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Abstract. In multiprocessor and distributed real-time systems, schedul-
ing jobs dynamically on processors can be used to achieve better per-
formance. However, analytical and efficient validation methods for de-
termining whether all the timing constraints are met do not yet exist
for systems using modern dynamic scheduling strategies, and exhaustive
methods are often infeasible or unreliable since the execution time and
release time of each job may vary. In this paper, we present several upper
bounds and efficient algorithms for computing the worst-case completion
times of dependent jobs in dynamic systems where jobs are dispatched
and scheduled on available processors in a priority-driven manner. The
bounds and algorithms consider arbitrary release times and variable exe-
cution times. We present conditions under which dependent jobs execute
in a predictable manner.

1 Introduction

Many safety-critical real-time applications, (e.g., air-traffic control and factory
automation) have timing constraints that must be met for them to be correct.
Their timing constraints are often specified in terms of the release times and
deadlines of the jobs that make up the system. A job is a basic unit of work
to be scheduled and executed. It can begin execution when its data and control
dependencies are met only after its release time, and it must complete by its
deadline. The failure of a job to complete by its deadline can lead to a perfor-
mance degradation or complete failure.

We assume here that the scheduler never schedules any job before its release
time and focus on the problem of how to validate that every job indeed completes
by its deadline when executed according to a given priority-driven discipline used
by the scheduler. A scheduling algorithm is priority-driven if it never leaves any
processor idle intentionally. Such an algorithm can be implemented by assigning
priorities to jobs, placing jobs ready for execution in one or more queues and
scheduling the jobs with the highest priorities among all jobs in the queue(s) on
the available processors. Specifically, we consider here only dynamic systems: in
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a dynamic system, ready jobs are placed in a common queue and are dispatched
to available processors in a priority-driven manner.

Recently, many real-time load balancing and scheduling algorithms for dy-
namic systems have been developed. These algorithms are likely to make better
use of the processors and achieve a higher responsiveness than the traditional
approach to scheduling jobs in multiprocessor and distributed environments. Ac-
cording to the traditional approach, jobs are first statically assigned and bound
to processors, and then a uniprocessor scheduling algorithm is used to schedule
the jobs on each processor.

A system that uses a priority-driven scheduling algorithm can have unex-
pected timing behavior [1]. A job may complete later where it and other jobs
execute for shorter amounts of time and when jobs are released sooner. Con-
sequently, it is impractical and unreliable to validate that all jobs meet their
deadlines using exhaustive testing and simulation when their execution times
and release times may vary. Recently, several efficient and analytical methods
for validating timing constraints of static multiprocessor and distributed systems
have been developed, e.g., [2,3,4] (In a static system, jobs are assigned and bound
to processors.). These methods are based on worst-case bounds and schedula-
bility conditions for uniprocessor systems[5,6,7,8]. They allow us to bound the
completion times of jobs that are scheduled in a priority-driven manner even
when their release times and execution times may vary. Several efficient algo-
rithms for computing the worst-case completion times of independent jobs in
dynamic systems now exist[9]. This paper is concerned with the case where jobs
have dependencies, the processors are identical, and the system is dynamic. The
works in [10,11] are also related to the problem solved in this paper. In [10,11],
they have studied the validation problem to bound the completion times of jobs
on one processor. Our work provides the bounds of completion times of jobs in
multiprocessor or distributed systems.

The rest of the paper is organized as follows. Section 2 presents the formal
definition of the validation problem addressed by the paper. Sections 3 and
4 give conditions for predictable execution and present an efficient algorithm
for bounding the completion times of dependent jobs. Conclusions are given in
Section 5.

