Validating Timing Constraints of Dependent Jobs with Variable Execution Times in Distributed Real-Time Systems Hojung Cha¹ and Rhan Ha² Abstract. In multiprocessor and distributed real-time systems, scheduling jobs dynamically on processors can be used to achieve better performance. However, analytical and efficient validation methods for determining whether all the timing constraints are met do not yet exist for systems using modern dynamic scheduling strategies, and exhaustive methods are often infeasible or unreliable since the execution time and release time of each job may vary. In this paper, we present several upper bounds and efficient algorithms for computing the worst-case completion times of dependent jobs in dynamic systems where jobs are dispatched and scheduled on available processors in a priority-driven manner. The bounds and algorithms consider arbitrary release times and variable execution times. We present conditions under which dependent jobs execute in a predictable manner. ## 1 Introduction Many safety-critical real-time applications, (e.g., air-traffic control and factory automation) have timing constraints that must be met for them to be correct. Their timing constraints are often specified in terms of the release times and deadlines of the jobs that make up the system. A job is a basic unit of work to be scheduled and executed. It can begin execution when its data and control dependencies are met only after its $release\ time$, and it must complete by its deadline. The failure of a job to complete by its deadline can lead to a performance degradation or complete failure. We assume here that the scheduler never schedules any job before its release time and focus on the problem of how to validate that every job indeed completes by its deadline when executed according to a given priority-driven discipline used by the scheduler. A scheduling algorithm is *priority-driven* if it never leaves any processor idle intentionally. Such an algorithm can be implemented by assigning priorities to jobs, placing jobs ready for execution in one or more queues and scheduling the jobs with the highest priorities among all jobs in the queue(s) on the available processors. Specifically, we consider here only *dynamic systems*: in ¹ Dept. of Computer Science, Yonsei University, Seoul 120-749, Korea hjcha@cs.yonsei.ac.kr ² Dept. of Computer Engineering, Hongik University, Seoul 121-791, Korea rhanha@cs.hongik.ac.kr a dynamic system, ready jobs are placed in a common queue and are dispatched to available processors in a priority-driven manner. Recently, many real-time load balancing and scheduling algorithms for dynamic systems have been developed. These algorithms are likely to make better use of the processors and achieve a higher responsiveness than the traditional approach to scheduling jobs in multiprocessor and distributed environments. According to the traditional approach, jobs are first statically assigned and bound to processors, and then a uniprocessor scheduling algorithm is used to schedule the jobs on each processor. A system that uses a priority-driven scheduling algorithm can have unexpected timing behavior [1]. A job may complete later where it and other jobs execute for shorter amounts of time and when jobs are released sooner. Consequently, it is impractical and unreliable to validate that all jobs meet their deadlines using exhaustive testing and simulation when their execution times and release times may vary. Recently, several efficient and analytical methods for validating timing constraints of static multiprocessor and distributed systems have been developed, e.g., [2,3,4] (In a static system, jobs are assigned and bound to processors.). These methods are based on worst-case bounds and schedulability conditions for uniprocessor systems [5,6,7,8]. They allow us to bound the completion times of jobs that are scheduled in a priority-driven manner even when their release times and execution times may vary. Several efficient algorithms for computing the worst-case completion times of independent jobs in dynamic systems now exist [9]. This paper is concerned with the case where jobs have dependencies, the processors are identical, and the system is dynamic. The works in [10,11] are also related to the problem solved in this paper. In [10,11], they have studied the validation problem to bound the completion times of jobs on one processor. Our work provides the bounds of completion times of jobs in multiprocessor or distributed systems. The rest of the paper is organized as follows. Section 2 presents the formal definition of the validation