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Abstract. Constraint Satisfaction Problems form a class of problems
that are generally computationally difficult and have been addressed
with many complete and heuristic algorithms. We present two complete
algorithms, as well as two evolutionary algorithms, and compare them
on randomly generated instances of binary constraint satisfaction prob-
lems. We find that the evolutionary algorithms are less effective than the
classical techniques.

1 Introduction

A constraint satisfaction problem (csp) is a set of variables all of which have a
corresponding domain. As well as variables, it contains a set of constraints that
restricts certain simultaneous value assignments to occur. The objective is to
assign each variable one of the values from its domain without violating any of
the restricted simultaneous assignments as set by the constraints.

Constraint satisfaction has been a topic of research in many different forms.
Lately, research has been concentrating on binary constraint satisfaction prob-
lems, which is a more abstract form of constraint satisfaction. This general model
has resulted in a quest for faster algorithms that solve csps. Just like particular
constraint satisfaction problems, such as k-graph colouring and 3-sat, binary
csps have a characteristic phase-transition, which is the transition from a region
in which almost all problems have many solutions to a region in which almost all
problems have no solutions. The problem instances found in this phase-transition
are among the hardest to solve, making them interesting candidates for experi-
mental research [15].

Backtracking kind of algorithms were the first to be used for tackling csps.
One of the main advantages of these classical algorithms is that they are sound
(i.e., every result is indeed a solution) and complete (i.e., they make it possible to
find all solutions) [14]. Unfortunately, such algorithms need enormous amounts
of constraint checks to solve the problem instances inside the phase-transition.
To counter for this, many techniques have been developed and most of these
keep the properties of soundness and completeness intact.

Compared with the classical algorithms, the evolutionary computation tech-
nique is a newcomer in constraint satisfaction. During the past ten years much
study has gone into improving the speed and accuracy of evolutionary algorithms



on solving csps. Since evolutionary algorithms are stochastic, they are neither
sound nor complete.

In this paper we first give more details on binary constraint satisfaction
problems. Then, in Section 3 and Section 4 we present the algorithms. Section 5
provides the experimental setup and the results, followed by conclusions in Sec-
tion 6.

2 Binary Constraint Satisfaction Problems

In general, a csp has a set of constraints where each constraint can be over any
subset of the variables. Here, we focus on binary csps: a model that only allows
constraints over a maximum of two variables. At first, this seems a restriction,
but Tsang has shown [14] this is not the case by proving that any csp can be
rewritten into a binary csp. Solving the general csp corresponds then to finding
a solution in the binary form. Although Bacchus and van Beek [1] argue that
the binary form may, depending on the problem, not be the most efficient way
of handling a csp, it still remains a popular object of study.

The binary model has led to a study where the object is to find problem in-
stances that are difficult to solve. Collections of these problem instances serve as
a good test bed for experimental research on solving methods. The idea behind
finding difficult problem instances is that these are most likely to be the prob-
lem instances having only one solution, yet without being over-constrained and
without any other structure that would make the solution easy to find. The first
models were made using four parameters in the model, the number of variables
n, the overall domain size m, the density of the constraints p1 and the average
tightness of the constraints p2. Smith [13] estimated the number of solutions by
using these parameters in a predictor shown in Equation 1.

E(solutions) = mn(1− p2)
n(n−1)p1

2 (1)

The predictor helps us in visualising the total space of problem instances. If
we fix two of the four parameters in the model, in our case the number of variables
and the domain size, we are left with the parameters density and tightness. Using
Equation 1 we can plot these latter parameters against the predicted number of
solvable problem instances E(solutions). Figure 1 shows this plot for the case
where we set the number of variables and domain size to fifteen. To make the
plot easier to read we cut off E(solutions) above one.

Figure 1 clearly shows three regions. First, it shows a region where the number
of solvable problem instances is equal to or higher than one (E(solutions) ≥ 1).
Second, it shows a region where the number of solvable problem instances is
equal to zero (E(solutions) = 0) and third, it shows a region in between the
other regions, which is called the mushy region (0 < E(solutions) < 1). Some
problem instances that have the density and tightness settings within the mushy
region have no solutions, while others have. To make the region more visible a
contour plot is drawn in the x,y-plane. This is the area of parameter settings
where we expect to find the most difficult to solve problem instances.



