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Abstract. Genetic algorithms (GAs) have been successfully applied to
numerical optimization problems. Since GAs are usually designed for
unconstrained optimization, they have to be adapted to tackle the constrained
cases, i.e. those in which not all representable solutions are valid. In this work
we experimentally compare 5 ways to attain such adaptation. Our analysis relies
on the usual method of selecting an arbitrary suite of test functions (25 of these)
albeit applying a methodology which allows us to determine which method is
better within statistical certainty limits. In order to do this we have selected 5
penalty function strategies; for each of these we have further selected 3
particular GAs. The behavior of each strategy and the associated GAs is then
established by extensively sampling the function suite and finding the worst
case best values from Chebyshev’s theorem. We have found some counter-
intuitive results which we discuss and try to explain.

1   Introduction

Constrained optimization problems are interesting because they arise naturally in
engineering, science, operations research, etc. In general, a constrained numerical
optimization problem is defined as:
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Without loss of generality we may transform any optimization problem to one of
minimization and we, therefore, develop our discussion in such terms. Constraints
define the feasible region, meaning that if the vector  x→     complies with all constraints

0)( =xhi
& and 0)( ≤xgi

&  then it belongs to the feasible region. Traditional methods

relying on calculus demand that the functions and constraints have very particular
characteristics (continuity, differentiability, second order derivability, etc.); those
based on GAs have not such limitations. For this reason, among others, it is of



practical interest to be able to ascertain which of the many proposed constraint
handling strategies is best.

This paper is organized in 4 further sections. Section 2 succinctly describes the
methods under analysis; in section 3 we describe the experiments performed; in
sections 4 and 5, finally,  we present our results and conclusions.

2   Strategies

The strategies we selected are variations of what is the most popular approach to
constrained optimization: the application of penalty functions [1]. In this approach, a
constrained problem is transformed into a non-constrained one. The function under
consideration is transformed as follows:
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and the problem described in (1) turns into the one of minimizing (2) if a proper
selection of the penalty function is achieved. We now describe the way in which this
penalty function (denoted by )(xP & ) has been tackled in the strategies we selected. In

what follows we denote Homaiffar’s, Joines & Houck’s, Schoenauer & Xanthaki’s,
Powell & Skolnick’s and Kuri’s methods as methods H, J, S, P and K, respectively.

2.1   Method H

This strategy was originally described in [2]. It defines l penalty levels depending on
the magnitude of the violation of the constraints. To define such levels it demands to
define intervals for each of the violations and a penalty value for every interval.
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M is the set all feasible individuals; index i refers both to constraints of inequality and
equations (gi and hi respectively); the function H is defined as the maximum value
between 0 and gi for i=1,...m and the absolute value of  h for  i = m+1, ..., p. Constant
R is defined as follows:
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This method requires the definition of  m(2l+1) parameters which remain constant
throughout. Hence, this is a static penalty method.

In our experiments it was impossible to consider special values for Rij in every
function and, hence, we decided to utilize 4 penalty levels with R = 100, 200, 500,



1000 (instead of 50, 60 and 90 as reported in [1]) and intervals of (0-10), (10-100),
(100-1000) and (1000-∞ ).

2.2   Method J

The original description of this method may be found in [3]. In it a dynamic (non-
stationary) penalty function is defined. That is, the penalty, function changes as the
GA proceeds. The definition is as follows:
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where α , β  and C are parameters of the method and k is the number of generation

under consideration. The values we used to test the method were C = 0.5, α = 2 and
β = 2.

2.3 Method S

Shoenauer and Xanthakis’s method, originally described in [4], does not only define a
penalty function; it resorts to an algorithm to find feasible individuals from the
evaluation of the constraints as fitness functions and eliminating those individuals
which do not comply with the constraints. The algorithm is as follows:

• Start with a random population (which, in general, holds both feasible and
unfeasible individuals)

• Set  j = 1 ( j is a constraint counter)
•  Evolve this population to minimize the violation to the j-th constraint until a

percentage (φ) of the population is feasible for this constraint. Then:
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•  1+← jj

•   The present population is the starting point for the next phase of evolution, which
consists of the minimization of the j-th constraint. During this phase those points
which do not comply with the 1, 2, ..., j-th constraint are eliminated from the
population.

•   Stop if a percentage (φ) of the population which complies with the j-th constraint
is reached.

•   If j<m, the last two steps are repeated, otherwise (j = m) function f  is minimized,
rejecting all unfeasible individuals.



To implement this method it was deemed necessary to establish full elitism [5]
since, otherwise, the number of individuals in the population decreased importantly
for every new generation. In keeping the best N individuals (where N denotes the size
of the population) we guarantee that even if there is no new individual satisfying the j-
th constraint we can always count with all individuals of the previous generation. This
insures that the size of the population remains constant even when eliminating those
individuals which violate the constraints.