problem addressed by the paper. Sections 3 and 4 give conditions for predictable execution and present an efficient algorithm for bounding the completion times of dependent jobs. Conclusions are given in Section 5. ### 2 Problem The general validation problem addressed here and in [9] can be stated as follows: given n jobs, m identical processors, and the priority-driven scheduling algorithm that dynamically schedules the jobs on the processors, determine whether all the jobs meet their deadlines analytically or by using an efficient algorithm. We let $J = \{J_1, J_2, \ldots, J_n\}$ denote the set of jobs. As in [3,4,5,6,7,8] each job J_i has the following parameters: release time r_i , deadline d_i and execution time e_i . These parameters are rational numbers. The actual execution time e_i of J_i is in the range $[e_i^-, e_i^+]$. We call e_i^- its minimum execution time and e_i^+ its maximum execution time. We assume that the scheduler knows the parameters r_i , d_i and $[e_i^-, e_i^+]$ of every job J_i before any job begins execution, but the actual execution time e_i is unknown. The jobs in J are dependent; data and control dependencies between them impose $precedence\ constraints$ in the order of their execution. A job J_i is a predecessor of another job J_j (and J_j is a predecessor of J_i) if J_j cannot begin to execute until J_i completes. We denote this precedence relation by $J_i \prec J_j$. J_i is an $immediate\ predecessor$ of J_j (and J_j is an $immediate\ successor$ of J_i) if $J_i \prec J_j$ and there is no other job J_k such that $J_i \prec J_k \prec J_j$. Two jobs J_i and J_j are independent if neither $J_i \prec J_j$ nor $J_j \prec J_i$. Independent jobs can be executed in any order. We use a $precedence\ graph\ G = (J,R)$ to represent the precedence relations between jobs. There is a node J_i in this graph for each job J_i in J, and there is an edge from J_i to J_j in R whenever J_i is an immediate predecessor of J_j . We say that a job becomes ready when the time is at or after its release time and either it has no predecessor or all of its predecessors are completed, and it remains ready until it completes. We confine our attention to scheduling algorithms that assign fixed priorities to jobs and do not choose priorities based on the actual execution times of the jobs. Therefore, the given scheduling algorithm is completely defined by the list of priorities it assigns to the jobs. Without loss of generality, we assume that the priorities of jobs are distinct. We will always index the job in decreasing priority order (i.e., the priority list is (J_1, J_2, \ldots, J_n) except where it is stated to be otherwise. $J_i = \{J_1, J_2, \ldots, J_i\}$ denotes the subset of jobs with priorities equal to or higher than the priority of J_i . The scheduler maintains a common priority queue and places all ready jobs in the queue. In this paper, we consider the case when jobs are preemptable and migratable. In this case, a ready job can be scheduled on any processor. It may be preempted when a higher priority job becomes ready. Its execution may resume on any processor. We refer the jobs as P/M/Z or P/M/F jobs depending on whether the jobs have identical (zero) release times or fixed arbitrary release times. We will use $J_n^+ = \{J_1^+, J_2^+, \dots, J_n^+\}$ as a shorthand notation to mean that every job has its maximum execution time. Similarly, $J_n^- = \{J_1^-, J_2^-, \dots, J_n^-\}$ means that every job has its minimum execution time. We refer to the schedule of J_n produced by the given algorithm as the actual schedule A_n . To determine whether any job completes in time, we sometimes generate simulated schedules of J_n using the given scheduling algorithm and assuming every job has its maximum execution time or every job has its minimum execution time. In particular, we call the schedule of J_n^+ (or J_n^-) produced by the same algorithm the maximal (or the minimal) schedule A_n^+ (or A_n^-) of J_n . Let $S(J_i)$ be the (actual) start time of J_i , the instant of time at which the execution of J_i begins according to the actual schedule A_n . Let $S^+(J_i)$ and $S^-(J_i)$ be the start times of J_i in the schedules A_n^+ and A_n^- , respectively. We say that the start time of J_i is predictable if $S^-(J_i) \leq S(J_i) \leq S^+(J_i)$. Similarly, let $F(J_i)$ be the (actual) completion time of J_i , the instant at which J_i completes execution according to the actual schedule A_n . The response time of a job is the length of time between its release time and its completion time. Let $F^+(J_i)$ and $F^-(J_i)$ be the completion times of J_i according