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Abstract. We describe a new method of achieving autocalibration that uses a 
stochastic optimization approach taken from the field of evolutionary comput-
ing and we perform a number of experiments on standardized data sets that 
show the effectiveness of the approach. The basic assumption of this method is 
that the internal (intrinsic) camera parameters remain constant throughout the 
image sequence, i.e. they are taken from the same camera without varying the 
focal length. We show that for the autocalibration of focal length and aspect ra-
tio, the evolutionary method achieves comparable results without the imple-
mentation complexity of other methods. Autocalibrating from the fundamental 
matrix is simply transformed into a global minimization problem utilizing a cost 
function based on the properties of the fundamental matrix and the essential 
matrix. 

1   Introduction 

Advances in the field of projective vision make it possible to compute various quantities 

from an uncalibrated image sequence: in particular the fundamental matrix between image 

pairs [1, 2]. Autocalibration has become popular due to these recent advances because of 

the desire to create 3D reconstructions from a sequence of uncalibrated images without 

having to rely on a formal calibration process. The standard model for an uncalibrated 

camera has five unknown intrinsic parameters found in a 3x3 calibration matrix K. These 

parameters are the focal length, aspect ratio, skew and the center of projection x and y (the 

principal point). The accurate estimation of these 5 parameters is the fundamental goal of 

autocalibration.   

Autocalibration algorithms can be divided into two basic classes. In class A algo-
rithms, we compute the calibration matrix K from the fundamental matrix (the recov-
ered epipolar geometry) [4, 5, 6, 7, 8] and class B algorithms compute K from a pro-
jective reconstruction [9, 10, 11] of the scene. Since the projectively reconstructed 
frames must all be warped to a consistent relative base, Class B algorithms are com-
putationally difficult in comparison to simply finding the fundamental matrix between 
image pairs. It is claimed that Class B autocalibration algorithms are superior to Class 
A algorithms because the Class A algorithms do not enforce the constraint that the 
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plane at infinity be the same over the entire image sequence [1]. It is precisely this 
constraint that makes Class B algorithms computationally difficult and we show that 
Class A algorithms combined with the use of evolutionary systems are as accurate as 
their Class B counterparts.   

Another concern with Class A algorithms is the existence of extra degenerate mo-
tions, these being pure rotations, pure translations, affine viewing and spherical cam-
era motions [1, 12]. However, there exist many practical situations that do not contain 
these degenerate motions where autocalibration is necessary. For example, there are 
many photographs and video clips in existence for which there is no knowledge of the 
camera. In order to reconstruct some of these image sequences, autocalibration is the 
only means.   

Autocalibration has been criticized [13] in the past because many different possible 
calibrations will always provide a 3D reconstruction with almost perfect Euclidean 
structure. In essence, the only thing we can really measure, the skews and aspect ra-
tios, are very close to what they should be because of manufacturing accuracy.  Be-
cause of this, the corresponding reconstruction will always look good i.e. the different 
right angles look square and the different length-ratios look correct.  Commonly, the 
“look” of a reconstruction is used as a ground truth element, but it is clearly a weak 
one, and any algorithm using such a comparison as a measure of goodness is highly 
suspect. Because of the manufacturing accuracies, we attempt to autocalibrate only 
the focal length and the aspect ratio and make assumptions about the remaining pa-
rameters.  

The constraining equations for the two autocalibration methods presented in this 
paper are based on the fundamental matrix, and are non-linear. In what follows, we 
will show that it is possible to reformulate the process of autocalibration as the mini-
mization of a cost function of the calibration parameters. This type of reformulation 
has not been achieved for all autocalibration algorithms, specifically the class B algo-
rithms which are thought to be superior. For example, the modulus constraint is a 
non-linear relationship between the camera calibration parameters and the projective 
camera matrices that have been used as the basis of a class B autocalibration algo-
rithm [10]. The application of the modulus constraint produces a set of polynomial 
equations for every pair of images, and a system of polynomial equations for the en-
tire image sequence. The solution of such a polynomial system is very difficult to 
compute, but one possibility is to find all the permutations of exact solutions in closed 
form and then to combine the results [8]. This is rather cumbersome, and another way 
to solve such a polynomial system is to use a continuation method [17]. Unfortu-
nately, continuation methods only work well for a small number of equations, and are 
not suitable for the large polynomial systems that are generated by long image se-
quences.  