2 Problem

The general validation problem addressed here and in [9] can be stated as follows:
given n jobs,m identical processors, and the priority-driven scheduling algorithm
that dynamically schedules the jobs on the processors, determine whether all the
jobs meet their deadlines analytically or by using an efficient algorithm. We let
J = {J1, J2, . . . , Jn} denote the set of jobs. As in [3,4,5,6,7,8] each job Ji has the
following parameters: release time ri, deadline di and execution time ei. These
parameters are rational numbers. The actual execution time ei of Ji is in the
range [e−i , e

+
i ]. We call e

−
i its minimum execution time and e+i its maximum

execution time. We assume that the scheduler knows the parameters ri, di and
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[e−i , e
+
i ] of every job Ji before any job begins execution, but the actual execution

time ei is unknown.
The jobs in J are dependent; data and control dependencies between them

impose precedence constraints in the order of their execution. A job Ji is a
predecessor of another job Jj (and Jj is a successor of Ji) if Jj cannot begin
to execute until Ji completes. We denote this precedence relation by Ji ≺ Jj .
Ji is an immediate predecessor of Jj (and Jj is an immediate successor of Ji) if
Ji ≺ Jj and there is no other job Jk such that Ji ≺ Jk ≺ Jj . Two jobs Ji and Jj
are independent if neither Ji ≺ Jj nor Jj ≺ Ji. Independent jobs can be executed
in any order. We use a precedence graph G = (J , R) to represent the precedence
relations between jobs. There is a node Ji in this graph for each job Ji in J , and
there is an edge from Ji to Jj in R whenever Ji is an immediate predecessor of
Jj . We say that a job becomes ready when the time is at or after its release time
and either it has no predecessor or all of its predecessors are completed, and it
remains ready until it completes.

We confine our attention to scheduling algorithms that assign fixed priorities
to jobs and do not choose priorities based on the actual execution times of the
jobs. Therefore, the given scheduling algorithm is completely defined by the list
of priorities it assigns to the jobs. Without loss of generality, we assume that the
priorities of jobs are distinct. We will always index the job in decreasing priority
order (i.e., the priority list is (J1, J2, . . . , Jn)) except where it is stated to be
otherwise. Ji = {J1, J2, . . . , Ji} denotes the subset of jobs with priorities equal
to or higher than the priority of Ji.

The scheduler maintains a common priority queue and places all ready jobs
in the queue. In this paper, we consider the case when jobs are preemptable
and migratable. In this case, a ready job can be scheduled on any processor. It
may be preempted when a higher priority job becomes ready. Its execution may
resume on any processor. We refer the jobs as P/M/Z or P/M/F jobs depending
on whether the jobs have identical (zero) release times or fixed arbitrary release
times.

We will use J+
n = {J+1 , J+2 , . . . , J+n } as a shorthand notation to mean that

every job has its maximum execution time. Similarly, J−
n = {J−1 , J−2 , . . . , J−n }

means that every job has its minimum execution time. We refer to the schedule
of Jn produced by the given algorithm as the actual schedule An. To determine
whether any job completes in time, we sometimes generate simulated schedules
of Jn using the given scheduling algorithm and assuming every job has its maxi-
mum execution time or every job has its minimum execution time. In particular,
we call the schedule of J+

n (or J−
n ) produced by the same algorithm the maximal

(or the minimal) schedule A+
n (or A−

n ) of Jn.
Let S(Ji) be the (actual) start time of Ji, the instant of time at which the

execution of Ji begins according to the actual schedule An. Let S+(Ji) and
S−(Ji) be the start times of Ji in the schedules A+

n and A−
n , respectively. We

say that the start time of Ji is predictable if S−(Ji) ≤ S(Ji) ≤ S+(Ji). Similarly,
let F (Ji) be the (actual) completion time of Ji, the instant at which Ji completes
execution according to the actual schedule An. The response time of a job is the
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length of time between its release time and its completion time. Let F+(Ji) and
F−(Ji) be the completion times of Ji according to the schedules A+

n and A−
n ,

respectively. The completion times of Ji is said to be predictable if F−(Ji) ≤
F (Ji) ≤ F+(Ji).