to the schedules A_n^+ and A_n^- , respectively. The completion times of J_i is said to be predictable if $F^-(J_i) \leq F(J_i) \leq F^+(J_i)$. We say that the execution of J_i is predictable if both its start time and completion time are predictable. In this case, the completion time $F^+(J_i)$ in the schedule A_n^+ minus the release time r_i of J_i gives J_i 's worst-case response time. J_i meets its deadline if $F^+(J_i) \leq d_i$. To find the worst-case completion time of J_i when all the jobs are preemptable, we only need to consider the jobs which are the predecessors of J_i , jobs which have higher priorities than J_i and the predecessors of J_i , and jobs which are predecessors of these higher-priority jobs. To be more precise, we define a new precedence relation R_i^* as follows: Let Y_n^i be the subset of J_n which contains all the jobs that are not successors of J_i . Let R_i^* be the union of (1) the given precedence relation R restricted to the subset Y_n^i and (2) the relation over Y_n^i defined by a graph in which there is a node for each job in Y_n^i and there is an edge from J_i to J_j whenever J_i has a higher priority than J_j . Let X_n^i be the subset of Y_n^i which contains J_i and all the predecessors of J_i under the new relation R_i^* . When we try to find the worst-case completion time of J_i , we must consider the jobs in the subgraph of precedence graph G induced by X_n^i . We call the subset X_n^i the interfering subset of J_i . ## 3 Identical Release Time Case Unlike independent P/M/Z jobs [9], the execution of P/M/Z jobs with precedence constraints is not predictable in general. This fact is illustrated by the example in Figure 1 where the precedence graph is an out-tree. According to the maximal and minimal schedules shown in parts (b) and (c), J_8 's completion times are 8 and 6, respectively. (We omit the values of the execution times here because they are not relevant. It suffices that the execution time of every job in (b) is larger than the execution time of the corresponding job in (c).) Part (d) shows a possible actual schedule obtained when the execution time of every job is between the extreme values used in (b) and (c). According to this actual schedule, J_8 completes at 18. Hence the execution of J_8 is not predictable. In the next section, we will present an algorithm that can be used to bound the completion times of P/M/Z jobs with arbitrary precedence graphs. Here, we examine a special case when all the jobs have identical release times and the precedence graph is a forest of in-trees. The execution of P/M/Z jobs with this type of precedence graph is predictable. Theorem 1 states this fact. To prove it, we need the following lemmas. **Lemma 1.** No job in a set of P/M/Z jobs is preempted in the actual schedule when every job has at most one immediate successor. *Proof.* A job preempts another job if when it becomes ready, all the processors are busy. At the time when the preempting job becomes ready, the number of Fig. 1. Unpredictable execution of P/M/Z jobs in out-trees jobs that are ready increases by at least one. However, when the precedence graph is a forest of in-trees, every job has at most one immediate successor. Moreover, all jobs have the same release time. As each job J_i completes, at most one immediate successor of J_i becomes ready. Hence, as time increases, the number of jobs that are ready to execute cannot increase. The lemma follows. **Lemma 2.** Let $A_n(i,\epsilon)$ be the schedule of the set of n jobs whose parameters and precedence constraints are the same as those of jobs in J_n except that the execution time of J_i is $e_i - \epsilon$ for some $\epsilon > 0$. When every job is a P/M/Z job and the precedence graph is an in-tree forest, the start time of every job J_j according to $A_n(i,\epsilon)$ is no later than its actual start time $S(J_j)$ according to the actual schedule A_n of J_n . Proof. We need to consider only the jobs that start at or later than $F(J_i) - \epsilon$ in A_n . Let J_l be such a job. According to A_n , a processor is available to execute J_l at $S(J_l)$. From Lemma 1, no job is preempted in A_n . Hence at most (m-1) higher-priority jobs that become ready at or before $S(J_l)$ are not yet complete at $S(J_l)$ according to the schedule A_n . In the set of jobs scheduled according to $A_n(i,\epsilon)$, the execution time of every job is no larger than the execution time of the corresponding job in J_n , and as time increases, the number of ready jobs cannot increase. Moreover, from Lemma 1, no job is preempted according to $A_n(i,\epsilon)$. Consequently, we can conclude