An Analysis of Zero-Clairvoyant Scheduling

K. Subramani

Lane Department of Computer Science and Electrical Engineering,
West Virginia University,
Morgantown, WV
ksmani@csee.wvu.edu

Abstract. In the design of real-time systems, it is often the case that
certain process parameters, such as its execution time are not known
precisely. The challenge in real-time system design is to develop tech-
niques that efficiently meet the requirements of impreciseness. Tradi-
tional models tend to simplify the issue of impreciseness by assuming
worst-case values. This assumption is unrealistic and at the same time,
may cause certain constraints to be violated at run-time. In this paper,
we study the problem of scheduling a set of ordered, non-preemptive
jobs under non-constant execution times. Typical applications for vari-
able execution time scheduling include process scheduling in Real-time
Operating Systems such as Maruti, compiler scheduling, database trans-
action scheduling and automated machine control. An important feature
of application areas such as robotics is the interaction between execution
times of various processes. We explicitly model this interaction through
the representation of execution time vectors as points in convex sets. Our
algorithms do not assume any knowledge of the distributions of execu-
tion times, i.e. they are zero-clairvoyant. We present both sequential and
parallel algorithms for determining the existence of a zero-clairvoyant
schedule.

1 Introduction

Scheduling strategies for real-time systems confront two principal issues that are
not addressed by traditional scheduling models viz. parameter variability and
the existence of complex timing constraints between constituent jobs. Imprecise-
ness in problem data is of both theoretical and practical significance. From an
empirical perspective, system designers have used worst-case values in order to
address non-determinism of execution time values [Pin95]. However, the assump-
tion that every job will have an execution time equal to the maximum value in
its allowable range is unrealistic and at the same time, may cause constraint
violation at run-time. In this paper, we study the problem of scheduling a set
of ordered, non-preemptive jobs with non-constant execution times, with the
goal of obtaining a single, rational, start time vector, such that the constraints
on the jobs are satisfied. We explicitly model execution time non-determinism
through convex sets. To the best of our knowledge, our work represents the first
effort in studying this generalization of execution time domains. Our algorithm

J.-P. Katoen and P. Stevens (Eds.): TACAS 2002, LNCS 2280, pp. 98-{112] 2002.
© Springer-Verlag Berlin Heidelberg 2002

An Analysis of Zero-Clairvoyant Scheduling 99

is Zero-Clairvoyant in that it makes no assumptions about the distribution of
execution times; we present both sequential and parallel algorithms for determin-
ing the existence of such a schedule. Zero-clairvoyant schedules are also called
Static schedules, since the schedule in every single window is the same (with
appropriate offsets.

We shall be concerned with the following problems:

(a) Determining the static schedulability of a job set in a periodic real-time
system (defined in Section §2),
(b) Determining the dispatch vector of the job set in a scheduling window.

The rest of this paper is organized as follows: In Section §2] we detail the
static scheduling problem and pose the static schedulability query. The suc-
ceeding section, viz. Section {3 motivates the necessity for Static Scheduling,
while Section §] describes related approaches to this problem. Section §5] com-
mences the process of answering the static schedulability query posed in Section
42 through the application of conver minimization algorithms. The algorithm
we present is very general, in that it is applicable as long as the execution time
vectors belong to a convex set and the constraints on the system are linear.
A straightforward parallelization of the algorithm is provided, subsequent to
the complexity analysis. Section §fl specializes the algorithm in Section 8Bl to a
number of interesting restrictions. We conclude in Section 7] by tabulating the
results discussed in this paper.

2 Statement of Problem

2.1 Job Model

Assume an infinite time-axis divided into windows of length L, starting at time
t = 0. These windows are called periods or scheduling windows. There is a set of
non-preemptive, ordered jobs, J = {J1, Jo, ..., J, } that execute in each schedul-
ing window.

2.2 Constraint Model
The constraints on the jobs are described by System ([II):
Als e]T <b, ecE, (1)
where,

— A is an m X 2.n rational matrix, b is a rational m—vector; (A, b) is called
the constraint matrix;
— E is an arbitrary convex set;

! We shall be using the terms Static and Zero-Clairvoyant interchangeably, for the
rest of this paper

100 K. Subramani

— 8 =1$1,82,...,8y] is the start time vector of the jobs, and
— e=ley,e9,...,e,] € E is the execution time vector of the jobs

In this work, we consider generalized linear constraints among jobs i.e. those
that can be expressed in the form: Z?:l a;.8; + b;.e; < k, for arbitrary rationals
Qj, bi, k.