2.4 Method P

This method was developed circa 1993 [6] and includes a heuristic to single out non-
feasible points: “Any feasible solution is better than a non-feasible one”. The penalty
function is defined as follows:
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where r is a constant. The value set for r in our experiments is 2.

2.5 Method K

This is the simplest of all the methods considered and it consists of defining the
penalty function as follows: [7]
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where K is a large constant [O(109)], p is the number of constraints and s is the
number of these which have been satisfied. K’s only restriction is that it should be
large enough to insure that any non-feasible individual is graded much more poorly
than any feasible one. Here the algorithm receives information as to how many
constraints have been satisfied but is not otherwise affected by the strategy. Notice,
however, that in this method the penalty is not added to )(xf &  as in (2) but, rather, it

replaces )(xf &  
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subtle difference does, indeed, seem to make a difference (as discussed in the sequel).



3 Experiments

We designed three different algorithms to test the behavior of each of the methods.
The intent is to explore whether the particular GA determines significant performance
differences. For instance, see if  Homaiffar’s method is better than Joines’ for a given
algorithm but with a different one the opposite is true.

All individuals were Gray encoded with a fixed point format with 14 bits for the
integer part and 20 bits for the decimal part, thus yielding an effective range of

1515 22 +<<− x  for any number x. The algorithms for the experiments were set as
follows (pc ≡ crossover probability; pm ≡ mutation probability; N≡ population size;
G≡ number of generations):

G1: pc = 0.9, pm = 0.05, N = 100, G = 100; proportional selection; 1-point
crossover; the best individual was preserved (simple elitism).

G2: pc = 0.9, pm = 0.07, N = 50, G = 100; proportional selection; 1-point crossover;
the best 25 individuals were preserved.

G3: pc = 0.9, pm = 0.07, N = 50, G = 100; deterministic (Vasconcelos’ [5])
selection; 1-point crossover; the best N individuals were preserved (full elitism).

The combinations in G1, G2 and G3 are arbitrary and, indeed, reflect no intention
on our part but to determine whether there is a qualitative difference in the methods
such that when applied to a problem with different algorithm the method (as opposed
to the algorithm) yields significantly different results. In the analysis that follows we
emphasize this goal.

To analyze the behavior of every method we selected a suite of 25 functions,
(which we cannot discuss because of space), but they range from the relatively simple
to solve to the very difficult to solve. Our method, as described in what follows,
requires the knowledge of the solution to the problem and we were, in that sense,
somewhat limited in our choice of functions. Thereafter, we executed algorithms G1,
G2 and G3 and measured their behavior. Every method was tried exhaustively for
every algorithm. We refer to the corresponding experiments as AGα : for instance,
G1H refers to the using algorithm G1 and Homaiffar’s method; G2P singles out
algorithm G2 and Powell’s method. We use the letters H, J, K, P or S to refer to the
different methods. To find a quantitative measure of relative performance we follow
the next procedure.

3.1 Statistical Evaluation of an Algorithm
It is common to run a set of experiments to establish a comparison between proposed
methods, algorithms and the like. Any such attempt is lacking since generality may
not be reached from a finite set of experiments. Here we follow a similar
methodology but extract hard numerical bounds because we are able to find the mean
and standard deviation of the unknown distributions of all the AGα experiments.

3.1.1 Extracting the distribution’s parameters
It is possible, indeed, to try to approximate the population’s basic parameters (µ  and

σ ) from the estimators x  and s . The key issue is the adequate determination of the
size of the sample. In this case we know nothing about the distribution under study
(i.e. the probability that the best value from AGα  exceeds a certain value). Hence, to



find the basic parameters (which are usually calculated from ∑
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means (for a sufficiently large sample) is normally distributed. We perform enough
simulations to insure that, indeed, the measured means are thusly distributed. This we

ascertain by complying with a 2χ  goodness-of-fit test with a 99% level of confidence

which allows us to find Xµ  and Xσ . Second,  we know that )(xf &  for AGα  is given

by 95.0)96.1)(( ≥+< XXxfP σµ&  (since this distribution is gaussian). Third, for the

non-gaussian distribution of )(xf &  we further know (from Chebyshev’s theorem) that

9375.0)]6[4)(( ≥⋅+< XXxfP σµ& . These bounds, on the other hand, are pertinent

only for the AGα ’s.  The point is, nonetheless, that the calculated values are absolute
within statistical certainty limits and the foregoing conclusions, within these limits,
are uncontestable.

3.1.2 The statistical algorithm
1. 1←α  (determine the parameter set)

2. 
),,,,)(()(

)methodthedetermine(;1

5,...,1iforSPKJHiMwhereMA ==←
←

β
β

3.  1←i  (count the number of samples)
4. 1←j  (count the elements of a sample)

5. A function is selected randomly from the suite.
6. Experiment AGα is performed with this function and a) the best value and b) the
number of satisfied constraints are stored.
7. 1+← jj

8. If  j ≤ 36, go to step 5 (a sample size of 36 guarantees normality).

9. The average ∑=
j

ji xf
N

x )(
1

&  of the best fitness’ values is calculated.