that according to $A_n(i,\epsilon)$, at most (m-1) higher-priority jobs that become ready at or before $S(J_l)$ are not complete at $S(J_l)$. There is a processor available to execute J_l at or before $S(J_l)$. The lemma follows Corollary 1. Let $A_n^+(i,\epsilon)$ be the schedule of the set of n jobs whose parameters and precedence constraints are the same as those of the jobs in J_n^+ except that the execution time of J_i is $e_i^+ - \epsilon$ for some $\epsilon > 0$. When every job is a P/M/Z job and the precedence graph is an in-tree forest, the start time of every job J_j according to $A_n^+(i,\epsilon)$ is no later than its maximal start time $S^+(J_j)$ according to the maximal schedule A_n^+ of J_n^+ . Let $A_n^+[k]$, for $1 \le k \le n$, be the schedule of the set of n jobs which is such that (1) the precedence constraints of all jobs are the same as those of the jobs in J_n , (2) the execution time of J_j is e_j for $j = 1, 2, \dots, k$, and (3) the execution time of J_j is e_j^+ for $j = k + 1, k + 2, \dots, n$. Let $A_n^+[0]$ be another notation for A_n^+ . **Lemma 3.** When the precedence graph of a set of n P/M/Z jobs is an in-tree forest, the start time of every job according to $\mathbf{A}_{n}^{+}[k]$ is no later than the start time of the corresponding job according to the schedule $\mathbf{A}_{n}^{+}[k-1]$ for $1 \leq k \leq n$. *Proof.* We note that $A_n^+[1]$ is just $A_n^+(1, e_1^+ - e_1)$ defined in Corollary 1. From this corollary, the start time of every job in $A_n^+[1]$ is no later than the maximal start time of the corresponding job in A_n^+ . To show that the lemma is true for k > 1, let J_l be a job which starts at or after $(e_k^+ - e_k)$ time units before the completion time of J_k^+ according to $A_n^+[k-1]$. Because no job is preempted, at the time t when J_l starts in $A_n^+[k-1]$, at most (m-1) higher-priority jobs that become ready at or before t are not complete. The number of higher-priority jobs that become ready at or before t but are not complete at t cannot increase when the execution time of J_k^+ is reduced from e_k^+ to e_k because every job has at most one immediate successor and the release times of all jobs are the same. Consequently, according to $A_n^+[k]$, there are at most (m-1) ready jobs with priorities higher than J_l at the time t. This means that J_l can start no later than t in $A_n^+[k]$. Let $A_n[k]$, for $1 \leq k \leq n$, be the schedule of the set of n jobs whose precedence constraints are the same as those of jobs in J_n , the execution time of J_j is e_j^- for $j=1,2,\cdots,k$ and the execution time of J_j is e_j for $j=k+1,k+2,\cdots,n$. $A_n[0]$ is another notation of A_n . The proof of the following corollary is similar to that of Lemma 3. **Corollary 2.** When the precedence graph of a set of n P/M/Z jobs is an in-tree forest, the start time of every job according to $\mathbf{A}_n[k]$ is no later than the start time of the corresponding job according to the schedule $\mathbf{A}_n[k-1]$ for $1 \le k \le n$. **Theorem 1.** When the precedence graph of a set of n P/M/Z jobs is an intree forest, the start time of every job is predictable, that is, $S^-(J_i) \leq S(J_i) \leq S^+(J_i)$. *Proof.* We note that $A_n^+[n]$ is just the actual schedule A_n . That the start time $S(J_i)$ of every job J_i in A_n is no later than $S^+(J_i)$ in A_n^+ follows straightforwardly from Lemma 3. Similarly, the fact that $S^-(J_i) \leq S(J_i)$ follows from Corollary 2. **Corollary 3.** When the precedence graph of a set of n P/M/Z jobs is an in-tree forest, the completion time of every job is predictable, that is, $F^-(J_i) \leq F^+(J_i)$. ## 4 Arbitrary Release Time Case In contrast to P/M/Z jobs, the execution of jobs with arbitrary release times is not predictable even when the precedence graph of jobs is a set of chains. This fact is illustrated by the example in Figure 2. The simple system in this figure contains eight jobs and two identical processors. The release time of each job is indicated by a number on top of each node in the precedence graph. The execution times of all the jobs are known except for J_3 . Its execution time can be any value in the range [2,8]. Parts (b), (c) and (d) of this figure show the maximal, minimal and actual schedules, respectively. The completion time of J_6 in the actual schedule is 13; it is later than its completion time of 11 in the maximal schedule. Similarly, the execution of P/M/F jobs is not predictable when the precedence graph is a forest of in-trees. This is illustrated in Figure 3. In this example, all jobs are released at 0 except J_2 whose release time is marked by an arrow in the schedules. We note that the execution of J_4 and J_5 is not predictable. However, in the following special cases, we have predictable execution. #### 4.1 Predictable Execution Case We consider here a set of P/M/F jobs whose precedence graph is a forest of in-trees. The execution of every job is predictable when the assumption of the following theorem holds. The assumption is stated in terms of $S_z^-(J_i)$, which is the start time of J_i in the schedule of J_n^- constructed by assuming that all jobs are released at time 0. **Theorem 2.