We say that the execution of Ji is predictable if both its start time and
completion time are predictable. In this case, the completion time F+(Ji) in the
schedule A+

n minus the release time ri of Ji gives Ji’s worst-case response time.
Ji meets its deadline if F+(Ji) ≤ di.

To find the worst-case completion time of Ji when all the jobs are preempt-
able, we only need to consider the jobs which are the predecessors of Ji, jobs
which have higher priorities than Ji and the predecessors of Ji, and jobs which
are predecessors of these higher-priority jobs. To be more precise, we define a
new precedence relation R∗

i as follows: Let Y
i

n be the subset of Jn which con-
tains all the jobs that are not successors of Ji. Let R∗

i be the union of (1) the
given precedence relation R restricted to the subset Y i

n and (2) the relation over
Y i

n defined by a graph in which there is a node for each job in Y i
n and there

is an edge from Ji to Jj whenever Ji has a higher priority than Jj . Let Xi
n be

the subset of Y i
n which contains Ji and all the predecessors of Ji under the new

relation R∗
i . When we try to find the worst-case completion time of Ji, we must

consider the jobs in the subgraph of precedence graph G induced by Xi
n. We

call the subset Xi
n the interfering subset of Ji.

3 Identical Release Time Case

Unlike independent P/M/Z jobs [9], the execution of P/M/Z jobs with prece-
dence constraints is not predictable in general. This fact is illustrated by the
example in Figure 1 where the precedence graph is an out-tree. According to
the maximal and minimal schedules shown in parts (b) and (c), J8’s completion
times are 8 and 6, respectively. (We omit the values of the execution times here
because they are not relevant. It suffices that the execution time of every job
in (b) is larger than the execution time of the corresponding job in (c).) Part
(d) shows a possible actual schedule obtained when the execution time of every
job is between the extreme values used in (b) and (c). According to this actual
schedule, J8 completes at 18. Hence the execution of J8 is not predictable.

In the next section, we will present an algorithm that can be used to bound
the completion times of P/M/Z jobs with arbitrary precedence graphs. Here, we
examine a special case when all the jobs have identical release times and the
precedence graph is a forest of in-trees. The execution of P/M/Z jobs with this
type of precedence graph is predictable. Theorem 1 states this fact. To prove it,
we need the following lemmas.

Lemma 1. No job in a set of P/M/Z jobs is preempted in the actual schedule
when every job has at most one immediate successor.

Proof. A job preempts another job if when it becomes ready, all the processors
are busy. At the time when the preempting job becomes ready, the number of
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Fig. 1. Unpredictable execution of P/M/Z jobs in out-trees

jobs that are ready increases by at least one. However, when the precedence
graph is a forest of in-trees, every job has at most one immediate successor.
Moreover, all jobs have the same release time. As each job Ji completes, at
most one immediate successor of Ji becomes ready. Hence, as time increases, the
number of jobs that are ready to execute cannot increase. The lemma follows.

��

Lemma 2. Let An(i, ε) be the schedule of the set of n jobs whose parameters
and precedence constraints are the same as those of jobs in Jn except that the
execution time of Ji is ei−ε for some ε > 0. When every job is a P/M/Z job and
the precedence graph is an in-tree forest, the start time of every job Jj according
to An(i, ε) is no later than its actual start time S(Jj) according to the actual
schedule An of Jn.

Proof. We need to consider only the jobs that start at or later than F (Ji)− ε in
An. Let Jl be such a job. According to An, a processor is available to execute
Jl at S(Jl). From Lemma 1, no job is preempted in An. Hence at most (m− 1)
higher-priority jobs that become ready at or before S(Jl) are not yet complete
at S(Jl) according to the schedule An. In the set of jobs scheduled according
to An(i, ε), the execution time of every job is no larger than the execution time
of the corresponding job in Jn, and as time increases, the number of ready
jobs cannot increase. Moreover, from Lemma 1, no job is preempted according
to An(i, ε). Consequently, we can conclude that according to An(i, ε), at most
(m−1) higher-priority jobs that become ready at or before S(Jl) are not complete
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at S(Jl). There is a processor available to execute Jl at or before S(Jl). The
lemma follows. ��

