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Abstract

The paper presents an elementary approach for the calculation of the entropy
of a class of languages. This approach is based on the consideration of roots
of a real polynomial and is also suitable for calculating the Bernoulli measure.
The class of languages we consider here is a generalisation of the tukasiewicz

language.
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Introduction

The tukasiewicz language (see [AB97]) is the language defined by the graBwmar

aSS b. Itis a deterministic one-counter language and a prefix-code. In this paper we
are going to generalise this concept in two ways: First we admit languages generated
by grammarS— aS' | b with a€ Ag,b € A1, whereAy andA; are disjoint alphabets.

The languages thus specified are also deterministic one-counter prefix-codes. Sec-
ondly, we allow substitution of letters & := Ao UA; by codewords of a previously
given codeC (for more details see Secti@ 2). This results in languages which are
codes but—depending on the cade-not necessarily context-free and which will be
called, in the sequel, generalised Lukasiewicz languages.

In the paper[[Ku70] a remarkable information-theoretic property of tukasiewicz’s
comma-free notation was developed. The languages of well-formed formulas of the
implicational calculus with one variable and onery operation(n > 2) in Polish
parenthesis-free notation have generative caphg(t%l;—l) wherehs; is the usual Shan-

non entropy, or, stated in other terms, the languages generated by grafwaS' |

b have generative capacity (™).

The main purpose of our investigations is to study the same information theoretic as-
pect of languages as ih [CM58, KU70, Ei74, JL[75, $t88], namely the generative ca-
pacity of languages. This capacity, in language theory calledrtrepy of languages
resembles directly Shannon’s channel capacity (cf. [J092]). It measures the amount
of information which must be provided on the average in order to specify a particular
symbol of a word in a language. For a connection of the entropy of languages to Algo-
rithmic Information Theory see e.q. [LV93, St93]. In [HP94] an account of interesting
connections between the entropy of languages and data compression was presented.
After having investigated basic properties of generalised tukasiewicz languages we
first calculate their Bernoulli measures in Secf{ign 3. Here we derive and investigate
in detail a basic real-valued equation closely related to the measure of generalised
tukasiewicz languages.

These investigations turn out to be useful not only for the calculation of the measure
but also for estimating the entropy of of generalised tukasiewicz languages which
will be carried out in Sectiop|4. In contrast to [Ku70] we do not require the powerful
apparatus of the theory of complex functions utilised there for the more general task of
calculating the entropy of unambiguous context-free languages. We develop a simpler
apparatus based on augmented real functions. As announced above, this approach
applies also to languages which are not necessarily context-free where the entropy is,
in general, not computable [Ka70]. We give also an exact formula for the entropy of
pure tukasiewicz languages with arbitrary numbers of letters representing variables
andn-ary operationsr{ fixed).

The final section deals with the entropy of the star languages (submonoids) of gener-
alised Lukasiewicz languages.

Next we introduce the notation used throughout the paperNBy{0,1,2,...} we
denote the set of natural numbers. Xebe an alphabet of cardinalityX¥¢=r. By X*
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we denote the set (monoid) of words ¥nincluding theempty word eForw,v € X*

let w- v be theirconcatenation This concatenation product extends in an obvious
way to subset8V,V C X*. For a languag®V let W* := UieNWi be thesubmonoidf

X* generated bWV, and byW® := {wy---w;--- :w; € W\ {e}} we denote the set of
infinite strings formed by concatenating wordd/h Furthermorgw| is thelengthof

the wordw € X* andA(B) is the set of all finite prefixes of strings BIC X* U X®.
We shall abbreviater € A(n) (n € X*UX?) bywC 1.

As usual languag¥ C X* is called a code provideat; - --wj = vy --- Vi forwy, ..., w,
Vi,...,Vk €V implies| = kandw; =v;. A language/ C X* is referred to as am-code
providedwsy ---W;... = Vvq---Vi--- Wherew;,Vv; € V impliesw; = v;. A codeV is said

to have dinite delay of decipherabilityprovided for everyw € V there is aim,, € N
such thatw- vy -« -V, TW -u, for vy, ..., Vm,,W €V andu € V*, impliesw = w’ (cf.
[DL94, [St85]). As usualy is called aprefix codeprovidedv C w impliesv = w for
v,w €V, that is,V has a finite delay of decipherability ang), = O for everyw € V.
Every code having a finite delay of decipherability isarcode (see [DL94, St85]).
A simple example of anw-code having no finite delay of decipherability is the set
V:={a,c}uU{acb:i e N} C {a,b,c}*. Here, for the codeword € V, the numbem

is infinite, whereasn,, = O for every other wordv € V.