** When the precedence graph of a set J_n of P/M/F jobs is a forest of in-trees, the execution of every job is predictable if every job J_k is released at or before $S_z^-(J_k)$. *Proof.* When all the jobs are released at time 0, their execution is predictable according to Theorem 1 and Corollary 3. Moreover, no job J_k can start execution before $S_z^-(J_k)$ in any schedule of the set J_n . $S_z^-(J_k)$ gives the earliest time 90 **Fig. 2.** Unpredictable execution of P/M/F **Fig. 3.** Unpredictable execution of P/M/F jobs in chains jobs in in-trees instant at which all the predecessors of J_k and all but at most (m-1) jobs with higher priorities than J_k can complete. Hence, if every job J_k is released at or before $S_z^-(J_k)$, the schedule of the given P/M/F jobs is the same as their schedule constructed by assuming that all jobs are released at time 0. From Theorem 1 and Corollary 3, the theorem follows. Theorem 2 gives us a way to check whether the execution of a set of jobs whose release times are arbitrary and precedence graph is an in-tree is predictable. For example, the assumption of Theorem 2 does not hold for the jobs in Figure 3. The schedule in Figure 3 (d) is constructed based on the assumptions of zero release times and minimum execution times. According to this schedule, $S_z^-(J_2)$ is 0, but J_2 is released after 0. In contrast, the assumption holds for the system in Figure 4; hence, the jobs in this system have predictable execution. This system has the same set of jobs, the same precedence graph and the same number of processors as the system in Figure 3, except for the release times of jobs. The release time of each job J_k in Figure 4 is equal to its start time $S_z^-(J_k)$ in the schedule in Figure 3 (d) and is indicated by the number on top of each node. Theorem 3 stated below gives us another condition for predictable execution: the precedence graph consists of chains and every job has a higher priority than its successor. To prove it, we need the following lemma. **Lemma 4.** Let J_i be a job in a set of P/M/F jobs which is such that (1) its precedence graph is a set of chains and (2) every job in the set has a priority higher than its immediate successor. The completion time of J_i is predictable if its start time is predictable and the start times of all the jobs which start before its completion time $F^+(J_i)$ according to the maximal schedule A_n^+ are predictable. Fig. 4. Predictable execution of P/M/F jobs in in-trees *Proof.* We need to consider two cases, when J_i has no predecessors and when J_i has predecessors. Suppose that J_i has no predecessors. To show that its completion time is predictable when the assumption of the lemma is true, we suppose for the moment that $F(J_i) > F^+(J_i)$. For this condition to be true, the total amount of processor time demanded in the interval $[S^+(J_i), F^+(J_i)]$ by all the jobs with higher priorities than J_i according to $\boldsymbol{A_n}$ must be larger than their total demand of time in this interval according to A_n^+ ; otherwise, since $S(J_i) < S^+(J_i)$, $e_k^+ \geq e_k$ for all k, and the scheduling algorithm is preemptable and migratable, J_i would be able to complete by $F^+(J_i)$. Therefore, there must be at least one job J_h with a higher priority than J_i which is ready in $[S^+(J_i), F^+(J_i)]$ according to A_n but is not ready in this interval according to A_n^+ . $(J_h$ is not in the subset of all chains each of which contains higher-priority jobs that are ready in $[S^+(J_i), F^+(J_i)]$ according to A_n^+ .) This job J_h must have a predecessor that has a priority lower than J_i and is not completed before $F^+(J_i)$ in A_n^+ but is completed before $F^+(J_i)$ in A_n . However, J_h cannot have a priority higher than J_i because every job has a higher priority than its successors. We therefore have a contradiction. The supposition $F(J_i) > F^+(J_i)$ cannot be true. Similarly, we can prove that $F^-(J_i) \leq F(J_i)$. We prove that the completion time of a job J_i that has predecessors is predictable by induction. The case above gives us the basis. Suppose that the completion times of all of its predecessors are predictable. The proof of that the completion time of J_i is also predictable follows straightforwardly from the assumption of the lemma, the induction hypothesis and the proof for the case where the job has no predecessor. **Theorem 3.