0.1 0.3 0.5 0.7 0.9
Density

0.1
0.3

0.5
0.7

0.9

Tightness

0
0.2
0.4
0.6
0.8

1

E(solutions)

Fig. 1. The expected number of solutions with E(solutions) ≤ 1 for fixed n = 15 and
m = 15 plotted against density and tightness

3 Classical Algorithms

The term classical algorithm is used in this paper for algorithms that are not
based on evolutionary computation. Algorithms in this section have been tested
with an adapted version of csplib1 where we have added a model for randomly
generating binary csps.

3.1 Chronological Backtracking

Chronological backtracking (bt) is a simple algorithm dating back to 1965 [7]
which is easy to construct using recursion. This algorithm is selected because it
is simple and most algorithms studied in the field of constraint programming are
based on some form of backtracking. These algorithms rely on recursion to move
them through the search space, guided by all sorts of heuristics to find solutions
as quickly as possible.

bool Backtrack(solution, current)
if current > number of variables then

return true;
else

foreach value ∈ domaincurrent do
solution[current] = value;
if Consistent(solution, current) then

if Backtrack(solution, current+1) then
return true;

return false;

bool Consistent(solution, current)
for i = 1 . . . current − 1 do

constraint checks++;
if Conflict(current, i, solution[current],

solution[i]) then
return false;

return true;

Fig. 2. Pseudo code for chronological backtracking

The chronological backtracking algorithm is shown in pseudo code in Fig-
ure 2. This code uses the function Conflict to check whether the value assign-
1 available at http://www.lpaig.uwaterloo.ca/~vanbeek/software/csplib.tar.gz



ment of two variables (current and i) raises a constraint conflict. A global vari-
able constraint checks is used to keep track of the number of constraint checks
performed during a run of the algorithm. Chronological backtracking consists of
two functions. First, the recursive function Backtrack that tries, for every vari-
able, all values of the corresponding variable’s domain. Second, a function called
Consistent is used to check if a partial solution causes a constraint violation
involving any of the previous assigned variables.

3.2 Forward Checking with Conflict-Directed Backjumping

The method forward checking with conflict-directed backjumping (fc-cbj) is con-
structed using two techniques. Forward checking, which originates from 1980 [8]
and constraint-directed backjumping, which was added in 1993 [12].

Forward checking instantiates a current variable and then checks forwards all
the uninstantiated (future) variables. During this process all values incompatible
with the current variable are removed from the domains of the corresponding
uninstantiated variables. The process continues until it has instantiated all vari-
ables, i.e., found a solution, or until it checks a variable that has an empty do-
main left. In the last case the effects of the forward checking, i.e., the shrinking
of domains, is undone and a new value for the current variable is tried.

Conflict-directed backjumping tries to improve the speed of forward checking
by jumping over previous conflict checks that are unnecessary to repeat. To make
this possible more bookkeeping is needed. Every variable is assigned its own
conflict set which contains future variables that have failed consistency checks
with the value assigned to the current variable. More precisely, every time a
consistency check fails between an instantiation of the current variable and an
instantiation of a future variable, the future variable is added to the conflict set
of the current variable. When a domain annihilation of a future variable occurs
the variables in the conflict set are added to the current variable’s conflict set.
When we run out of values to try for our current variable we turn to its conflict
set joined with the conflict set of the annihilated variable and pick the variable
that has been assigned earliest in the search. Joining the conflict sets of the new
current and old current variable, and the past set of the old current (minus the
new current) ensures that we keep our information up-to-date.

4 Evolutionary Algorithms

Two evolutionary algorithms will represent the current state of evolutionary
computation on solving binary csps. These two algorithms are at this moment
reported as performing the best on solving binary csps. The algorithms presen-
ted here all try to minimise the fitness function, where a fitness of zero equals
to finding a solution.