The convex set E serves to model the following situations:

1. Execution time variability - In real-time systems such as Maruti [MKAT92],
a number of statistical runs are executed on jobs, to determine upper and
lower bounds on their running time under various conditions. These intervals
provide a stronger confidence factor than that provided by assuming constant
values for execution times. Accordingly, the convex set E can be restricted to
an axis-parallel hyper-rectangle (aph) represented by: [l1,u1] X [la, ua] ... X
[, Un)].

2. Execution time interaction - In power applications, the execution of processes
are constrained through requirements such as: The total power consumed in
a cycle is bounded by k. Note that the power consumed is proportional to the
square of the execution time. Consequently, this situation can be modeled
by restricting E to the sphere represented by: €3 + €3 + ... + €2 < r2, for
suitably chosen 7.

Remark: 21 To the best of our knowledge, this work is the first attempt at
modeling execution time interaction within a scheduling paradigm.

2.3 Query Model

Before we state the schedulability query, a few definitions are in order.

Definition 1. Static (Zero Clairvoyant) Schedule - A schedule for a set of jobs
that assumes no knowledge of their execution times prior to the execution of the
complete job set.

Observe that a static schedule is perforce a rational vector, i.e. no online
computation of schedules is permitted.
In this paper, we are concerned with the following problems:

1. Determining whether there exists a single rational vector s € R, such
that the set of constraints represented by System (d]) is satisfied. This
corresponds to deciding the static schedulability query, which is
carried out by the offline schedulability analyzer,

2. Computing the dispatch vectors for the current scheduling window, which
is carried out by the online dispatcher. In Static scheduling, the online dis-
patching is obviated by the fact that deciding the static schedulability query
coincides with the generation of the dispatch schedule.

An Analysis of Zero-Clairvoyant Scheduling 101
We are now ready to state the static schedulability query formally:

ds =[s1,82...5,] Ve=le1,ea,...en) € E Als,e]<b, 7 (2)

The combination of the Job Model, the Constraint Model and the Query
Model, together constitute an instance of a scheduling problem in the E-T-C
scheduling framework [SubOl.

3 Motivation

One of the fundamental aspects of real-time scheduling is the recognition of in-
terdependencies among jobs [DMP91l/Sak94] and the conversion of event-based
specifications into temporal distance constraints between jobs [Das85IJMB86]. For
instance, the event-based requirement: Wait 50 ms after the first message has
been dispatched before dispatching the next message spawns the following tempo-
ral distance constraint: s;+50 < s;, where s; and s; denote the dispatch times of
successive invocations of the message generating job. Real-Time Operating Sys-
tems, such as Maruti [LTCARIMATINMKATIZ] and MARS [DRSKRY|, permit
interaction of jobs through linear relationships between their start and execution
times. The Real-Time specification Language MPL (Maruti Programming Lan-
guage) [SASA94] explicitly includes programmer constructs that specify tempo-
ral constraints between processes (jobs). These constructs are easily transformed
into linear relationships between the start and execution times of the jobs. Real-
time database applications involve the scheduling of transactions; the execution
of these transactions is constrained through linear relationships [BEW97]. In
database transactions, temporal constraints are used to specify when processes
can access a particular data item or write out a particular data value; these
constraints are also easily expressible as relationships between the start times of
these processes. Static Scheduling is the only refuge of real-time systems which
do not permit the online computation of schedules.

Traditional models use worst-case values for execution time variables. The
following example establishes that using worst-case values for execution times
will not necessarily provide a valid solution.

Example 1. Consider the following constraint system imposed on a job set with
two jobs viz. {J1, J2}.

Jp finishes before J; commences: s; + €1 < so,

Jo commences within 1 unit of Jy finishing: so < s7 +e1 + 1,
Jo starts at or before time t = 6: 55 < 6

e1 € [47 6]

=W

2 In the E-T-C real-time scheduling framework, a scheduling problem is completely
described, by describing the execution time domain, the nature of the constraint set
and the type of schedulability query as a triplet.