Corollary 1. Let A+
n (i, ε) be the schedule of the set of n jobs whose parameters

and precedence constraints are the same as those of the jobs in J+
n except that

the execution time of Ji is e+i − ε for some ε > 0. When every job is a P/M/Z
job and the precedence graph is an in-tree forest, the start time of every job Jj
according to A+

n (i, ε) is no later than its maximal start time S
+(Jj) according

to the maximal schedule A+
n of J

+
n .

Let A+
n [k], for 1 ≤ k ≤ n, be the schedule of the set of n jobs which is such

that (1) the precedence constraints of all jobs are the same as those of the jobs
in Jn, (2) the execution time of Jj is ej for j = 1, 2, · · · , k, and (3) the execution
time of Jj is e+j for j = k + 1, k + 2, · · · , n. Let A+

n [0] be another notation for
A+

n .

Lemma 3. When the precedence graph of a set of n P/M/Z jobs is an in-tree
forest, the start time of every job according to A+

n [k] is no later than the start
time of the corresponding job according to the schedule A+

n [k−1] for 1 ≤ k ≤ n.

Proof. We note that A+
n [1] is just A

+
n (1, e

+
1 − e1) defined in Corollary 1. From

this corollary, the start time of every job in A+
n [1] is no later than the maximal

start time of the corresponding job in A+
n .

To show that the lemma is true for k > 1, let Jl be a job which starts
at or after (e+k − ek) time units before the completion time of J+k according to
A+

n [k−1]. Because no job is preempted, at the time t when Jl starts inA+
n [k−1],

at most (m − 1) higher-priority jobs that become ready at or before t are not
complete. The number of higher-priority jobs that become ready at or before
t but are not complete at t cannot increase when the execution time of J+k is
reduced from e+k to ek because every job has at most one immediate successor
and the release times of all jobs are the same. Consequently, according to A+

n [k],
there are at most (m − 1) ready jobs with priorities higher than Jl at the time
t. This means that Jl can start no later than t in A+

n [k]. ��

Let An[k], for 1 ≤ k ≤ n, be the schedule of the set of n jobs whose prece-
dence constraints are the same as those of jobs in Jn, the execution time of Jj is
e−j for j = 1, 2, · · · , k and the execution time of Jj is ej for j = k+1, k+2, · · · , n.
An[0] is another notation of An. The proof of the following corollary is similar
to that of Lemma 3.

Corollary 2. When the precedence graph of a set of n P/M/Z jobs is an in-tree
forest, the start time of every job according to An[k] is no later than the start
time of the corresponding job according to the schedule An[k− 1] for 1 ≤ k ≤ n.
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Theorem 1. When the precedence graph of a set of n P/M/Z jobs is an in-
tree forest, the start time of every job is predictable, that is, S−(Ji) ≤ S(Ji) ≤
S+(Ji).

Proof. We note that A+
n [n] is just the actual schedule An. That the start time

S(Ji) of every job Ji in An is no later than S+(Ji) in A+
n follows straight-

forwardly from Lemma 3. Similarly, the fact that S−(Ji) ≤ S(Ji) follows from
Corollary 2. ��

Corollary 3. When the precedence graph of a set of n P/M/Z jobs is an in-tree
forest, the completion time of every job is predictable, that is, F−(Ji) ≤ F (Ji) ≤
F+(Ji).