** When the precedence graph of a set of P/M/F jobs is a set of chains and every job has a priority higher than its immediate successor, the start time of every job is predictable, that is, $S^-(J_i) \leq S(J_i) \leq S^+(J_i)$. *Proof.* Let J_k be the job that starts earliest among all the jobs in A_n^+ . Clearly, J_k starts at its release time; it has the earliest release time among all jobs that have no predecessors. $S^-(J_k) \leq S(J_k) \leq S^+(J_k)$. We now prove that $S(J_i) \leq S^+(J_i)$ for any J_i by contradiction, assuming that all the jobs whose start times are before $S^+(J_i)$ in A_n^+ have predictable start times. Suppose that $S(J_i) > S^+(J_i)$. According to A_n^+ , at $S^+(J_i)$, a processor is available to execute J_i . In other words, at $S^+(J_i)$, at most (m-1) of all the higher-priority jobs that become ready at or earlier than $S^+(J_i)$ are not yet completed and hence are ready. However, according to A_n , at $S^+(J_i)$, at least m higher-priority jobs are ready. Therefore, there must be a job J_h with a priority higher than J_i which is ready at $S^+(J_i)$ according to A_n but is not ready at $S^+(J_i)$ according to A_n^+ . We need to consider two cases: J_h is not a predecessor of J_i and J_h is a predecessor of J_i . Because the scheduling algorithm is preemptable and migratable, if J_h is not a predecessor of J_i , it must have a predecessor J_p that has a priority lower than J_i and is not completed before $S^+(J_i)$ in A_n^+ but is completed at or before $S^+(J_i)$ in A_n . Because every job has a priority higher than its successors, J_h , which is a successor of J_p , cannot have a priority higher than J_i . This fact contradicts that J_h has a priority higher than J_i . It is possible that J_h is a predecessor of J_i . At $S^+(J_i)$, it is completed according to A_n^+ but is not completed according to A_n . However, this is not possible because of the induction hypothesis and Lemma 4. Similarly, $S^{-}(J_i) \leq S(J_i)$ can be proved. **Corollary 4.** When the precedence graph of a set of P/M/F jobs is a set of chains and every job has a priority higher than its immediate successor, the completion time of every job is predictable, that is, $F^-(J_i) \leq F(J_i) \leq F^+(J_i)$. *Proof.* The proof of this corollary follows straightforwardly from Theorem 3 and the proof of Lemma 4. \Box Similarly, in the case where the precedence graph of jobs is a forest of intrees, when every job has a priority higher than its immediate successor, we have the following corollaries. Their proofs follow from those of Theorem 3 and Corollary 4 and hence are omitted. **Corollary 5.** When the precedence graph of a set of P/M/F jobs is an in-tree forest and every job has a priority higher than its immediate successor, the start time of every job is predictable, that is, $S^-(J_i) \leq S(J_i) \leq S^+(J_i)$. **Corollary 6.** When the precedence graph of a set of P/M/F jobs is an in-tree forest and every job has a priority higher than its immediate successor, the completion time of every job is predictable, that is, $F^-(J_i) \leq F(J_i) \leq F^+(J_i)$. ### 4.2 Arbitrary Precedence Case As stated in Section 2, in general, when we want to bound the completion time of a job J_i , we need to consider all the jobs in its interfering subset X_n^i . Again, X_n^i is a subset of J_n containing jobs that are predecessors of J_i , jobs that have higher priorities than J_i and predecessors of J_i , and jobs that are predecessors of these higher-priority jobs. However, in the given interfering set X_n^i and for the given scheduling algorithm, there may be some lower-priority jobs that can never complete before the completion of J_i . We want to identify these jobs and their successors, because we do not need to consider them when computing an upper bound of $F(J_i)$. The following lemma allows us to do so. It is stated in terms of $bs(J_i)$, the start time of J_i according to the schedule of J_n^- on an infinite number of processors. $bs(J_i)$ is equal to $max(r_i, max\{bs(J_p) + e_p^-\})$ where J_p is an immediate predecessor of J_i . $bs(J_i)$ is the best possible start time of J_i , and no job J_i can start before $bs(J_i)$. **Lemma 5.** When J_i has no predecessor, J_i completes no later than any lower-priority job J_k according to the actual schedule A_n if $r_i \leq bs(J_k)$ and $e_i^+ \leq e_k^-$. *Proof.