1 Pure Ltukasiewicz-languages

In this section we consider languages over a finite or countably infinite alphabet
Let {Ag,A1} be a partition ofA into two nonempty parts and let> 2. Thepure
{Ao, A1 }-n-Lukasiewicz-languags defined as the solution of the equation

E=AgUA L. (1)

Itis a S|mple deterministic language (cf. [AE 97, Section 6.7]) and can be obtained as
U,GNL whereLo =0 andL.+1 =AgUA;- L, .

{Ao, A1 }-n-Lukasiewicz-languages have the following easily verified properties. For
the sake of completeness we give a proof.

1.1 Proposition 1.t isa prefix code.
2.Ifwe A" and ag € Ag then W- a‘ow‘ et
3.A(LY) = A"

Proof. 1. Letv,w € t be a pair of words such that— w, and|v| + |w| is minimal.
SinceAgNA; = 0, we have,w € A; -£", thatis,v=Vg- V1 - - - Vp aNdw = Wo - W1 - - - Wi
wherevg, Wo € A andvi,w; € £ for i > 1. v = wg follows readily. Leti, 1<i<n,
be the smallest index such thatZ w;. Hence, eithey; is a prefix ofw; or vice versa,
a contradiction to the length assumption.

2. We show by induction onthat the assertion holds for evemyec Al.
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If we A? = {e} thenw e £*. Assumew € A+, Thenw=a-uforac Aanduc

Al. By the induction hypothesis; - a‘o| "€ £ for suitablem € N. Consequently,

u- gl = y.alu " ¢ £ has a decompositiam 8" = vi vy - U wherev; e £
andu € £™,
w|-n

If ac Agthena-vi---vp-U =w-ay € L™+ and the assertion is true. dfc A

thena-vy---vp € £ whencea: vy -+ -Vp-U = w- a‘oWI " e £™1 and the assertion is also
true.
3. follows from 2. O

Along with L it is useful to consider itslerived languagé which is defined by the

following equation.
n—1~

Ki=Ar-(J_,t (2)

1.2 Proposition 1. A(L)\E =K*
2. Every w € A* has a unique factorisation W= V-U where V € £* and u € K*,

Proof. 1. We haveA (L) = {e} UAGUA; -UTFE - A(L).

Sincet. is a prefix codel!_g £'- (A(E) \ £) is the disjoint union of the sets - (A(£) \
L), whence J- Olt' At b)= U e (A(R)\ ) UL

ConsequentlyA(£) \£ = A(£)\ (AgUA;-£™) = {e} UA;- UM 3L (A(L) \L). Since

ed Ar-UN L, this equation has the unique solutighy - U2 £1)*.

2. follows from 1. because for a prefix co@eevery word inw € A(C*) has a unique

factorisationrw = v-uwith ve C* andu € A(C)\C. 0

1.3 Proposition K is an o-code having an infinite delay of decipherability.

Proof. Assume that there are subfamili@® )y, (Vi)jcy Of K such thatwg-wy - - =
Vo Vi--- andwg # Vp. W.L.o.g. assumevg to be a proper prefix ofp. Then, sincet
andA; are prefix codesyp = X-Up- - - Uj andvp = X- Up - - - Uy Wherex € Ay, Ui € t and
n> j’ > j. Consequentlyyj, is a prefix ofvy - - vy for a sufficiently largem e N
which contradicts Propositign 7.1.

The second assertion follows from Lemma 3.5[in_[DL94], becaigen {& : £ €
A®NA(E) CA(K)} DAY £0. 0

2 The Definition of Lukasiewicz Languages

Generalised Lukasiewicz-languages are constructed from pure tukasiewicz-languages
via composition of codes (cf. Section 1.6 of [BP85]) as follows. We start with a code
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C, #C > 2, an alphabet with # A= #C and an bijective morphisny : A* — C*. Let

C:= y(Ag) C CandB:= y(A;) C C. This partitions the cod€ into nonempty parts

C andB. N

Lett be the{Ag, A1 }-n-Lukasiewicz-language and &:y/(L). Thus, L is the compo-
sition of the codes andC via v, L= (fol,,E. Analogously to the previous section

t is called{C, B}-n-tukasiewicz-languagéd-or the sake of brevity, we shall omit the
prefix “{C,B}-n-" when there is no danger of confusion. Throughout the rest of the
paper we suppose andB to be disjoint nonempty sets for whi€hU B is a code, and

we suppose to be the composition parameter described in Eq. (1).

Utilising the properties of the composition of codes (cf. [BP85, Section 1.6]) from the
results of the previous section one can easily derive that £ has the following properties.

t =CUB-t" 3)

2.1 Proposition 1. £ C(CuB)*-CC (CUB)*
2. t isacode, and if CUB is a prefix code then t. is also a prefix code.
3. Ifwe (BUC)* andv e C then w-vWIM e £,
4. A(L*)=A((CuB)*)

It should be mentioned that £ might be a prefix code, eve®aind henc& U B are
codes having no finite delay of decipherability.