102 K. Subramani

Substituting the worst-case time for e, i.e. 6 in the constraints, we obtain:

5146 < s9, (3)
S0 <s1+7 (4)
So S 6 (5)

It is not hard to see (graphically) that the only solution to the above system

is:
S1| 0
S92 o 6
However, during actual execution, suppose e; = 4. Then, we have,

s >s1+e +1

thereby violating the second constraint. In Section §5.2] we will show that the
above constraint system is infeasible, i.e. there do not exist start times that can
guarantee the meeting of all constraints, for all execution times.

4 Related Work

Scheduling in real-time systems has received considerable attention in system de-
sign research [Sak94JSB94IHGI3]. Variations of the problem that we are study-
ing have been studied in [Sak94], [HL89], [HLI2b| and [HL92a)]. This problem is
briefly mentioned in [Sak94| as part of parametric scheduling, however no algo-
rithm is presented for the general case. In [HL89/HLI2b], the problem of schedul-
ing real-time tasks under distance and separation constraints is considered, but
the execution times are regarded as constant. To the best of our knowledge, our
work represents the first attempt at studying the Static Scheduling problem,
in its generality. Here, we focus on the problem of scheduling a set of jobs, in
which the ordering sequence is known (and supplied as part of the input), but
there exist complex inter-job dependencies, captured through linear relationships
between their start and execution times. Although we restrict ourselves to ad-
dressing the feasibility of the job system, the judicious use of objective functions
can be used to improve the quality of our solutions. The determination of a
feasible schedule coincides with the generation of a static dispatch-calendar that
contains the dispatching information for each job: e.g. s; = 2; 55 = 15; 83 = 24,
is a dispatch-calendar for a 3-job system.

5 The Static Scheduling Algorithm

We can interpret the static schedulability query (2) as asking whether there
exists a rational start time vector s, without any dependencies on the execution
times. The static approach is to work individually with each constraint and find
the execution times that make the constraint tight (or binding). We then argue

An Analysis of Zero-Clairvoyant Scheduling 103

in Section that the strategy is correct, inasmuch as the goal is to produce a
single start time vector s that holds for all execution time vectors e € F.

We formalize the ideas discussed above into Algorithm (B.1I), which decides
the static schedulability query for arbitrary, convex-constrained execution time
vectors and arbitrary constraint sets between the start and execution times of
the jobs.

Function STATIC-SCHEDULER (E, A, b)

1: {E is the execution time domain and A[s, e] < b is the constraint system}
2: Rewrite the constraint matrix as: G.s < b — H.e.

3: Set r = [rl,*rg,...,rm}T =b—-—H.e
{ each r; is an affine function of e = [e1, ez, ..., ex]}
4: for (i=1 to m) do
5. Let p; = mingr; { p; is a rational number}
6: end for
7: if (s: G.s < p # ¢) then
8: return(System has static schedule s)

{ G.s < p is the Static Polytope}
9: else
10: return(System has no static schedule)
11: end if

Algorithm 5.1: Static Scheduling Algorithm

The principal step in the algorithm is the reduction of execution time vari-
ables in the constraints to rational numbers, through convex minimization (Step
5). Once all constraints are so reduced, we get a simple linear system in the
start time variables. This linear system is called the Static Polytope. We declare
that System (I) is statically schedulable (i.e. query (2) is true) if and only if the
Static Polytope is non-empty.

We note that Algorithm (5.1) is the offline schedulability analyzer. In case of
Static Scheduling, online computation during dispatching is unnecessary, since
the determination of feasibility coincides with the generation of the dispatch
schedule.

5.1 Example

Before proceeding with proving the correctness of the STATIC-SCHEDULER()
algorithm, we present an example to demonstrate our approach.

Ezample 2. Consider the two job set {Ji, Jo}, with execution times {e,es},
constrained through the following convex domain:

—e1 € [076],62 S [0,6}
—e1tex <4

104 K. Subramani

Figure describes the domain.
Let the system have the following constraints:

1. J; finishes execution at or before job Jy commences: s1 + €7 < so.
2. Jo finishes at or before 12 units: so + ey < 12.