4 Arbitrary Release Time Case

In contrast to P/M/Z jobs, the execution of jobs with arbitrary release times
is not predictable even when the precedence graph of jobs is a set of chains.
This fact is illustrated by the example in Figure 2. The simple system in this
figure contains eight jobs and two identical processors. The release time of each
job is indicated by a number on top of each node in the precedence graph. The
execution times of all the jobs are known except for J3. Its execution time can be
any value in the range [2,8]. Parts (b), (c) and (d) of this figure show the maximal,
minimal and actual schedules, respectively. The completion time of J6 in the
actual schedule is 13; it is later than its completion time of 11 in the maximal
schedule. Similarly, the execution of P/M/F jobs is not predictable when the
precedence graph is a forest of in-trees. This is illustrated in Figure 3. In this
example, all jobs are released at 0 except J2 whose release time is marked by an
arrow in the schedules. We note that the execution of J4 and J5 is not predictable.
However, in the following special cases, we have predictable execution.

4.1 Predictable Execution Case

We consider here a set of P/M/F jobs whose precedence graph is a forest of
in-trees. The execution of every job is predictable when the assumption of the
following theorem holds. The assumption is stated in terms of S−z (Ji), which is
the start time of Ji in the schedule of J−

n constructed by assuming that all jobs
are released at time 0.

Theorem 2. When the precedence graph of a set Jn of P/M/F jobs is a forest
of in-trees, the execution of every job is predictable if every job Jk is released at
or before S−z (Jk).

Proof. When all the jobs are released at time 0, their execution is predictable
according to Theorem 1 and Corollary 3. Moreover, no job Jk can start execution
before S−z (Jk) in any schedule of the set Jn. S−z (Jk) gives the earliest time
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instant at which all the predecessors of Jk and all but at most (m − 1) jobs
with higher priorities than Jk can complete. Hence, if every job Jk is released
at or before S−z (Jk), the schedule of the given P/M/F jobs is the same as their
schedule constructed by assuming that all jobs are released at time 0. From
Theorem 1 and Corollary 3, the theorem follows. ��

Theorem 2 gives us a way to check whether the execution of a set of jobs whose
release times are arbitrary and precedence graph is an in-tree is predictable. For
example, the assumption of Theorem 2 does not hold for the jobs in Figure 3.
The schedule in Figure 3 (d) is constructed based on the assumptions of zero
release times and minimum execution times. According to this schedule, S−z (J2)
is 0, but J2 is released after 0. In contrast, the assumption holds for the system in
Figure 4; hence, the jobs in this system have predictable execution. This system
has the same set of jobs, the same precedence graph and the same number of
processors as the system in Figure 3, except for the release times of jobs. The
release time of each job Jk in Figure 4 is equal to its start time S−z (Jk) in the
schedule in Figure 3 (d) and is indicated by the number on top of each node.

Theorem 3 stated below gives us another condition for predictable execution:
the precedence graph consists of chains and every job has a higher priority than
its successor. To prove it, we need the following lemma.

Lemma 4. Let Ji be a job in a set of P/M/F jobs which is such that (1) its
precedence graph is a set of chains and (2) every job in the set has a priority
higher than its immediate successor. The completion time of Ji is predictable if
its start time is predictable and the start times of all the jobs which start before its
completion time F+(Ji) according to the maximal schedule A+

n are predictable.
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Proof. We need to consider two cases, when Ji has no predecessors and when Ji
has predecessors.

Suppose that Ji has no predecessors. To show that its completion time is
predictable when the assumption of the lemma is true, we suppose for the mo-
ment that F (Ji) > F+(Ji). For this condition to be true, the total amount of
processor time demanded in the interval [S+(Ji), F+(Ji)] by all the jobs with
higher priorities than Ji according to An must be larger than their total de-
mand of time in this interval according to A+

n ; otherwise, since S(Ji) < S+(Ji),
e+k ≥ ek for all k, and the scheduling algorithm is preemptable and migratable,
Ji would be able to complete by F+(Ji). Therefore, there must be at least one
job Jh with a higher priority than Ji which is ready in [S+(Ji), F+(Ji)] accord-
ing to An but is not ready in this interval according to A+

