stop-watch
automata to model preemptive scheduling problems. As the reachability analysis
problem for stop-watch automata is undecidable in general [4], there is no
guarantee for termination for the analysis without the assumption that task
preemptions occur only at integer points. The idea of subtractions on timers
with integers, was first proposed by McManis and Varaiya in [I18]. In general,
the class of timed automata with subtractions is undecidable, which is shown
in [7]. In this paper, we have identified a decidable class of updatable automata,
which is precisely what we need to solve scheduling problems without assuming
that preemptions occur only at integer points.

Acknowledgement. Thanks to the anonymous referees for their insights and
constructive comments.
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