* If $r_i \leq bs(J_k)$, J_i starts no later than J_k in the actual schedule since the scheduling algorithm is priority-driven. Even when J_k can start before J_i completes in the actual schedule, J_i completes no later than J_k since $e_i^+ \leq e_k^-$ and J_k has a priority lower than J_i . The algorithm, called Algorithm \mathcal{DPMF} , described by the pseudo code in Figure 5, is based on this lemma. In this description, we use the notation $C_i^{(1)}$, which is the subset of the interfering set X_n^i containing every job J_k in X_n^i that has a lower priority than J_i and parameters $bs(J_k)$ and e_k^- larger than or equal to r_i and e_i^+ , respectively. Because of Lemma 5, when J_i has no predecessor, we do not need to consider the jobs in $C_i^{(1)}$ and their successors for computing an upper bound of the completion time of J_i . Algorithm \mathcal{DPMF} computes upper bounds of the completion times of preemptable and migratable jobs by performing three steps. Its time complexity is $O(n^4)$. Its first step finds the jobs in X_n^i that cannot postpone the completion of J_i in the actual schedule. Specifically, when J_i has no predecessor, Step 1 finds the subset $C_i^{(1)}$ of X_n^i and eliminates them from further consideration. Algorithm \mathcal{DPMF} : End ``` Input: Parameters of the given job set J and the precedence graph G Output: Upper bounds of completion times of J_i for i=1,2,\cdots,n Begin Step 1. for i=1 to n do ``` ``` C_i = X_n^i. if J_i has no predecessor in G, { find the subset C_i^{(1)} of X_n^i in which every job J_k has a priority lower than J_i and parameters bs(J_k) and e_k^- larger than or equal to r_i and e_i^+, respectively. C_i = C_i - C_i^{(1)} - \{\text{successors of jobs in } C_i^{(1)}\}. \} endfor Step 2. Construct a new dependence graph G'_i for each J_i for i=1,2,\cdots,n: for i = 1 to n do G'_i = \text{subgraph of } G \text{ induced by } X_n^i for l = 1 to n do if J_l has no predecessor in G'_i, flag[l] = 1 else flag[l] = 0 for each job J_p in G'_i such that flag[p] is 0 and flag[l] is 1 for every predecessor J_l of J_p do Insert new dependencies into G'_i from each job J_k in C_p to J_p if J_k has a higher priority than J_p and there is no dependency from J_k to J_p or any predecessor of J_p in G'_i. \mathrm{flag}[p]=1 endfor Prune the jobs not in C_i \cup \{J_i\} from G'_i. endfor Step 3. for i = 1 to n do Schedule the remaining jobs in G'_i with their maximum execution times. An upper bound of F(J_i) = the completion time of J_i in the generated schedule. endfor ``` Fig. 5. Pseudo code of Algorithm \mathcal{DPMF} Let C_i be the set $X_n^i - C_i^{(1)}$ – {successors of jobs in $C_i^{(1)}$ }, if J_i has no predecessor, or X_n^i if J_i has a predecessor. When trying to bound the completion time of J_i , Step 2 of Algorithm \mathcal{DPMF} inserts pseudo dependencies to the jobs in C_i and J_i as follows: we use G_i' to denote a new precedence graph after inserting pseudo dependencies. Initially, G_i' is the subgraph of G induced by X_n^i . In order to construct a new precedence graph G_i' , for every job J_p in G_i' , a new edge from each job J_k in C_p to J_p is inserted if J_k has a higher priority than J_p and G_i' does not yet contain an edge from J_k to J_p or to any predecessor of J_p . Then Step 2 prunes the jobs not in $C_i \cup \{J_i\}$ from G_i' . In Step 3, the completion time of the job J_i is bounded by J_i 's completion time according to the schedule of the jobs that are in G_i' assuming every job has its maximum execution time, and their precedence relations are given by G_i' . **Fig. 6.** An example illustrating Algorithm \mathcal{DPMF} for P/M/F jobs Theorem 4 allows us to conclude that if J_i can complete by the deadline d_i in the schedule of the jobs in G'_i generated by Algorithm \mathcal{DPMF} , then J_i always completes by d_i . Figure 6 illustrates how Algorithm \mathcal{DPMF} bounds the completion time of J_5 in Figure 3. Figure 6 (a) is the new precedence graph G'_5 where the dashed edges are the edges added in Step 2. Figure 6 (b) is the schedule of the five jobs with their maximum execution times and precedence graph G'_5 . According to this schedule, J_5 completes at time 16. Thus, 16 is the upper bound of the completion time of J_5 . In this example, this bound is only one unit of time higher than the actual completion time of J_5 , 15, given by Figure 3. In general, the bounds obtained by this algorithm are loose, and can be much looser than indicated by this example. **Theorem 4.