Expressing the constraints in matrix form, we get :
S1
1-110 2| - 0
01 01| |er| — |12
€2
We first rewrite this system to separate the s and the e vectors:

1—1 _81_ 10 €1 0_
<
01 | |so] ™ {0 1} LJ = [12_

Moving the e variables to the RHS, we get
1—1 _81_ < 0 . 10 61_
101] [s2] — |12 01] |ez]
1-1 S1 —€1
<
o7 [= L)

Minimizing —e; over the constraint domain in Figure (), we get p; = —4.
Likewise, minimizing 12 — es over the constraint domain, we get ps = 8. Thus,
the static polytope is determined by:

1-1 S1 —4
. <
(07)[2)= 5]
as shown in Figure (2).
Using a Linear Programming solver [Ber95], we solve the above system, to

-1

Lemma 1. If the final polytoprE in algorithm (51)) is non-empty, then any point
on it serves as a suitable vector of start times 8 = [s1, 82, ..., Sn]-

which is equivalent to:

5.2 Correctness

3 The resultant polyhedron will always be bounded because the jobs are ordered, i.e.
s1 < s2 < ...sp and the last job has a deadline, i.e. s, + e, < L, where L represents
the time at which the current scheduling window expires.

An Analysis of Zero-Clairvoyant Scheduling 105

€

e.+e,> ¢

(0,6)

€
(6,0)

]

vor]

oS

Ag
NNANNNN

s,

o
¥

&
W

5

=
")
X
%
o
;4
")
)
%

SN
5
L
R

/\

SN

S
4

e
AL

Ay
AL NN
A
it

5%
ek
e
it
el
i
L,
A
s

AT
o

s
X
e
N

/\
!
AN
%

Ty
b
o
o

(0,6)

s
N,

S
WSt
£
NS
g

,\
&
\{,

o,
N

The Static Polytope

Fig. 2. The Static Polytope for Example (2)

We use a; to denote the i** row of A, g; to denote the ith row of G and b;
to denote the " element of b.

106 K. Subramani

Proof: Given a point p = [p1,p2,...,pn] of the final non-empty static poly-
tope G.s < p, let us assume the contrary and that indeed one or more of the
input constraints (of the input constraint matriz) has been violated at a partic-
ular execution time vector e’ = [e],eh,...,el] € E. Pick one such violated con-
straint, say a;.[s,e] < b;. The violation of this constraint at (p,e’) implies that
a;.[p, e'] > b; or after rewriting and separating the variables g;.p > (b — H.e’);.
But from the construction of the static polytope (See Algorithm (5.1)), we know
that

pi = n}én(b —H.e);

and
gi-p < p;

which provides the desired contradiction.
Hence no constraint can be violated by choosing a point on the Static poly-
tope. O

Lemma 2. A point not on the Static Polytope cannot guarantee a static sched-
ule.

Proof: Consider a point s’ = [s],5,...,s)] such that ' & {s: G.s < p}. Let
g;.s < p; be one of the constraints that has been m’olatecﬂ i.e. g;.8' > p;. Clearly,
if the execution time vector €' = [€],¢€h,...,el] € E is such that (b —H.e’); =
pi, then the point s’ leads to violation of the constraint System (). O

Theorem 1. There exists a static schedule if and only if the Static Polytope is
non-empty.

Proof: Follows from Lemma (@) and Lemma ({3). O

5.3 Complexity

We observe that the elimination of each vector r; and its replacement by a
rational number p; involves a call to a Convex minimization Algorithm. m such
calls are required to eliminate all the r; from the constraint system giving a
computation time of O(m.C), where C is the running time of the fastest Convex
minimization algorithm ([HuL93]). One final call has to be made to a Linear
Programming algorithm to verify the feasibility of the resultant static polytope.
Thus, the total running time of the algorithm is O(m.C + L), where L is the
running time of the fastest Linear Programming algorithm [Vai87]. We point out
that we are using Linear Programming in the sense of determining feasibility of
a linear system, as opposed to the standard optimization version. Since Linear
Programming is a special case of convex minimization, we have £ < C and hence
the complexity of our algorithm is O(m.C).