In this paper, we examine two autocalibration algorithms that use fundamental ma-
trices and an evolutionary approach to estimating the parameters; one based on 
Kruppa's equation [6, 4, 8], and the second based on the idea of finding the calibration 
matrix which optimally converts a fundamental matrix to an essential matrix [7]. In 
both cases the problem can be formulated as the minimization of a cost function that 
we describe in sections 2 and 3. The correct camera calibration is the global minimum 
of this cost function over the space of possible camera parameters. In the past, the 
claim has been that such minimization approaches to autocalibration are sensitive to 
the initial starting point of the gradient descent algorithm, but when computing only 
one parameter, the starting point is irrelevant because we can solve the associated 1D 
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optimization problem using standard numerical approaches [14]. When there is more 
than one parameter, such as focal length and aspect ratio, we use a simple stochastic 
approach [15] from the field of evolutionary computing to overcome this problem. 
We show experimentally that for this type of cost function this stochastic method 
reliably finds the global minimum. As well, a number of experiments are performed 
on image sequences with known camera calibration, some of which have been de-
scribed in the autocalibration literature and utilize class B algorithms. We show that 
the stochastic approach achieves results that are as good as the class B algorithms. 
The next section describes the two autocalibration methods, and the theory behind 
them. The third section describes the experiments, and the fourth presents the conclu-
sions and future avenues of research to improve accuracy.   

2   Autocalibration from the Fundamental Matrix 

The goal of autocalibration is to compute the camera calibration matrix K. The standard 

linear camera calibration matrix (K), used to convert from image coordinates in pixels to 

world coordinates on the camera-sensing element in millimeters, has the following entries 

[1, 2]: 


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Here f is the focal length in millimeters, and ku and kv are the number of pixels per millime-

ter for the camera. If we let αυ and αv be fku and fkv respectively by multiplying the focal 

length (f) in mm and the mm/pixel (k), we have the focal length in pixels.  The ratio αυ / 
αv is the aspect ratio and is often (but not always) one because of manufacturing, and θ is 

the skew angle. The skew angle θ is almost always 90 degrees, again because of manufac-

turing. This leaves us with four free intrinsic camera parameters αυ , αv, u0 and v0. The 

calibration matrix K can therefore be rewritten in a much simpler form as: 
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The fundamental matrix F is a 3x3 matrix of rank 2 that defines the epipolar ge-
ometry between two images [2]. Given two corresponding points m

1
 and m

2
 from 

images I
1
 and I

2
, the epipolar constraint specifies:  

m2Fm1 =0 (3) 

The fundamental matrix can be computed from a set of 2D correspondences be-
tween the two images [16]. If we know the epipolar geometry and thus the Fundamen-
tal Matrix, it is possible to compute the intrinsic camera parameters. 
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2.1 Autocalibration via Equal Essential Eigenvalues 

The essential matrix can be considered as the calibrated version for the fundamental ma-

trix. Given the camera calibration matrix K and the fundamental matrix F, then the essen-

tial matrix E is related by the following equation: 

E =K
T

 FK (4) 

Since F is a 3x3 matrix of rank two with the condition that there are exactly two 
non-zero eigenvalues, E is also of rank two. E however, has an added constraint that 
the two non-zero eigenvalues must be equal [2]. It is this constraint that is used to 
create the autocalibration algorithm [7]. The idea is to find the calibration matrix K 
that makes the two eigenvalues of E equal, or in the case of estimation, as close as 

possible. Given two non-zero eigenvalues of E, σ
1 

and σ
2 
where σ

1
> σ

2
, then in the 

ideal case (σ
1 - 

σ
2)
 should be zero. Consider the difference (σ

1 
- σ

2
)

 /
 σ

1
, which can be 

written as: 

1-(σ
2
/σ

1
) (5) 

If the eigenvalues of E are equal, (5) computes to zero; as they differ, equation (5) 
approaches one. Clearly, (5) becomes the cost function to be minimized.  