2.1 Example LetX = {a,b,c},C:={ac®b:icN},B:={aclu{ac®b:i e N}
andn > 2. Itis easily seen th&i UB as well asB are codes having no finite delay of
decipherability.

Moreover, tN{c}* =0 andA(L*)N{c}*-b =0, because each nonempty waord +.*
contains a factor of the formc?*+1p.

Assume t to be no prefix code. Then therewre € £ such thatw =a-ws - - - w, with

wj € £ andv has a prefix of the fornac/b. Thenw; € {c}* or c/b = w; which is
impossible.

In the same way as above we define tlegived languag& as K = éoq, K, and we
obtain the following.

o n—1i
K:=B-lJ_gt (4)
Proposition$ 1]2.2 arjd 1.3 prove that the language K is related to t via the following
properties.

2.2 Theorem 1. A(L)=K*-A(CUB).

2. Every we (CUB)* has a unique factorisation W= V-U where vV € £* and
ueK”.

3. K is a code having an infinite delay of decipherability.
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3 The Measure of Lukasiewicz Languages

In this section we consider the measure of Lukasiewicz languages. Measures of lan-
guages were considered in Chapters 1.4 and 2.7 of [BP85]. In particular, we will
consider so-called Bernoulli measures.

3.1 Valuations of Languages

As in [Fe95] we call a morphism : X* — (0,00) of the monoidX* into the mul-

tiplicative monoid of the positive real numbers/aluation A valuationu such that

U(X) = Y xex u(X) = 1 is known adBernoulli measur@n X* (cf. [BP85, Chap. 1.4]).

A valuation is usually extended to a mappimg2*" — [0, 00] via u(W) := Zwu(w).
we

Now consider the measuge(t) for a valuationu on X*. Since the decomposition
t = CUB-L"is unambiguous, we obtain

pt)=pnC)+u(B) uk)".

The representation & Uiofl’f-i where t; :=C and &1 := CUB-L; allows us to
approximate the measurgt ) by the sequence

p = u(C)
piva = p(C)+u(B) u"
pk) = limi_copi.

We have the following

3.1 Theorem Ifthe equation A = 11(C)+ u(B)- A" has a positive solution then pt (L)
equals its smallest positive solution, otherwise (L) = 00.

Proof. We have O< uy < ... < Ui < giz1 < ... . Let Ap be the minimal positive
solution of the equatiop (L) = u(C) + u(B) - u(£)". Then 0< Ap and if yj < Ag then
tiv1 = p(C)+u(B) " < u(C)+u(B)- A5 = Ao. Consequentlyy(t) < Ao.

On the other hand, in view of limeo ti+1 = liMj_ o (1 (C) + u(B) - ") = u(C) +
1(B) - (limj_oo i)™, the limit lim;_, o0 ;i is a solution of our equation, and the assertion
follows. O

In order to give a more precise evaluationugt ), in the subsequent section we take a
closer look to our basic equation

A=y+p-A", (5)

wherey, B > 0 are positive reals.

In order to estimate:(K) we observe that the unambiguous representation of Eq. (4)
yields the formulau(K) = u(B) - z{‘;olu(t)‘. Then the following connection between
the valuationgt(£) andu (K) is obvious.

3.2 Proposition It holds u(t) = 00 iff u(K) = 00.
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3.2 The Basic Equationl = y+ - A"

This section is devoted to a detailed investigation of the solutions of our basic equation
(5). As a result we obtain estimates for the Bernoulli measures of £ and K as well as
a useful tool when we are going to calculate the entropy of Lukasiewicz languages in
the subsequent sections.

Let A be an arbitrary positive solution of E@ (5). Then we have the following relation-
ship to the valug + .

<1l & )E<y+l3,
=1 & A=vy+p,and (6)

A>1 & A>y+p

| & >

Proof. We prove only the last equivalence, the other proofs being similar. From
A=v+B-A", in view of A > 1, we have immediately + 3 < A. Conversely,
Y+B<A=y+p-A"impliesA > 1. O
In order to study positive solutions it is convenient to consider the positive zeroes of
the function.

f(A)=y+B-A"—2 (7)

The graph of the functiorf reveals thatf has exactly one minimum atnin, 0 <

A

f(4)

Figure 1: Plot of the functiorf (1) in the case of two positive roots

Amin = %\/ﬁ < 00 on the positive real axis, the value of which fi§Amin) = v —
-1 1 -1 . - 2 .
L o D=L (-2: - ¥— Amin). Thus it has at most two positive rocts, A which

satisfy 0< Ag < Amin < A.