Before we present the two algorithms in detail we want to point out a poten-
tial problem. Before an evolutionary algorithm can solve a constraint satisfaction
problem another problem has to be overcome. Basically, every evolutionary al-
gorithm is a stochastic optimisation algorithm that can be applied to minimise a



(fitness) function. However, a constraint satisfaction problem is a decision prob-
lem which offers no help to our evolutionary algorithms. To bypass this problem
we often measure another property, such as the number of violated constraints.
By minimising this property we arrive at a solution for our decision problem
when we arrive at zero constraint violations.

The algorithms here share a common feature. They both adapt the fitness
function during the run. This means that over time the same candidate solutions
can have different fitness values. The rationale behind this adaptive scheme is to
let the algorithms gain information on the problem instance they are currently
solving, in order to better guide their search for a solution.

4.1 Microgenetic Iterative Descent Method

The microgenetic iterative descent (mid) method is a rather technical evolution-
ary algorithm. It uses a small population, hence the term microgenetic. The
original idea is from Dozier et al. [3, 4]. This study involves gradually improving
the general idea of using heuristics and breakout mechanisms to solve csps. The
implementation of Eiben et al. is a re-implementation of the versions described
in [3, 4].

The core of mid is the breakout mechanism used to reduce the chance of
getting stuck in local optima. Basically the breakout mechanism is a bookkeeper
for pairs of values that have been involved in a constraint violation when the
algorithm previously got stuck in a local optimum. The collection of breakouts
with corresponding weights that is constructed during the search is used in the
fitness function of the evolutionary algorithm. Equation 2 shows that the fitness
function comprises of two parts. First, the sum of all violated constraints is
counted per variable. Second, the sum of all weights of breakouts that are used
by the solution. This discourages the appearance of solutions that make use of
pairs of values known to appear in local optima:

fitness(solution) =
∑

v∈variables

V (v) +
∑

b∈breakouts

B(b), (2)

where V (v) is the number of violated constraints corresponding with variable v
and where B(b) is the weight corresponding with breakout b or 0 if b does not
exist or when b is not used in the solution.

4.2 Stepwise Adaptation of Weights

The stepwise adaptation of weights (saw) method [5, 6] is an extension for evol-
utionary algorithms that is intended to increase the efficiency of the search
process. The earlier evolutionary algorithms used a fitness function that only
counted the number of constraint violations. Obviously, this is a blind way of
searching that ignores possible knowledge of, for instance, the internal structure
of a problem. The saw method is a technique for adding this kind of knowledge
to the fitness function.

The saw method works by assigning a weight wc to each constraint c of the
csp instance to solve. These weights are all initialised to one. When the evolu-
tionary algorithm is running, its main loop will be paused every 250 evaluations



to update the weights. Within an update each weight wc is incremented with one
if the corresponding constraint c is violated by the best solution in the current
population.

By having this weight vector included into the fitness function of the evolu-
tionary algorithm we hope to force the evolutionary algorithm into focusing more
on constraints that seem hard to satisfy during a search. Equation 3 shows how
the weights are included in the fitness function. Note that keeping the weights
wc set to one during the run of an evolutionary algorithm would result in a
standard evolutionary algorithm, that is, without saw. Hence,

fitness(solution) =
∑

c∈constraints

wc · C(c) (3)

where C(c) =
{

1 if c is violated by solution,
0 otherwise.

The evolutionary algorithm in [5, 6] uses an order-based representation, i.e.,
a permutation of the variables of the binary csp. A greedy decoder is used to
decode this permutation into a value assignment.

5 Experiments and Results

We randomly generate problem instances of binary csps, using RandomCsp [9].
The process whereby we create these instances is called Model B [11], which first
determines how many constraints and conflicts an instance will contain and then
distributes both of these uniform randomly over the instance. Every instance is
generated with the same domain size for each of its variables, this domain size
is fixed to fifteen. In the first experiment we will vary the constraint density and
the constraint tightness, while in the second experiment we will vary the number
of variables.