As we are dealing with a sequence of N images, we can have at most N-1 adjacent 
image pairs and therefore we have N-1 different fundamental matrices F

i
 (i=1..N-1).  

Based on our assumption that the same camera with invariant intrinsic parameters is 
used, our goal is to find K by minimizing the cumulative values of (5) for all the fun-
damental matrices F

i
 in the sequence. Assume F

i
 is the fundamental matrix relating 

image I
K

 and I
K+1

. To autocalibrate over the N image sequence, we must find the K that 
minimizes: 

∑
−

−
−

1

1

)1/21(
N

i

i σσω  (6) 

Where ϖi is a weight factor, between zero and one, which defines the confidence of 

the computed fundamental matrix F
i
. ϖi  is defined in more detail in the next section.  

2.2  Autocalibration via Kruppa's Equations 

Another way to perform autocalibration from the fundamental matrix is to use Kruppa's 

equations [1, 2]. To understand these equations we must first define the absolute conic. In 

Euclidean space the absolute conic lies on the plane at infinity, and has the equation: 

x
2
 +y

2
 +z

2
 =0 . (7) 

The absolute conic contains only complex points that satisfy x
T
x = 0. If we con-

sider a standard camera projection matrix P = K[R|-Rt]. Where R is the rotational 
motion of between camera positions and t is the translation component of the camera 
motion, thus a 3D point x on the absolute conic projects to a 2D point: 

u =P(x)=KRx. (8) 
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Thus, x = R
T
K

-1
 u, and since x

T
x = 0, this implies: 

u
T
K

-1
RR

T
 K

-1
u = u

T
K

-T
K

-1
 u = 0 . (9) 

This clearly shows that any 2D point u is on the image of the absolute conic if and 
only if it lies on the conic represented by the matrix K

-T
K

-1
. From projective geometry, 

KK
T
  is the dual absolute conic, and is labeled as C. If we can find C, then we can 

directly compute the camera parameters K by Cholesky factorization. 
Kruppa's equations relate the fundamental matrix to the terms of the dual absolute 

conic. The first form of these equations required the computation of not just the fun-
damental matrix, but also of the two camera epipoles, which are known to be unstable 
[2]. Recently, a new way of relating the fundamental matrix and the dual absolute 
conic was described which does not require the computation of the camera epipoles 
[4]. Consider the singular value decomposition of a fundamental matrix F to be 
UDV

T
. We let the column vectors of U and V be u

1
, u

2
, u

3
  and v

1
, v

2
, v

3
 respectively.  

This gives the new form of Kruppa's equation to be: 
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To autocalibrate we must find the C which makes these three ratios equal, or in the 
case of estimation, as close to equal as possible.  We let ratio

1
 be equal to: 

11
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2

22 2
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T

T

T −
−  (11) 

And define ratio
2
 and ratio

3
 similarly as the other two possible permutations in the 

ratios. Autocalibration can then be achieved by finding the C (KK
T

 ) that minimizes 
the sum of the ratios squared. Given the same image sequence that produced equation 
6, the Kruppa ratios over n images minimizes: 

∑
−

−

+ +
1

1

2

3

2

2

2

1 )(
N

i

i ratioratioratioω  (12) 

Again, ϖi  is a weight factor, between zero and one, which defines the confidence of the 

computed fundamental matrix Fi. 

2.3 Evolutionary Idea 

Since the two autocalibration methods based on the fundamental matrix have an associated 

cost function we can use a gradient descent algorithm to find the solution.  The caveat here 

is that there are often many local minima in the cost function, so the solution that is found 

depends on the starting point. However, we note that the calibration parameters can all be 

bounded; i.e. the center of projection rarely varies from the image center, the aspect ratio 

is generally 1 and the skew is 90 degrees. Thus we are attempting to find the global mini-

mum for a set of real-valued, bounded optimization parameters. This problem has been 

dealt with in the field of evolutionary computing. We use an approach called Dynamic Hill 

Climbing (DHC), that combines genetic algorithms, hill climbing and conjugate gradient 
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methods to be an optimization algorithm that is very successful in solving such real valued 

optimization problems [15]. 