We obtain the following necessary and sufficient condition for the existence of a posi-
tive rootAg and its further properties.
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3.3 Proposition Let v, > 0 and Iet f(?L) =Y+ B -A"—A. The function f has a
)

positive root if and only if Y"1 B < < ( , and its positive roots satisfy

7<M§%§lmin§i- (8)

Moreover, f has a positive root provided Y+ 8 < 1, and in this case for its positive
roots Ag and A the following equivalences are valid

Y+B<1 & Ao<y+B<1l<A,and

y+B=1 & A=1vi=1. (9)

Proof. As it was mentioned above, the functidnhas a positive root if and only if

f (Amin) = y— =2 <0, thatis, if <! ”1)“

(Amin) = 7= "5 n—\/_ 1B -
Sincef(l) >0for0< A <yandf(%) =7 (29" (y”‘l-ﬁ — %) we have
Y < Ao < =77 - Y providedf has a positive root.

Now, f(1 ) y+[3 1andf(y+pB)=pB((y+p)"—1) imply thatin casey+ <1
the functionf has positive roots satisfyimgy < y+p <1< A, and in view of Eq.|( F)
its positive roots satisfy Eq.|(9). O

Next, we consider the caddAnin) = 0, that is, whenf has a positive root of multi-
plicity two. It turns out that in this case we have some additional restrictions.

3.4 Lemma Let Y, 3 > 0. Then the following conditions are equivalent.

1. v+ B-A"— A has a positive root of multiplicity two.

1)n—1

2.yt p=1
3. /lmin:nTnl"y

Moreover each one of the conditions implies Y+ 3 > 1, and then Y+ = 1 if and only
iff==1ory=""2

Proof. ltis obvious that)Lmin is a root of f iff f has a multiple positive root. The
conditiony"! B (U iy equwalent tof (Amin) = 0.

Now, Vn B = |ﬁ Amin = n_\/— n 17

From the arithmetic geometric mean inequality we know t@e{%)”*lﬁ < #
with equality if and only n‘n”1 = [3 Thus Condition 2 impliey+ B > 1, and if
v+ B =1 the identityy"*- g = =" holds iff p = 1 Lory=", O

In connection withig we consider the valugp := f3 - zi”_olll('). Thls value is related
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to u(K) in the same way a&y to u(L). Inview of B(AJ —1) =B - A0 +y—y—B =
Ao— (y+B), we have

n-p ,if Ap=1and
Ko=4 Ao—(v+h)
Ao—1

As a corollary to Eq[(T0) we obtain the following.

, otherwise. (10)

3.5 Corollary (ko0—1)-(Ao—1)=1—(y+pB)

We obtain our main result on the dependencies between the coefficients of our basic
equation|(b) and the values &§ andkp.

3.6 Theorem Let f(A)=7y+B-A"—A. Then f(A) has a positive root if and only if
one of the right hand side conditions in Egs. to (I6) holds. Moreover, the values of
. .. ... . n—-11i . .
its minimum positive root Ag and the value ko = - 3" 5 Ay depend in the following
way from the coefficients y and 3.

M<lrnk<l & y+B<1 (11)
A<lAkg=1 & y+B=1Af>1 (12)
M<lAko>1 & y+B>1AB>2ATF(Anin) <O (13)
AM=1Ak <1l & y+B=1AB<i (14)
M=1Ak=1 & y+B=1AB=1 (15)
Ao>1AKko<1l & y+B>1IAB<IATF(Amin) <O (16)

The remaining cases Ag = 1A\ kp > 1 and Ag > 1A kg > 1 are impossible.

Proof. The functionf has a positive root if and only if (Ayjn) < 0. Observe that, in

view of Eq. @),}’—i—ﬁ < 1implies f(Amin) < 0. Moreover, ify+ > 1 andB = 1 the
function f has no positive root.

Consequently, the six cases on the right hand sides of our equivalences cover the whole
range whenf has a positive root and, additionally, are mutually excluding each other.
Thus it suffices to prove the implications from right to left.

Eq. (TT) If y+ B < 1thendo < 1 (cf. Eq. [9)). Hence, Corollafy 3.5 implies < 1.

Egs. (I2) and [(IB) > 2 is equivalent toAmin < 1 whencedg < 1 if f(Amin) < O.
Thenkg =1, in case of Eq[(12), angh > 1, in case of Eq[(13), follow from
Corollary[3.5.

Eq. (I4) If B < £ we havedmin > 1. Thus Eq.[() and showk = 1. Now, kp < 1
follows from Eq. [10).