The results for the evolutionary algorithms used in this paper are taken from
a study by Eiben et al. [6], where the same set of randomly generated binary
csps is used.

We measure the success rate (sr) and the average number of constraint checks
(acs) for each pair of density and tightness. The classical algorithms are sound
and therefore the percentage of solutions presented is the actual percentage
of solutions in the test set. When an evolutionary algorithm reaches the same
sr it has actually found a solution to every csp that had one. Whenever an
evolutionary algorithm is not able to find a solution within a fixed number of
generated proposed solutions it is terminated. This number is fixed to 100,000
for both evolutionary algorithms.

5.1 Fixed Variables and Domain Sizes

The test set consists of problem instances created with two parameters fixed
and two parameters that vary: the number of variables and the overall domain
size are set to fifteen and the constraint density and average tightness are varied



from 0.1 to 0.9 with a step size of 0.2. Thereby, creating 25 different pairs of
density and tightness. For each of these pairs we randomly generate 25 different
problem instances. Because of the stochastic nature of evolutionary algorithms
we let each of them do ten independent runs on each instance, which follows the
procedure in [6].

Table 1. Success ratio and average number of constraint checks, with standard deviations
within brackets for 25 pairs of density and tightness settings. Every result is averaged over
25 instances

density
algorithm

tightness

0.1 0.3 0.5 0.7 0.9

0.1

bt 1.00 1.08e2 (3e0) 1.00 1.18e2 (9e0) 1.00 1.37e2 (1e1) 1.00 3.52e2 (9e2) 0.84 7.99e3 (2e4)

fc-cbj 1.00 1.53e3 (2e1) 1.00 1.44e3 (4e1) 1.00 1.35e3 (6e1) 1.00 1.25e3 (1e2) 0.84 8.64e3 (2e4)

mid 1.00 1.01e1 (3e-1) 1.00 5.07e1 (2e1) 1.00 2.25e2 (6e1) 1.00 0.48e2 (3e2) 0.84 2.09e5 (4e5)

saw 1.00 1.00e1 (0) 1.00 1.00e1 (0) 1.00 1.75e1 (2e1) 1.00 8.91e1 (8e1) 0.36 6.74e5 (5e5)

0.3

bt 1.00 1.21e2 (1e1) 1.00 1.03e3 (4e3) 1.00 6.86e3 (1e4) 0.56 1.60e5 (4e5) 0.00 3.41e4 (7e3)

fc-cbj 1.00 1.4e3 (3e1) 1.00 1.08e3 (7e1) 1.00 9.42e2 (3e2) 0.56 1.48e4 (2e4) 0.00 3.41e4 (7e3)

mid 1.00 1.01e1 (3e1) 1.00 1.74e3 (3e2) 1.00 1.2e4 (4e3) 0.41 2.35e6 (8e5) 0.00 3.15e6 (0)

saw 1.00 3.10e1 (0) 1.00 4.48e1 (4e1) 1.00 1.26e3 (7e2) 0.17 2.78e6 (8e5) 0.00 3.15e6 (0)

0.5

bt 1.00 1.31e2 (1e1) 1.00 1.07e3 (2e3) 1.00 2.11e5 (5e5) 0.00 1.59e4 (1e4) 0.00 2.64e4 (4e3)

fc-cbj 1.00 1.27e3 (4e1) 1.00 8.66e2 (6e1) 1.00 2.29e4 (4e4) 0.00 7.3e3 (2e3) 0.00 2.64e4 (4e3)

mid 1.00 5.43e2 (1e2) 1.00 9.33e3 (2e3) 0.93 1.65e6 (7e5) 0.00 5.25e6 (0) 0.00 5.25e6 (0)

saw 1.00 5.22e1 (1e0) 1.00 3.82e2 (3e2) 0.69 2.01e6 (2e6) 0.00 5.25e6 (0) 0.00 5.25e6 (0)