n . (Jh is not in the
subset of all chains each of which contains higher-priority jobs that are ready in
[S+(Ji), F+(Ji)] according to A+

n .) This job Jh must have a predecessor that
has a priority lower than Ji and is not completed before F+(Ji) in A+

n but is
completed before F+(Ji) in An. However, Jh cannot have a priority higher than
Ji because every job has a higher priority than its successors. We therefore have
a contradiction. The supposition F (Ji) > F+(Ji) cannot be true. Similarly, we
can prove that F−(Ji) ≤ F (Ji).
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We prove that the completion time of a job Ji that has predecessors is pre-
dictable by induction. The case above gives us the basis. Suppose that the com-
pletion times of all of its predecessors are predictable. The proof of that the
completion time of Ji is also predictable follows straightforwardly from the as-
sumption of the lemma, the induction hypothesis and the proof for the case
where the job has no predecessor. ��

Theorem 3. When the precedence graph of a set of P/M/F jobs is a set of
chains and every job has a priority higher than its immediate successor, the
start time of every job is predictable, that is, S−(Ji) ≤ S(Ji) ≤ S+(Ji).

Proof. Let Jk be the job that starts earliest among all the jobs inA+
n . Clearly, Jk

starts at its release time; it has the earliest release time among all jobs that have
no predecessors. S−(Jk) ≤ S(Jk) ≤ S+(Jk). We now prove that S(Ji) ≤ S+(Ji)
for any Ji by contradiction, assuming that all the jobs whose start times are
before S+(Ji) in A+

n have predictable start times.
Suppose that S(Ji) > S+(Ji). According to A+

n , at S
+(Ji), a processor is

available to execute Ji. In other words, at S+(Ji), at most (m − 1) of all the
higher-priority jobs that become ready at or earlier than S+(Ji) are not yet
completed and hence are ready. However, according to An, at S+(Ji), at least
m higher-priority jobs are ready. Therefore, there must be a job Jh with a priority
higher than Ji which is ready at S+(Ji) according to An but is not ready at
S+(Ji) according to A+

n . We need to consider two cases: Jh is not a predecessor
of Ji and Jh is a predecessor of Ji.

Because the scheduling algorithm is preemptable and migratable, if Jh is not
a predecessor of Ji, it must have a predecessor Jp that has a priority lower than Ji
and is not completed before S+(Ji) in A+

n but is completed at or before S+(Ji)
in An. Because every job has a priority higher than its successors, Jh, which is
a successor of Jp, cannot have a priority higher than Ji. This fact contradicts
that Jh has a priority higher than Ji.

It is possible that Jh is a predecessor of Ji. At S+(Ji), it is completed accord-
ing to A+

n but is not completed according to An. However, this is not possible
because of the induction hypothesis and Lemma 4.

Similarly, S−(Ji) ≤ S(Ji) can be proved. ��

Corollary 4. When the precedence graph of a set of P/M/F jobs is a set of
chains and every job has a priority higher than its immediate successor, the
completion time of every job is predictable, that is, F−(Ji) ≤ F (Ji) ≤ F+(Ji).

Proof. The proof of this corollary follows straightforwardly from Theorem 3 and
the proof of Lemma 4. ��

Similarly, in the case where the precedence graph of jobs is a forest of in-
trees, when every job has a priority higher than its immediate successor, we
have the following corollaries. Their proofs follow from those of Theorem 3 and
Corollary 4 and hence are omitted.
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Corollary 5. When the precedence graph of a set of P/M/F jobs is an in-tree
forest and every job has a priority higher than its immediate successor, the start
time of every job is predictable, that is, S−(Ji) ≤ S(Ji) ≤ S+(Ji).

Corollary 6. When the precedence graph of a set of P/M/F jobs is an in-tree
forest and every job has a priority higher than its immediate successor, the com-
pletion time of every job is predictable, that is, F−(Ji) ≤ F (Ji) ≤ F+(Ji).