Eq. (I5) This implication is straightforward.
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Eq. (I8) The right hand side is equivalent fd1) > 0, Amin > 1 and f(Amin) <0,
whenceAmin > Ao > 1. Again from Corollary 35 we obtairp < 1.

From Theorem 3]6 and Eq.|(6) we obtain the following.

3.7 Corollary If A9 > 1then Ag > y+p > 1.

Comparing with the equivalences of Lemma 3.4 we observe that multiple positive roots
are possible only in the cases of E{s] (13)] (15) pnd (16), and that in the cas€ of Eq. (15)
we have necessarily multiple positive roots.

3.3 The Bernoulli Measure of Lukasiewicz Languages

The last part of Sectign| 3 is an application of the results of the previous subsections
to Bernoulli measures. As is well known, a code of Bernoulli measure 1 is maximal
(cf. [BP85]). The results of the previous subsection show the following necessary and
sufficient conditions.

3.8 Theorem Lett =CUB-Lt, C,B C X* be a Lukasiewicz language, K its derived
language and p : X* — (0,1) a Bernoulli measure. Then u(t) =1iff u(CUB) =1
and (1(B) < % and u(K) = 1iff u(CUB) = 1and u(B) > &.

Thus Tbeore8 proves that pure tukasiewicz languagesd their derived lan-
guage«K are maximal codes.

Resuming the results of Sectiph 3 one can say that in order to achieve maximum mea-
sure for both Lukasiewicz languages £ and K it is necessary and sufficient to distribute
the measureg (C) andu(B) asu(C) = ”%1 andu(B) = % thus respecting the com-
position parameten in the defining equatiorj [1). A bias in the measure distribution
results in a measure loss for at least one of the codes t or K.

4 The Entropy of Lukasiewicz Languages

In [Ku70] Kuich introduced a powerful apparatus in terms of the theory of complex
functions to calculate the entropy of unambiguous context-free languages.

For our purposes it is sufficient to consider real functions admitting the w@ud he
coincidence of Kuich’s and our approach for Lukasiewicz languages is established by
Pringsheim’s theorem which states that a power seffgs= zi"gosti, s > 0, with

finite radius of convergenceds has a singular point abds and no singular point

with modulus less tharads. For a more detailed account see [Ku70, Section 2].

Here and in the subsequent section we show that our apparatus establishes a general
treatise of the entropies of £, K and their star closuréshd K* provided sufficient
information is known about the structure generating functions of the codesiB.
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4.1 Definition and Simple Properties

The notion of entropy of languages is based on counting words of equal length. There-
fore, from now on we assume our alphalieb be finite of cardinality & =r, r > 2.
For a languag&V C X* let sy : N — N wheresy(n) := #W N X" be its structure
function and let
HW _ ||mSUplogr(1+ SW(n))
n—00 n

be itsentropy(cf. [Ku70]).

Informally, this concept measures the amount of information which must be provided
on the average in order to specify a particular symbol of a word in a language.
Thestructure generating functiocorresponding tey is

sw(t) ==Yy sw(i) ) (17)

s IS a power series with convergence radius

1
radW := liminf ,
=00 {/sw(n)
and, considered as a real function[0rradW), it is nondecreasing.

As it was explained above, it is convenient to consiggrlso as a function mapping
[0,00) to [0,00) U {00}, where we set

sw(radW) = sup{sw(a):a <radW}, and (18)
sw(a) = 00,if @ >radW. (19)

Eq. (1I8) is in accordance with Abel's Limit Theorem which states thagfor 0 and
r>0one ha§ rIitrgr Yienai-t' = Yjenai - r' providedyicn g -t' converges at=r.

Having in mind this variant ofyy, we observe thady is a nondecreasing function
which is continuous in the intervé0, rad W) and continuous from the left in the point
radW. Moreoversy is increasing whenevél/ ¢ {e}.

If W ¢ {e} we say thatsy reachesthe values att € [0,radW] iff sw(t) < s and
sw(t') > sforallt’ > t, that is, fors € [0,sw(radW)) there is & such thatw(t) = s
and, ifsyy(radW) < 00 any values, sy (radW) < s< 00, is reached atadW.

Then the entropy of languages satisfies the following property.

4.1 Proposition
Hoy *— 0 , if W is finite, and
W= —log, radW , otherwise.

Before we proceed to the calculation of the entropy of Lukasiewicz languages we
mention still some properties of the entropy of languages which are easily derived
from the fact thatyy is a positive series (cfl_[Ei74, Proposition VIII.5.5]).
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4.2 Proposition Let V,W C X*. Then 0 < Hy < 1 and, if W and V are nonempty,
we have Hwy = Hw.v = max{Hw,Hy } .