4 At least one such constraint exists; otherwise, s’ belongs to the Static Polytope!

An Analysis of Zero-Clairvoyant Scheduling 107

5.4 Parallelization

The p; are created independently for each constraint; thus the steps involving
the determination of the p; can be carried out in parallel. This suggests the
paralle]ﬁ implementation of the for loop, described in Algorithm (5.2).

Function PARALLEL-STATIC-SCHEDULER(E, A, b)

Carry out the initialization steps as in Sequential Algorithm
for (i =1 to m) pardo
Let p; = ming r;
end for
Perform feasibility check as in Algorithm (ETJ).

Algorithm 5.2: Parallel version of Static Scheduling Algorithm

Clearly the steps associated with creating the static polytope have a parallel
running time of O(C) with a total work of O(m.C). An additional O(L) sequential
time is required for the final feasibility check.

Observation: 51 The dispatch calendar obtained by Algorithm (21), can be
used in every scheduling window with the appropriate offset.

6 Special Case Analysis

We now analyze the complexity of a number of restrictions to the execution time
domain E and the constraint matrix A.

6.1 E Is an Axis-Parallel Hyper-Rectangle

In this case, the execution time domain can be represented by: ¥ = [l1, u1] X
[la,ua] X ... X [l,u,] (say). The static schedulability query (2] becomes:

ds =[s1,82...5,]Ve = [e1,€2,...ep] €Y Als,e]<b ? (6)

We can apply the same algorithm as in Section 0l in which case we solve
(m 4+ 1) linear programs to give a total running time of O(m.L).
However, we can do much better, as we shall show shortly.

Lemma 3. The minimum of an affine function on an axis-parallel hyper-
rectangle (aph) is reached at a vertex of the aph.

Proof: From [Sch87], we know that the lemma is true over all polyhedral domains
and axis-parallel hyper-rectangles are restricted polyhedral domains. O

5 We are using the PRAM Model, see [Ja’92]

108 K. Subramani

Lemma 4. When the domain is an aph, an affine function can be minimized
by minimizing over each dimension individually.

Proof: See [Sch87]. O
Lemma () gives us the following strategy to minimize an affine function
f=ai.e1+as.ea+...4an.e,+cover theaph Y = [Iy, uq] X [lo, ua] X ... X [In, uy):

— Vi, if a; >0, set e; = ;
— Vi, if a; <0, set e; = u;

A simple summation gives the minimum value of f over the aph.
Using this strategy it is clear that the STATIC-SCHEDULER algorithm runs in
O(m.n + L) sequential time.

6.2 At Most 2 Start-Time Variables per Constraints

We now consider the case, in which the relationships among the jobs can be ex-
pressed through network constraints, i.e. constraints in which there are at most
2 start-time variables and the execution time domain is an aph. Using the tech-
niques from Section §6.J] we know that we can eliminate the execution time
variables from the system in O(m) time. The elimination results in a network
linear system of constraints in the start time variables, i.e. in each constraint at
most two variables have non-zero coefficients. [HN94] presents a fast implemen-
tation of the Fourier-Motzkin procedure to solve network linear systems in time
O(m.n?.logm). Thus, we have

Lemma 5. Static Schedulability can be decided in time O(m.n?.logm), if the
execution time domain is an aph and the constraints are network.

Proof: From the above discussion. O

Lemma 6. If the constraints are strict relative timing constraints, statit schedu-
lability can be decided in time O(m.n).

Proof: When the constraint system consists of strict relative constraints only
|GPS95ICho00], we can represent it as a network graph (Single Source). Since the
ezecution time domain s an aph, the execution time variables can be eliminated
in O(m) time. We can then use the Bellman-Ford algorithm, which takes O(m.n)
time, to check if the resultant network has a negative cost cycle. The existence
of such a cycle coincides with the infeasibility of the input system [CLR9Z].
Likewise, non-existence of a negative cost cycle implies that the constraint system
is feasible.

O

7 Summary

In this paper, we analyzed the complexity of static schedulability specifications
in the E-T-C scheduling model, which is described at depth in [Sub00]. The model

An Analysis of Zero-Clairvoyant Scheduling 109

finds applicability in a number of domains. We demonstrated the existence of
polynomial time algorithms for the general case and presented faster algorithms
for a number of special cases. Table ([I) summarizes our contributions in this

paper.