4.2 Arbitrary Precedence Case

As stated in Section 2, in general, when we want to bound the completion time
of a job Ji, we need to consider all the jobs in its interfering subset Xi

n. Again,
Xi

n is a subset of Jn containing jobs that are predecessors of Ji, jobs that have
higher priorities than Ji and predecessors of Ji, and jobs that are predecessors of
these higher-priority jobs. However, in the given interfering set Xi

n and for the
given scheduling algorithm, there may be some lower-priority jobs that can never
complete before the completion of Ji. We want to identify these jobs and their
successors, because we do not need to consider them when computing an upper
bound of F (Ji). The following lemma allows us to do so. It is stated in terms
of bs(Ji), the start time of Ji according to the schedule of J−

n on an infinite
number of processors. bs(Ji) is equal to max(ri,max{bs(Jp) + e−p }) where Jp is
an immediate predecessor of Ji. bs(Ji) is the best possible start time of Ji, and
no job Ji can start before bs(Ji).

Lemma 5. When Ji has no predecessor, Ji completes no later than any lower-
priority job Jk according to the actual schedule An if ri ≤ bs(Jk) and e+i ≤ e−k .

Proof. If ri ≤ bs(Jk), Ji starts no later than Jk in the actual schedule since
the scheduling algorithm is priority-driven. Even when Jk can start before Ji
completes in the actual schedule, Ji completes no later than Jk since e+i ≤ e−k
and Jk has a priority lower than Ji. ��

The algorithm, called Algorithm DPMF , described by the pseudo code in
Figure 5, is based on this lemma. In this description, we use the notation C(1)

i ,
which is the subset of the interfering set Xi

n containing every job Jk in X
i
n that

has a lower priority than Ji and parameters bs(Jk) and e−k larger than or equal
to ri and e+i , respectively. Because of Lemma 5, when Ji has no predecessor, we
do not need to consider the jobs in C(1)

i and their successors for computing an
upper bound of the completion time of Ji.

Algorithm DPMF computes upper bounds of the completion times of pre-
emptable and migratable jobs by performing three steps. Its time complexity is
O(n4). Its first step finds the jobs inXi

n that cannot postpone the completion of
Ji in the actual schedule. Specifically, when Ji has no predecessor, Step 1 finds
the subset C(1)

i of Xi
n and eliminates them from further consideration.
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Algorithm DPMF :

Input: Parameters of the given job set J and the precedence graph G
Output: Upper bounds of completion times of Ji for i = 1, 2, · · · , n
Begin
Step 1. for i = 1 to n do

Ci = Xi
n.

if Ji has no predecessor in G,
{ find the subset C

(1)
i of Xi

n in which every job Jk has a priority
lower than Ji and parameters bs(Jk) and e−k larger than or equal
to ri and e+

i , respectively.
Ci = Ci−C

(1)
i −{successors of jobs in C

(1)
i }. }

endfor
Step 2. Construct a new dependence graph G′i for each Ji for i = 1, 2, · · · , n:

for i = 1 to n do
G′i = subgraph of G induced by Xi

n
for l = 1 to n do

if Jl has no predecessor in G′i, flag[l] = 1
else flag[l] = 0

endfor
for each job Jp in G′i such that flag[p] is 0 and flag[l] is 1 for every

predecessor Jl of Jp do
Insert new dependencies into G′i from each job Jk in Cp to Jp
if Jk has a higher priority than Jp and there is no dependency
from Jk to Jp or any predecessor of Jp in G′i.
flag[p] = 1

endfor
Prune the jobs not in Ci ∪ {Ji} from G′i.

endfor
Step 3. for i = 1 to n do

Schedule the remaining jobs in G′i with their maximum execution
times. An upper bound of F (Ji) = the completion time of Ji
in the generated schedule.