Proof. In fact, 0<sw(n) <r", and ifW andV are nonempty languages then
max{sy(t),sw(t)} < svow(t) < 2-max{sy(t),sw(t)} and
max{swv(t),swv(t)} < syw(t) < sv(t)-sw(t)
whenv € V andw € W. ConsequentlyiadV UW = radV -W = min{radV,radW}. O
For the entropy of the star of a language we have the followingl(cf. [Ei74, Ku70]).

4.3 Proposition IfV C X* is a code then

sy+(t) = ZieN(5V(t)>i = 1,51\,@) » and

Hy ,ifsy(radV) < 1, and
—log, inf{y:sy(y) =1} ., otherwise.

HV* =

In generalycy(sw(t))' is only an upper bound tay: (t). Hence only in casay(t) < 1
one can conclude thaty-(t) < Tien(sw(t))' < 00 and, consequently, < rad W*.
Thus we obtain a sufficient condition for the equalityy = Hw+ depending on the
value ofsy (radW).

4.4 Corollary LetW C X*. We have Hy = Hw- if sw(radW) < 1, and if W is a code
W C X* it holds Hy < Hw- if and only if syy(radW) > 1.

Property{ 4.B and Corollafy 4.4 show that the vatiuéor which sy (t1) = 1 is crucial
for the calculation oHy+ and yields an exact estimateld§- if V is a code.

4.2 The Calculation of the Convergence Radius

Property 4.]L showed the close relationship betwégrandradW, and Corollary 4.4
proved that the value afy at the pointradW is of importance for the calculation of

the entropy of the star languageWf Hyy-.

Therefore, in this section we are going to estimate the convergence radius of the
power series, (t) and simultaneously, the values(radt) andsk(radk) (Observe
thatradt = radK in view of Eq. (4) and Property 4.2). We start with the equation

st (t) = sc(t) +sp(t) -5 (1)" (20)

which follows from the unambiguous representation in E¢. (3) and the observation
thatradt = sup(t : s, (t) < 00} = inf{t : 5, (t) = 00}, because the functios (t) is
nondecreasing (even increasing[Orradt ).

From Sectioj 3]2 we know that, for fixedt < radt, the values, (t) is one of the
solutions of Eq.[(p) withy = sc(t) and 8 = sg(t). Similarly to Theorenj 3]1 one can
prove the following.
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4.5 Theorem Lett > 0. If Eq. (3)) has a positive solution for y = sc(t) and B = sg(t)

then s (t) = Ao, and if Eq. (3) has no positive solution then s, (t) diverges, that is,

Sy (t) = 00.

This yields an estimate for the convergence radius, (f) as the point at which the
n—-1

productsc(t)"1- sg(t) reaches the valu@%.

radt. = inf{rad (CUB)} U {t:sc(t)" *-sg(t) > "3~}

nn
1

= sup{t ssc()"Losp(t) < (n*:n)”_ } (21)

Proof. Clearly, s, (t) converges only ibc(t) andsg(t) converge. It < rad (CUB)
thens, (t) < 00 if and only if our basic equation has a solution. This is the case when

f (Amin) < O, that is, ifsc(t)" 1 - sg(t) < M= .
Ass. 1) < 00 whenevesc (1) 1-sp(t) < ("3 we obtain
5L(radL) < 00. (22)

Using Theoren 4]5 in connection with the results of Sedtioh 3.2 we can describe the
behaviour ofs, on [0,radt] as follows (see Figurg 2). Observe thatg ands, are
increasing orj0,radCUB) and |0, radt], respectively. First Eq[ [8) shows

s(t)

A 5L

- SCcuB

Figure 2: A typical plot of the structure generating functions of t &ndB

sc(t) < s (t) < zgsc(t) for0 <t <radt.

Moreover, from Eq.[(9) we obtain that(t) < sc(t) +sg(t) as long asc(t) +sg(t) <
1. The valud; for whichsc(t1) +sg(t1) = 1 is crucial for the behaviour af :
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If s (t1) = 1 thens, (t) > 1 for t; <t < radt and Corollary| 3.5 implies that then

s (t) > sc(t) +sg(t). On the other hand, i, (t1) < 1 thens, (t) < 1 in the whole
range 0<t < radt, because, (t) = 1 impliessc(t) + sg(t) = 1 which is impossible
fort > t.

We obtain two corollaries to Theoregm 4.5 and Hq. (21) which allow us to estimate
radt. The first one follows from Lemmfa 3.4 and covers also the case whi€ U

B) = 00.

4.6 Corollary If (- < sc(rad (CUB))" 1. sg(rad (CUB)) then radt is the so-

nn
n-1
Iution of the equation sc(t)"~1-sg(t) = (nfr}r? .