Table 1. Summary of Results for Static Scheduling

l l<arb|arb|stat>l<aph| stan| stat>l<aph|net | stat>‘
Schedulability o(m.C) [O(m.n) [O(m.n”.logm)
Online Dispatching o(1)

The principal advantages of Static Scheduling are:

1. No online computation - As mentioned in Section 85l static scheduling ob-
viates the need for an online computing during the dispatching phase. The
start time vector computed by Algorithm (BJ]) is used in every scheduling
window.

2. Efficient decidability - We demonstrated that the static schedulability query
can be decided in polynomial time, irrespective of the execution time do-
main (as long as it is a convex set) or the constraint matrix. This feature is
particularly useful, when the real-time system is constrained through power-
equations which can be approximated through convex sets.

An interesting open project is the integration of our work within the kernel of
existing real-time operating systems and studying its performance in a more
complete setting.

Acknowledgements. We wish to thank Michael Bond of the WVU libraries
for his contributions towards the implementation.

A Implementation

We implemented our static scheduling algorithm on a Linux box, with Red Hat
Linux. We used lp—solvtEl [Ber95] for all our algorithms. Table (2] details the
machine characteristics, while table (B) tabulates our resultd7:

Most of the constraints were chosen from the boeing data-set, provided as
part of [LTCARY], while some of them were randomly generated. The execution
time domain E for most inputs was an axis-parallel hyper-rectangle, although
we did use general polyhedra for some constraint sets.

6 Version 2.1. This software is available free of cost at the URL in [Ber95].
7 We have more detailed implementation statistics which are part of an extended
version of this paper

110 K. Subramani

Table 2. Machine Characteristics

Speed 500 Mhz
Processor Pentium II1
Memory 128 Mb RAM

Cache L2

Operating System|Redhat Linux 6.0

Kernel 2.2.16
Language Perl 5.005-03
Software Ip-solve

Table 3. Summary of Results for Static Scheduling

Number of jobs[Number of Constraints[Time (seconds)l

5 10 0.27
10 20 0.42
15 30 0.54
20 40 1.14
25 50 1.82
30 60 2.74
35 70 4.49
40 80 6.45
45 90 7.45
50 100 10.91

A.1 Interpretation

Table (@) demonstrates that even for for fairly large job and constraint sets, static
schedules can be computed quickly. Although we used an open-source software
product viz. Ip-solve, our performance did not degrade. We are confident that
using a commercial product such as AMPL should decrease the computation
time significantly.

References

[Ber95] M. Berkelaar. Linear programming solver. Software Library for Operations
Research, University of Karlsruhe, 1995.

[BFW97] Azer Bestavros and Victor Fay-Wolfe, editors. Real-Time Database and
Information Systems, Research Advances. Kluwer Academic Publishers,
1997.

[Cho00] Seonho Choi. Dynamic time-based scheduling for hard real-time systems.
Journal of Real-Time Systems, 2000.

[CLR92] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. MIT Press and McGraw-Hill Book Company, 6th edition, 1992.

[Das85]

[DMPY1]

[DRSK89)

[GPS95]

[HG93]

[HL89]

[HL92a|

[HL92b)

[HINO4]

[HuL93]

[Ja’92]

[TMS6]

[LTCAS9]

[MAT90]

[MKAT92]

[Pin95]

[Sak94]

[SBY4]

[Sch87]

An Analysis of Zero-Clairvoyant Scheduling 111

B. Dasarathy. Timing Constraints of Real-Time Systems: Constructs for
Expressing Them, Methods of Validating Them. IEEE Transactions on
Software Engineering, SE-11(1):80-86, January 1985.

R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial
Intelligence, 49:61-95, 1991.

A. Damm, J. Reisinger, W. Schwabl, and H. Kopetz. The Real-Time
Operating System of MARS. ACM Special Interest Group on Operating
Systems, 23(3):141-157, July 1989.

R. Gerber, W. Pugh, and M. Saksena. Parametric Dispatching of Hard
Real-Time Tasks. IEEE Transactions on Computers, 1995.