The idea is to repeatedly perform gradient descent in the search space and to restart 
the gradient descent in an area of the search space that is as far removed as possible 
from previous solutions.  We call such a method Statistically Distributed Random 
Starting (SDRS), and in this way we cover the search space as effectively as possible 
as seen in Fig 1. 

 
 

 

Fig. 1. : Scatter plot of 2D search space generated by SDRS. 250 points with atrend 
line indicating an even disbursement of start points. 

 

The pseudo-code for SDRS: 
 

SDRS() 

For each optimization parameter in the search space 

    Find the largest region that has not had a start point 

    Compute a random point in this region 

    Set this point to the start point for this dimension 

Endfor 

Return N-dimensional startPoint 

 

SRDS allows for the most complete coverage of the search space with a user speci-
fied number of runs. This allows the DHC algorithms to successfully find the global 
minimum throughout the search space.  
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The pseudo-code for estimating K: 

 
ESTIMATE_K() 

For n times 

    StartPoint = SRDS() 

    Perform the DHC gradient descent from StartPoint. 

    IF Cost function (Equal Eigenvalues OR Kruppa) is minimal 

        Save this K. 

    ELSE 

        Discard this K 

    Endfor 

Return K 

 

The algorithm ESTIMATE_K returns the calibration parameters in the matrix K 
that produced the minimum value from the cost function. Evaluating the cost function 
for the two different autocalibration methods is very efficient. A single gradient de-
scent of the cost function uses the Powell optimization algorithm, which is in turn 
based on repeated applications of the one dimensional Brent method [14]. The equal 
eigenvalues approach requires only the computation of the eigenvalues of a three by 
three matrix, and for the Kruppa approach the computation of three ratios. In both 

cases the weights ω i are set in proportion to the number of matching 2D feature 
points that support a given fundamental matrix. The larger the number of points that 
support the epipolar geometry characterized by F, the more confidence we have in 
that fundamental matrix, and therefore the greater the weight. We next show experi-
mentally that the global minimum is found very reliably by this approach. 

3   Experimental Results 

For many autocalibration algorithms the evaluation of performance consists of a simple 

visual inspection of the resulting 3D reconstruction. This is not adequate because it has 

been shown that the quality of the final reconstruction is visually acceptable for a wide 

variety of calibration parameters [13]. In order to compare the capabilities of the evolu-

tionary method, we performed a variety of experiments that compared against the results 

from the literature that used “look” as a goodness criteria.  This allowed us to compare the 

evolutionary method against other algorithms, and specifically we show that it has compa-

rable results to the more complicated Class B algorithms. A secondary measure for ex-

perimentation is comparison against ground truth, i.e. the intrinsic parameters are already 

known a-priori. Finally, we take several sequences taken from the same uncalibrated cam-

era and show that the evolutionary computing based algorithm is consistent and repeat-

able. 

The first set of experiments described in Table 1 show how the autocalibration 
process works when we are calibrating only the focal length. Table 1 shows the re-
sults for a number of different test sequences that have been processed in previous 
autocalibration papers [6, 8, 10, 19]. In particular, the castle sequence is used as a test 
case for comparison of the class B approach that requires a projective reconstruction 
[10]. We see that our autocalibration results are comparable to those of other algo-
rithms. 
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Table 1: Results of autocalibration for focal length vs other algorithms. Focal length is in 

pixels. Correspondences are computed automatically. 

Name 
# of 

Images 

Stated 

Focal 

Computed 

focal  len 

(Eq.Eigen) 

% error 

vs. 

Stated 

Computed 

focal len 

(Kruppa) 

% error 

vs. 

Stated 

Castle 27 1100 1156.50 5 1197.7 8 

Valbone 9 682 605.5 11 685.71 0.5 

Nekt 6 700 798.58 14 872.44 24.6 

etluueshiba 5 837 857.25 2.4 1233.85 47.4 

 

It is important to note that the stated focal lengths are those computed in the litera-
ture, and the assessment of goodness was how the reconstruction looked. In the table 
we compare how close our autocalibration results are to the previously published 
results, which we assume to be reasonably correct but cannot confirm. In the last 
example shown in the table [19], the error with the Kruppa autocalibration is quite 
large, possibly because the motion is close to being a pure translation which is known 
to be a degeneracy motion for the Kruppa algorithm [1,12]. It is also a good indicator 
of how the Equal Eigenvalues method performs well against these degenerate mo-
tions.  