In this case scg(radt) > 1 and s, (radt) = 585 - sc(radt). Moreover, then, the fol-
lowing conditions are equivalent:

1. scug(radk) =1,
2. sg(radk) = %

3. sc(radk) = "1 and

n °?’

4. s (radk) =1.

The second corollary covers the case Wﬁ@ﬁ]ln)n—_l > sc(t)" 1. sp(t) for all t <
rad (CUB). Hererad (CUB) < 00.

4.7 Corollary We have radt = rad (CUB) if and only if rad(CUB) < 00 and
n-1
(-L™" > sc(rad (CUB))™ L. sg(rad (CUB)).

nn -

If CUB is a finite prefix code therad (CUB) = 00. In this caseadt is defined via

sc(radb)" 1. sg(radt) = (”‘r}n)nfl. Hence Corollar6 applies. We give an example

that, depending o8 andB, all three cases (radt) < 1,s; (radt) = 1 ands, (radt) >
1 are possible.

4.1 Example Fixm>1andCUBC X™. Thensc(t)"1-sg(t) = (#C-t)" 1. #B-t =
(n—1)n-1

-— has the minimum positive solution

mn _1\n-1 1
adt = "/ (25)" ks
and, utilising Corollary 46, we obtain
se(radt) = 2 sc(radk) = - #C- (radt)" = (/4o

Choosingm:= 1, X := {a,b,d}, Co := {a,d} andBg := {b} andn appropriately we
obtain the above mentioned three cases:
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Define the Lukasiewicz languages® = 1,2, 3) via the equation
ti={ad}u{b} £+l

Then we have

i=1(n=2) [i=2(n=3)] i=3(n=4
radt i ﬁé i 3.{/3
s, (radk) V2>1 1 {/3<1
Hy | hs(3)=3logz2| hg(3)=1 |hg(3)=1logs 2P

Hereh;(p) = —(1—p)-log,(1— p) — p-log, % is ther-ary entropy function well-
known from information theory (cf. [J092, Section 2.3]). This function satisfies 0
he(p) < 1for0< p<1andh(p)=1iff p="=2.

Remark. If we setm:=1, #B:=1, andC := X\ B, whence #£ =r — 1, we
obtain a slight generalisation of Kuich’s example [Ku70, Example 1] (seelalso![JL75,
Example 4.1]) to alphabets of cardinalityé=r > 2, yieldingH, = hr(”;nl).

In the case of Corolla .7 wheg(radt)" 1. sg(radt ) < (“%Qn_l the values, (radt.)

is a single root of Eq/ (20). Then the results of Sec 3.2 showsti{at = £ and
simultaneouslyc(t) = %1 is impossible fort < radt. The other cases, except for

Eq. (I5), listed in Theorem 3.6 are possible. This can be shown using the tukasiewicz
languages t (i = 1,2,3) constructed in Example 4.1 as basic codes-{CUB and
splitting them appropriately.

4.2 Example We let, generallyn := 2 and define our tukasiewicz languageggit=
4,...,8) by
b =CUB; -2 where

G Bi ri :=radC UB;
i=4|b-{a,d}?Ck, £1\Cy rad’r_lzz—\l@
i=5| By=t1\Cs |[Cs=Db-{ad}? radlez\%
i=6| {ad}Cts o\ Cs rad’r_zz%
i=7| Bsg=t,\Cs | Co={ad} radt, = 3

i=8| {adjcts £3\Cg radks=3- /3
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This yields the following values aic (ri),sg, (i), sc;(ri) - sg;(ri) andsc,ug; (1), where
the latter three are compared with the value%,oﬁr%n_l, and 1, respectively.

sq;(1i) 58 (ri) sci(ri) 58 (ri) | sque (i)
i=4| 5 | V2-5>1/2) 3-5<1/4 | V2>1
i=5]v2-b5 | s<l2 | j-4<1/4] V2>1
i=6 z 1<1)2 2<1/4 1
i=7 i £>1/2 £<1/4 1
i=8| 3.4/2 1.4/2 3../2<1/4 ‘\‘/g<1

By Corollary[4.7 radt; = radC UB; fori = 4,...,8, and we obtain

according to Eq[ (13),
according to Eq[ (16),
according to Eq[ (14),
according to Eq[ (12), and
according to Eq[ (11).

n
~
o
e N e N N
=
Q
o
r~
(2]
N — N N —
Vv A
e

VANIVAN

4.3 The Entropies of £* and K*

The previous part of Secti¢n 4 was mainly devoted to explain how to give estimates on
the entropy of L on the basis of the structure generating functions of the basicCodes
andB. As a byproduct we could sometimes achieve some knowledge stjeadt ).