S. Hong and R. Gerber. Compiling real-time programs into schedulable
code. In Proceedings of the ACM SIGPLAN ’93 Conference on Program-
ming Language Design and Implementation. ACM Press, June 1993. SIG-
PLAN Notices, 28(6):166-176.

C. C. Han and K. J. Lin. Job scheduling with temporal distance con-
straints. Technical Report UTUCDCS-R-89-1560, University of Illinois at
Urbana-Champaign, Department of Computer Science, 1989.

C. C. Han and K. J. Lin. Scheduling Distance-Constrained Real-Time
Tasks. In Proceedings, IEEE Real-time Systems Symposium, pages 300—
308, Phoenix, Arizona, December 1992.

C. C. Han and K. J. Lin. Scheduling real-time computations with separa-
tion constraints. Information Processing Letters, 12:61-66, May 1992.
Dorit S. Hochbaum and Joseph (Seffi) Naor. Simple and fast algorithms
for linear and integer programs with two variables per inequality. SIAM
Journal on Computing, 23(6):1179-1192, December 1994.

J. B. Hiriart-urruty and C. Lemarechal. Convex Analysis and Minimiza-
tion Algorithms. Springer-Verlag, 1993.

Joseph Ja’Ja’. An introduction to parallel algorithms (contents).
SIGACTN: SIGACT News (ACM Special Interest Group on Automata
and Computability Theory), 23, 1992.

F. Jahanian and A.K. Mok. Safety analysis of timing properties in real-
time systems. IEEE Transactions on Software Engineering, SE-12(9):890—
904, September 1986.

S. T. Levi, S. K. Tripathi, S. D. Carson, and A. K. Agrawala. The Maruti
Hard Real-Time Operating System. ACM Special Interest Group on Op-
erating Systems, 23(3):90-106, July 1989.

D. Mosse, Ashok K. Agrawala, and Satish K. Tripathi. Maruti a hard
real-time operating system. In Second IEEE Workshop on Experimental
Distributed Systems, pages 29-34. IEEE, 1990.

D. Mosse, Keng-Tai Ko, Ashok K. Agrawala, and Satish K. Tripathi.
Maruti: An Environment for Hard Real-Time Applications. In Ashok K.
Agrawala, Karen D. Gordon, and Phillip Hwang, editors, Maruti OS, pages
75-85. 10S Press, 1992.

M. Pinedo. Scheduling: theory, algorithms, and systems. Prentice-Hall,
Englewood Cliffs, 1995.

Manas Saksena. Parametric Scheduling in Hard Real-Time Systems. PhD
thesis, University of Maryland, College Park, June 1994.

A. Stoyenko and T. P. Baker. Real-Time Schedulability Analyzable Mech-
anisms in Ada9X. Proceeding of the IEEE, 82(1):95-106, January 1994.
Alexander Schrijver. Theory of Linear and Integer Programming. John
Wiley and Sons, New York, 1987.

112 K. Subramani

[SASA94]

[Sub00]

[Sub01]

[Vai87]

M. Saksena, J. da Silva, and A. Agrawala. Design and Implementation of
Maruti-II. In Sang Son, editor, Principles of Real-Time Systems. Prentice
Hall, 1994. Also available as CS-TR-2845, University of Maryland.

K. Subramani. Duality in the Parametric Polytope and its Applications to
a Scheduling Problem. PhD thesis, University of Maryland, College Park,
July 2000.

K. Subramani. Modeling clairvoyance and constraints in real-time schedul-
ing. In Proceedings of the 6'" Buropean Conference on Planning, Septem-
ber 2001.

P. M. Vaidya. An algorithm for linear programming which requires
O(((m + n)n?® + (m + n)'°n)L) arithmetic operations. In Alfred Aho,
editor, Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, pages 29-38, New York City, NY, May 1987. ACM Press.

	An Analysis of Zero-Clairvoyant Scheduling
	Introduction
	Statement of Problem
	Job Model
	Constraint Model
	Query Model

	Motivation
	Related Work
	The Static Scheduling Algorithm
	Example
	Correctness
	Complexity
	Parallelization

	Special Case Analysis
	E Is an Axis-Parallel Hyper-Rectangle
	At Most 2 Start-Time Variables per Constraints

	Summary
	Implementation
	Interpretation

	References