0.7

bt 1.00 1.49e2 (2e1) 1.00 2.43e4 (9e4) 0.00 1.64e5 (9e4) 0.00 6.38e3 (3e3) 0.00 2.49e4 (3e3)

fc-cbj 1.00 1.16e3 (5e1) 1.00 9.92e2 (5e2) 0.00 3.97e4 (1e4) 0.00 4.42e3 (8e2) 0.00 2.49e4 (3e3)

mid 1.00 1.55e3 (2e2) 1.00 5.49e4 (2e4) 0.00 7.35e6 (0) 0.00 7.35e6 (0) 0.00 7.35e6 (0)

saw 1.00 7.48e1 (9e0) 1.00 5.28e3 (3e3) 0.00 7.35e6 (0) 0.00 7.35e6 (0) 0.00 7.35e6 (0)

0.9

bt 1.00 3.29e3 (2e4) 1.00 1.94e5 (2e5) 0.00 7.40e4 (9e3) 0.00 3.38e3 (5e2) 0.00 2.28e4 (3e3)

fc-cbj 1.00 1.09e3 (5e1) 1.00 1.47e4 (2e4) 0.00 2.42e4 (2e3) 0.00 3.67e3 (4e2) 0.00 2.28e4 (3e3)

mid 1.00 3.29e3 (5e2) 1.00 7.4e5 (3e5) 0.00 9.45e6 (0) 0.00 9.45e6 (0) 0.00 9.45e6 (0)

saw 1.00 1.02e2 (4e1) 1.00 2.54e5 (1e5) 0.00 9.45e6 (0) 0.00 9.45e6 (0) 0.00 9.45e6 (0)

A quick look at the results in Table 1 shows three distinct “regions” of para-
meter settings, which correspond to the theoretical expectation presented in the
x,y-plane in Figure 1. First, the upper left where the density and tightness are
low shows that all problem instances have solutions that may easily be found by
every algorithm. Second, opposite of the left corner where density and tightness
are high we see that none of the problem instances can be solved. Third, between
these two regions a mushy region exists where not for every pair of density and
tightness we may solve all of the problem instances. Furthermore, here the al-
gorithms need significantly more constraint checks to determine the solution or
to determine that no solution exists. Also we see that for those settings not every
instance is solvable as is the case for density/tightness pairs 0.1/0.9 and 0.3/0.7.

Looking at the lower right corner we see the large difference in the number of
constraint checks for the classical algorithms and for the evolutionary algorithms.
The explanation for this difference is twofold. First, the large numbers for evol-
utionary algorithms occur because, in general, evolutionary algorithms do not



know when to quit. Second, the small numbers for the classical algorithms are
caused by the problem instances becoming over-constrained, making it easy to
reduce the search space.

The results of saw in the upper left region seem a little strange. As evol-
utionary algorithms are generally started with a random population we would
not expect them to find solutions quickly. Nevertheless, saw is able to find a
solution (on average) with fewer than 400 constraint checks for all of these pairs.
Again the explanation is twofold. Firstly, this version of saw uses a very small
population size, thus losing little at the first evaluation of the whole population.
Secondly, its greedy decoder is successful for easy problems that have many
solutions, thus able to solve them in a few attempts.

When observing the results we see that except for easy problems classical
algorithms are better. When we focus on the classical algorithms we see that the
winner is fc-cbj. Although it does not beat the other algorithms in the upper
left and lower right regions it makes up for this small loss in the mushy region.

To verify the significance of our results we performed a number of statistical
tests [10]. When we look at the results and take these as data for statistical
analysis, we are confronted with a problem. The data is not normally distrib-
uted according to KS-Liliefors tests. Even if they were normally distributed the
standard deviations are too far apart. This implies that the spread in the results
is too large to perform statistical tests like student or annova. We turn towards
a Wilcoxon Rank test to do our analysis as this test is able to handle data that
is not normally distributed.