endfor
End

Fig. 5. Pseudo code of Algorithm DPMF

Let Ci be the set Xi
n − C(1)

i − {successors of jobs in C(1)
i }, if Ji has no

predecessor, orXi
n if Ji has a predecessor. When trying to bound the completion

time of Ji, Step 2 of Algorithm DPMF inserts pseudo dependencies to the jobs
in Ci and Ji as follows: we use G′i to denote a new precedence graph after
inserting pseudo dependencies. Initially, G′i is the subgraph of G induced by
Xi

n. In order to construct a new precedence graph G′i, for every job Jp in G
′
i,

a new edge from each job Jk in Cp to Jp is inserted if Jk has a higher priority
than Jp and G′i does not yet contain an edge from Jk to Jp or to any predecessor
of Jp. Then Step 2 prunes the jobs not in Ci ∪ {Ji} from G′i. In Step 3, the
completion time of the job Ji is bounded by Ji’s completion time according to
the schedule of the jobs that are in G′i assuming every job has its maximum
execution time, and their precedence relations are given by G′i.
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Fig. 6. An example illustrating Algorithm DPMF for P/M/F jobs

Theorem 4 allows us to conclude that if Ji can complete by the deadline
di in the schedule of the jobs in G′i generated by Algorithm DPMF , then Ji
always completes by di. Figure 6 illustrates how Algorithm DPMF bounds the
completion time of J5 in Figure 3. Figure 6 (a) is the new precedence graph
G′5 where the dashed edges are the edges added in Step 2. Figure 6 (b) is the
schedule of the five jobs with their maximum execution times and precedence
graph G′5. According to this schedule, J5 completes at time 16. Thus, 16 is the
upper bound of the completion time of J5. In this example, this bound is only
one unit of time higher than the actual completion time of J5, 15, given by
Figure 3. In general, the bounds obtained by this algorithm are loose, and can
be much looser than indicated by this example.

Theorem 4. The completion time F (Ji) of Ji is no later than the completion
time of Ji according to the schedule generated by Algorithm DPMF .
Proof. From Lemma 5, when Ji has no predecessor, the lower-priority jobs in
C

(1)
i do not have a chance to complete before F (Ji) in the actual schedule.

Therefore, if Ji has no predecessor, we do not need to consider the jobs in C
(1)
i

and their successors when computing an upper bound of the completion time
of Ji. This justifies Step 1. After pruning, Ci contains all the jobs that can
possibly start before the completion of Ji in the actual schedule. Algorithm
DPMF inserts new precedence relations into the precedence graph G′i so that
every job in Ci completes before Ji starts. Therefore the theorem follows. ��

5 Conclusion

This paper is concerned with validating timing constraints of dependent jobs that
have arbitrary timing constraints and variable execution times and are scheduled
on processors dynamically in a priority-driven manner. We present conditions
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under which dependent jobs execute in a predictable manner, i.e., the completion
times of jobs are no later when the execution times of some jobs decrease. We
also present algorithms and bounds with which the latest completion times of
all jobs can be determined.

In the literature, scheduling jobs with precedence constraints has been well
studied. In most systems of practical interests, the precedence graphs are re-
stricted to structures no more complicated than trees and forests. Often, all
jobs have identical release times. Execution of jobs in many such systems is pre-
dictable. Consequently, it is possible to find tight bounds to their completion
times with our results. For general precedence structures, however, our results
are less encouraging. Even in the case where jobs have identical release times
and are preemptable and migratable, the bounds on a job set with a general
precedence graph are much looser than the bounds on a job set with a forest of
in-tree precedence graph.

The results presented here, as well as the results on independent jobs in ho-
mogeneous systems and heterogeneous systems in [9,12], make up the theoretical
basis for comprehensive validation methods in dynamic distributed real-time sys-
tems. Methods for bounding the worst-case completion times of jobs that share
resources and have precedence constraints are not yet available. Furthermore, re-
lease time jitter is often unavoidable in real-life systems. The release time jitter
problem needs to be further investigated.
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