** The completion time $F(J_i)$ of J_i is no later than the completion time of J_i according to the schedule generated by Algorithm \mathcal{DPMF} . Proof. From Lemma 5, when J_i has no predecessor, the lower-priority jobs in $C_i^{(1)}$ do not have a chance to complete before $F(J_i)$ in the actual schedule. Therefore, if J_i has no predecessor, we do not need to consider the jobs in $C_i^{(1)}$ and their successors when computing an upper bound of the completion time of J_i . This justifies Step 1. After pruning, C_i contains all the jobs that can possibly start before the completion of J_i in the actual schedule. Algorithm \mathcal{DPMF} inserts new precedence relations into the precedence graph G_i' so that every job in C_i completes before J_i starts. Therefore the theorem follows. ## 5 Conclusion This paper is concerned with validating timing constraints of dependent jobs that have arbitrary timing constraints and variable execution times and are scheduled on processors dynamically in a priority-driven manner. We present conditions under which dependent jobs execute in a predictable manner, i.e., the completion times of jobs are no later when the execution times of some jobs decrease. We also present algorithms and bounds with which the latest completion times of all jobs can be determined. In the literature, scheduling jobs with precedence constraints has been well studied. In most systems of practical interests, the precedence graphs are restricted to structures no more complicated than trees and forests. Often, all jobs have identical release times. Execution of jobs in many such systems is predictable. Consequently, it is possible to find tight bounds to their completion times with our results. For general precedence structures, however, our results are less encouraging. Even in the case where jobs have identical release times and are preemptable and migratable, the bounds on a job set with a general precedence graph are much looser than the bounds on a job set with a forest of in-tree precedence graph. The results presented here, as well as the results on independent jobs in homogeneous systems and heterogeneous systems in [9,12], make up the theoretical basis for comprehensive validation methods in dynamic distributed real-time systems. Methods for bounding the worst-case completion times of jobs that share resources and have precedence constraints are not yet available. Furthermore, release time jitter is often unavoidable in real-life systems. The release time jitter problem needs to be further investigated. **Acknowledgement.** This work is supported by the University Research Program of the Ministry of Information & Communication in republic of Korea (2001-076-3) and BK(Grant 991031001). #### References - Graham, R.: Bounds on multiprocessing timing anomalies. SIAM Journal of Applied Mathematics. 17(2) (1969) 416–429 - Sha, L., Sathaye, S.: A systematic approach to designing distributed real-time systems. IEEE Computer. 26(9) (1993) 68–78 - 3. Rajkumar, L. Sha, L, Lehoczky, J.: Real-time synchronization protocols for multiprocessors. Proc. of IEEE 9th Real-Time Systems Symposium. (1988) 259–269 - 4. Sun, J., Bettati, R., Liu, J.: An end-to-end approach to schedule tasks with shared resources in multiprocessor systems. Proc. of IEEE 11th Workshop on Real-Time Operating Systems and Software. (1994) 18–22 - Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard-realtime environment. Journal of the Association for Computing Machinery. 20(1) (1973) 46–61 - 6. Lehoczky, J., Sha, L., Ding, Y.: The rate monotone scheduling algorithm: Exact characterization and average case behavior. Proc. of IEEE 10th Real-Time Systems Symposium. (1989) 166–171 - 7. Han, C., Tyan, H.: A better polynomial-time schedulability test for teal-time fixed-priority scheduling algorithms. Proc. of IEEE 18th Real-Time Systems Symposium. (1997) 36–45 - 8. Palencia, J., Harbour, M.: Schedulability analysis for tasks with static and dynamic offsets. Proc. of IEEE 19th Real-Time Systems Symposium. (1998) 26–37 - 9. Liu, J., Ha, R.: Methods for validating real-time constraints. Journal of Systems and Software. **30** (1995) 85–98 - 10. Sun, J., Liu, J.: Bounding completion times of jobs with arbitrary release times and variable execution times. Proc. of IEEE 17th Real-Time Systems Symposium. (1996) 2-12 - 11. Meyer, M., Wong-Toi, H.: Schedulability analysis of acyclic processes. Proc. of IEEE 19th Real-Time Systems Symposium. (1998) 274–283 - 12. Ha, R., Cha, H., Liu, J.: Validating real-time constraints in heterogeneous multiprocessor and distributed systems. Journal of Systems Integration. **9(3)** (1999) 207–222