Table 2. Results of the Wilcoxon Rank test for paired up algorithms, where H1
0 is

the one-sided hypothesis, H2
0 the two-sided hypothesis and z the normally distributed

variable

fc-cbj mid saw mid saw saw

H1
0 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000

H2
0 bt 0.0011 0.0001 0.0000 fc-cbj 0.0000 0.0000 mid 0.0000

z -3.2642 -4.0314 -13.0.99 -9.7333 -13.153 -19.634

We list the results of each instance, averaging the 10 runs for the evolutionary
algorithms. This gives us 625 lines. Then we pair up two algorithms and perform
the Wilcoxon’s Rank Pairs Signed Rank Test [2] for pairwise ascertained data
sets. Here the null-hypothesis (H0) is that the both results are to be treated
equally. We test the null-hypothesis for one-side (H1

0 ) and for two-sides (H2
0 ). In

Table 2 we see that this test shows the results of our comparison is significant for
every pair as the largest chance that the null-hypothesis is true is only 0.0011.

5.2 Scale-up tests

Besides a large comparison for a fixed number of variables and domain size, we
also perform a scale-up test whereby we increase the number of variables. We



want to see whether evolutionary algorithms are able to outperform classical
methods when the problem size increases. Again we randomly generate 25 dif-
ferent problem instances per settings. We start with 10 variables and increase
with steps of 5 up until 45. Every instance used in this experiment has a solution.

Because for n ≤ 45 every run of a classical algorithm produces a solution,
we only present results on the average number of constraint checks. The graph
on the right in Figure 3 shows, on a logarithmic scale, the results from the
table on the left. Chronological backtracking scales up very poorly. Although,
for a small number of variables chronological backtracking is able to compete
with the other three algorithms, we see that from n = 25 onwards the number
of constraint checks increases exponentially. The two evolutionary algorithms
are able to keep up a good performance for small number of n, but eventually
they have to give in. Very different is fc-cbj that shows an almost constant
performance until the number of variables has reached as much as 35.

Fig. 3. Results for the scale-up test where the number of variables is varied, while the
domain size is fixed to 15 and the constraintness and tightness are both set to 0.3. Note
that for n = 45 the maximum number of evaluations is set to 200,000

n
bt fc-cbj mid saw
acs acs sr acs sr acs

10 5.90e1 5.49e2 1.00 1.30e2 1.00 1.30e1
15 1.71e2 1.10e3 1.00 1.61e3 1.00 6.20e1
20 4.14e2 1.75e3 1.00 9.29e3 1.00 2.85e2
25 5.31e4 2.63e3 1.00 3.69e4 1.00 2.70e3
30 3.10e6 3.75e3 1.00 1.35e5 1.00 2.47e4
35 5.43e7 9.32e3 1.00 6.16e5 1.00 2.61e5
40 9.57e7 3.88e5 1.00 4.04e6 1.00 4.37e6
45 4.10e9 3.70e7 0.44 4.70e7 0.24 5.30e7

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

10 15 20 25 30 35 40 45

av
er

ag
e 

co
ns

tr
ai

nt
 c

he
ck

s

number of variables

BT
FC-CBJ

MID
SAW

The last value (n = 45) is the first time that the evolutionary algorithms have
trouble finding a solution within the maximum of 100,000 evaluations. mid has
a success rate of 0.21 and saw has 0.12. We increase this maximum to 200,000
because fc-cbj is using more constraint checks than the previous maximum
allows. mid’s success rate rises to 0.44 and saw’s success rate rises to 0.24. The
number of evaluations of both is larger than that of fc-cbj.

6 Conclusions

In this study we have made a comparison based on a test set of randomly gen-
erated binary constraint satisfaction problems between two classical algorithms
and two evolutionary algorithms. This comparison shows that evolutionary al-
gorithms have to improve their speed by a considerable factor if they want to
compete with an algorithm as simple as chronological backtracking.



In our comparison, the idea that evolutionary algorithms might outperform
classical methods when the problem at hand is scaled-up holds only partially. Al-
though both evolutionary algorithms easily outperform the simple backtracking
algorithm, they are not fast enough to take on the more modern fc-cbj.

One reason evolutionary algorithms are not promising is that they fail to
realize when a problem has no solution — unlike the classical algorithms that,
aided by preprocessing methods such as arc-consistency, are very efficient in
pointing out the impossible.
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