Finally, because the ground truth is not really known, and the methods for comput-
ing F in the literature are not available, it is possible that the stated focal lengths are 
incorrect. 

In the set of experiments outlined in Table 2, the 2D feature points were selected 
by hand as part of a photogrammetric model building process. From these manually 
selected correspondences we compute the fundamental matrix between all image pairs 
in the sequence. In this experiment we know the intrinsic parameters of the camera a-
priori from the projects of the photogrammetric package [20]. We therefore assume 
that all the intrinsic parameters are set a-priori, except for the focal length which we 
autocalibrate.  

Table 2: Results of autocalibration for focal length for photogrammetric sequences. Focal 

length is in mm., and reprojection error is in pixels. Correspondences selected by hand. 

Name 
# of 

Images 

True 

focal 

Eigen 

focal 

% 

error 

Kruppa 

focal 

% 

error 

Correct 

reproj. 

Eigen 

reproj. 

Kruppa 

Reproj. 

Curve 4 6.97 4.71 32.4 7.49 1.13 7 2.23 1.44 

Cylinder 3 28 26.35 5.9 31.70 13.21 0.96 2.07 2.60 

Plant 6 24.20 22.55 6.8 24.39 0.78 0.80 1.49 1.04 

Statue 7 5.11 3.67 28.2 5.29 3.5 3.93 9.61 1.95 

 

Table 2 shows the autocalibrated focal length in millimeters versus the true focal length, 

along with the percentage error for both autocalibration methods.  Since we have the asso-

ciated 3D reconstructions for the corresponding 2D features we can compute more sophis-

ticated performance measures. For a given autocalibrated focal length we compute the 

reprojection error for all the corresponding feature points. The reprojection errors are the 

pixel differences between the projection of the 3D feature points into 2D and the original 

corresponding 2D features. We compute the median of the reprojection errors using the 

correct focal length, the focal length found by the eigenvalue method, and the focal length 

found by Kruppa's method. The median of the reprojection errors is a good indicator of the 
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quality of the reconstruction for a given focal length. We see that the median reprojection 

error increases for the autocalibrated focal lengths, but only slightly. This implies that the 

error in the autocalibrated focal lengths would not have a significant impact in terms of 

reconstruction quality and this independently verifies the claims of Bougnoux [13]. 

In the next experiment we attempt to autocalibrate both aspect ratio and focal 
length using the two methods. We are again using as input a series of photogrammet-
ric projects for which we know the 2D feature correspondences as well as the ground 
truth of the intrinsic camera parameters. 

Table 3: Results of autocalibration for focal length and aspect ratio for photogram-metric 

sequences. The equal eigenvalue method is used and focal length is in mm. 

Name 
True 

aspect 

Eigen 

Aspect 
Variance 

% 

error 

True 

Focal 

Eigen 

focal 
Variance 

% 

error 

Curve 1.0 1.08 0.003 8 6.97 3.46 0.062 50 

Cylinder 1.0 0.98 0.002 2 28 26.72 0.52 4.5 

Plant 1.0 0.98 0.012 2 24.2 22.96 0.39 5.1 

Dam 0.81 0.972 0.0001 20 30.75 38.52 0.089 9.8 

 

While the results as shown in Tables 3 and 4 are reasonable, the errors when auto-
calibrating two camera parameters are sometimes higher than autocalibrating just one 
parameter. The error again compounds when we attempt to autocalibrate all parame-
ters. In particular, the percentage error in focal length increases slightly. One possible 
explanation is that the gradient descent algorithm is stuck in a local minima, to verify 
this the results shown in these two tables were computed by averaging over one hun-
dred separate runs of the optimization algorithm. The variance as shown in the table 
for the autocalibrated aspect ratio and focal length is very small over these runs and 
indicates that it is highly likely that the stochastic optimization algorithm is finding 
the correct global minimum. 