We are going to explore this situation in more detail in this section.

In particular, we derive estimates for the entrogiesHy, H, - andH- relative to the
entropies of the basic codeU B and its star languagéC UB)*. Using elementary
properties of the entropy established in Proprty 4.2 we obtain

HCUB < HL = HK < min{HL*, HK*} < max{HL*, HK*} = H(CUB)* . (23)

Proof. AsCUC-B"Ct,B-£ CKandtE*UK* C (CUB)*, we haveHc g < Hy <

Hk < min{He+,Hi} <max{H.+,Hk-} <Hcup)

The identityH, = Hg is a consequence of Eq.| (4) and Propérty 4.2. For a proof of
the inequality maH, -, Hx: } > H(cug)- observe that Theore@.z.z shows K* D
(CuB)*, whence Property 4.2 yields the assertion. O

As a byproduct of the subsequent estimateklgfandHg+ we get the identityH, =
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Hk = min{H,~, Hx~} (see Corollary 4]9 below), whereas we shall show in Exafnp|e 4.3
that the other inequalities in Eq). (23) are independent of each other.

SinceCUB is a code, Corollary 4]4 implies a necessary an sufficient condition for the
entropies in Eq[(23) to coincide.

4.8 Proposition The equality Hcug = H(cug)- holds if and only if scug(t) < 1 for all
t € [0,radCUB).

Next we consider the case whefg(t1) = 1 for somet; € [0,radCUB]|. We know

from the considerations in Sectipn 4.3 and from Progerty 4.3 that this value is closely
connected to the entropy of the star language Ih particular,ty = rad (CUB)* if t;
exists.

The following table shows the dependencies of the values related to the entippies
Hy,Hy+ andHg+ from the value which takes on the functiep at our critical point

ty =rad (CUB)*.

sg(ty) < % sg(ty) = % sg(ty) > %
s (t1) =1 =1 <1
sk (t1) <1 =1 =1
s (t) fort € (tg,radt] >1 — <1
sk (t) fort € (t1,radk] <1 — >1

radt = radK | >rad (CUB)* =rad(CUB)* > rad(CUB)*

radt* | =rad(CUB)* =rad(CUB)* =radt

rad K* =radK =rad(CUB)* =rad(CUB)*

We give some explanations.

Proof. The results of Rows 1 and 2 follow from Eqp. [12),](14).] (15)] (20) and the
identity s, (t) = Y13 sa(t) - (se.(1))".

Sincescug(t) > 1 for t € (t1,radt] Rows 3 and 4 follow from Eqs[ (13) and (16).
Observe thasg(t1) = 1 andscug(ty) = 1 imply t; = radt = radK.

Finally, Propertie§ 4|1 arjd 4.3 in connection with the preceding rows yield the results
for radt™ andrad K* 0

We rephrase our results in terms of entropies of the languages t, &d.K".

4.9 Corollary Letsc g(t1) = 1. Then the following holds.

1. Ifsg(t1) < & then H, = Hg = Hi» < H-.
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2. Ifsg(ty) = 2 then Hy = Hi = Hy+ = Hy-.
3. Ifsg(t1) > £ then Hy = Hi = Hy+ < Hye.

In particular, we have always Hy = Hx = min{H, -, Hg~}.

We conclude this section by computing the entropigsHy; , H, - andHj- (i=1,...,8)

for the tukasiewicz languages given in Examgles 4.1[and 4.2 and their counterparts
Kii=b-U\_ot! (i=1,23)and K :=BjUB; -t; (i=4,...,8).

These examples show that all possible cases i Ef. (23) really occur.

4.3 Example We present our results in the table below. The valug of always%
except fori = 8 whensc, g, (radCgUBg) < 1.

n sgt))S: Heos He=Hk He  Hee  Hgupy
i—1/2 1<12 0o m@d) 1 md) 1
i=2|3 1=1/3 0 1 1 1 1
i=3|4 1>1/4 0 hs(3) hg(3) 1 1
i=4|2 B>12 hd) hd) h(d) 1 1
i=52 4<1/2 hyd) had) 1 hy3) 1
i=6|2 3<1/2 1 1 1 1 1
=712 5$>1/2 1 1 1 1 1
i—8|2 a3 h(d) hd) n@ hd

Observe that & hs(3) < 1and 0< hg(3) < 1.

In conclusion, one should remark that in the case of entropy of Lukasiewicz languages
a similar situation as in the case of their Bernoulli measures appears. In order to
achieve maximum possible entropy for both Lukasiewicz languages £ and K it is nec-
essary and sufficient to choose basic callasdB whose power serieg (t) andsg(t)
behave in agreement with the composition parametdrthe Lukasiewicz language.
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