Table 4: Results of autocalibration for focal length and aspect ratio for photogrammetric 

sequences. The Kruppa autocalibration method is used. 

Name 
True 

aspect 

Kruppa 

Aspect 
Variance 

% 

error 

True 

Focal 

(mm) 

Kruppa 

focal 

(mm) 

Variance 
% 

error 

Curve 1.0 0.997 0.011 1.3 6.97 7.56 0.21 8.4 

Cylinder 1.0 1.03 0.0001 3 28 32.91 0.0001 17.5 

Plant 1.0 0.92 0.003 8 24.2 26.33 0.12 8.8 

Dam 0.81 0.997 0.0001 19.75 30.75 38.43 0.0001 24.9 

 

The final experiment, as shown in Table 5, has as input three image sequences that 
were taken with the same camera with invariant intrinsic parameters.  

Table 5: Results for autocalibration of focal length for three sequences 

Name # of Images Eigen focal Kruppa Focal 

Chapel 12 27.82 31.31 

Climber 13 27.91 33.88 

Workshop 8 26.19 38.09 
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Test cases chapel and workshop are almost pure translation while the climber se-
quence has a motion with significant translation and rotation. We autocalibrate only 
the focal lengths, which should be equal for all three sequences. The variance of the 
computed focal length for the eigenvalue method is 0.96 mm and for Kruppa ap-
proach is 3.42mm. It is not surprising that the autocalibration results differ, since 
certain motions are degenerate with regards to the Kruppa based autocalibration [1]. 
What these results clearly show is that for a given camera, and substantially different 
sequences, the evolutionary algorithms (especially the equal eigenvalues method) are 
convergent. 

In summary, the experiments show that the evolutionary approach is as good as 
any complicated Class B algorithm, e.g. the castle sequence in Table 1. Computation-
ally the fundamental matrix based approaches are very efficient since a single evalua-
tion of the cost functions does not take long. The time taken for autocalibration is in 
the order of seconds for all the image sequences on a 400 MHz Pentium II processor. 
It also becomes clear that the equal eigenvalues method is superior to the Kruppas 
method for degeneracy cases. There are cases, however, where the Kruppas method is 
clearly outperforming the equal eigenvectors method. Further investigation is neces-
sary to determine whether or not a heuristic can be developed to choose one algorithm 
over the other by pre-determining the camera motion. 

4   Conclusions  

In theory the autocalibration methods that use fundamental matrices should not perform as 

well as those that use the camera projection matrices of a projective reconstruction [1, 12, 

2]. However, we show that for non-degenerate motions both methods perform equally well 

when we are calibrating only the focal length, or the focal length and aspect ratio.   Simi-

larly in [11], the principle point was not computed accurately using the class B algorithm 

and was also subsequently assumed.  

The equal eigenvalues approach is very simple and works just as well as any Class 
B method we compared against. While it is theoretically equivalent to the Kruppa 
approach, it performs better numerically in situations where we are close to a degen-
erate motion, such as pure translation. The usual class B approach to autocalibration 
requires the solution of a set of polynomial equations but this is not computationally 
feasible for long image sequences. With our evolutionary computing based approach 
we can process long image sequences, which is an advantage to these algorithms. The 
argument against the optimization-based methods has been that they are sensitive to 
the starting point of the optimization process [3, 5]. We have shown that the SDRS 
method helps to find the global minimum of the cost function reliably.  In our ex-
periments we have shown that the error in the autocalibration of the focal length is 
usually in the range of 5% to 15%. This is adequate for applications in which the final 
results are used for visualization purposes, such as model building but clearly not for 
applications that require exact depth information.  

What may not be an obvious next step is to move forward and decrease the error is 
to utilize the two (and more as they become available) autocalibration routines (equal 
eigenvalues and Krupps equations) in yet another evolutionary step. In essence this 
means that we want to minimize the difference between two calibration matrices 
KKRUPPA and KEIGEN. This can be measured in a variety of ways, but clearly the 
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Frobineus norm measure does this exact difference assessment for us. As well, results 
may become more stable by performing the SDRS algorithm in a windowed manner 
to ensure better coverage of the search space. 
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