10. 1+← ii
11. If  i ≤  50, go to step 4
12. According to the central limit theorem, the ix  distribute normally. We, therefore,

define 10 intervals which are expected to hold 1/10 of the samples assuming a normal
distribution: i.e., the intervals are standardized. If the samples are indeed normally
distributed the following 2 conditions should hold.

a) At least 5 observations should be found in each of the 10 intervals (which
explains why we test for 50 in step 11).

b) The values of a 2χ  goodness of fit test should be complied with (which we

demand to be in the 99% confidence level).
We, therefore, check for conditions (a) and (b) above. If they have not been

reached, go to step 4.



13. Once we are assured (with probability = 0.99) that the ix ’s are normally

distributed, we calculate the mean Xµ  and standard deviation Xσ  of the sampling

distribution of the measured mean values of the best fitnesses for this experiment.
Moreover, we may calculate the mean µ and the standard deviation σ  of the

distribution of the best values (rather than the means) from XX σσµµ 6; == . Notice

that, therefore, we characterize the statistical behavior of experiment AGα
quantitatively.
14. 1+← ββ . If β < 5, go to step 3.

15. 1+← αα . If  α < 3, go to step 2.
16. End.

In step 5 of the algorithm a function is randomly selected and the fitnesses of the
various functions thusly chosen are averaged. However, for this to be mathematically
consistent we need to normalize the results in a way such that all functions have a
comparable best case. We achieve this by dividing the best measured value by the
known best value (which is why we stated, above, that our choice of functions is
somewhat curtailed). Therefore, the best possible (normalized) value is always 1.
Furthermore, the GAs are not guaranteed to find feasible solutions in all cases. But we
must normalize even those solutions corresponding to unfeasible individuals; we did
this by multiplying the number of unfulfilled constraints times the largest penalty
assigned to a given individual in generation 100 of each experiment. This explains the
large values reported for Xµ  and Xσ  in the tables which follow.

4 Results

In table 1 we show the sampling of means average values and standard deviations for
each tested method. We point out that Schoenauer’s method was only simulated with
G3 because it requires full elitism.

Table 1. Values of xx σµ , for the experiments performed

Experiment
xµ xσ

G1K 1.47155E281 2.20060E280
G1H 2.27267E281 3.54317E280
G1J 2.32140E281 2.35599E280
G1P 2.13868E281 2.22789E280
G2K 1.66157E281 2.05705E280
G2H 2.40939E281 2.14969E280
G2J 2.29502E281 2.41732E280
G2P 2.07283E281 2.34106E280
G3K 1.61322E281 2.00831E280
G3H 2.37554E281 2.58420E280
G3J 2.14620E281 2.59664E280



Experiment
xµ xσ

G3P 1.90579E281 2.39071E280
G3S 1.92934E281 2.40484E280

Since, from Chebyshev’s theorem, we know that the proportion of any distribution
found within k standard deviations of the mean is, at least, 2/11 k−  (k is any positive
number greater than 1) we decided to set k=4 and, therefore, a probability certainty of
0.9375. Then we calculated the upper bound (worst case minimum value) for the
experiments. These are shown in table 2, where the AGα  are ordered according to
this bound, from best to worst.

Table 2. Upper Bound for Best Values of  AGα  with P=0.975 (/E281)

Experiment Xµ Xσ Upper Bound Relative
Performance

G3K 1.6132 0.2008   6.4332 1.0000
G2K 1.6616 0.2057   6.5985 1.0257
G1K 1.4716 0.2201   6.7530 1.0497
G1P 2.1387 0.2228   7.4856 1.1636
G2H 2.4094 0.2150   7.5686 1.1765
G3P 1.9058 0.2391   7.6435 1.1881
G2P 2.0728 0.2341   7.6914 1.1956
G3S 1.9293 0.2405   7.7010 1.1971
G1J 2.3214 0.2356   7.9758 1.2398
G2J 2.2950 0.2417   8.0966 1.2586
G3J 2.1462 0.2597   8.3781 1.3023
G3H 2.3755 0.2584   8.5776 1.3333
G1H 2.2727 0.3543 10.7763 1.6751

The table above shows that the algorithms have not had decisive influence on the
results with the exception of G2H; the method is the key element to be considered
when measuring the performance of the procedures. Surprisingly, method K has
turned out to be better than the rest for all methods. Also surprising are the relative
performances. Relative to G3K (the best overall) the ratios for KGα are 1:1.02:1.05;
the ones of  PGα are 1.16:1.19:1.20; the one of  SGα is 1.20 (recall that method S
was only tried with G3); the ones of JGα are 1.24:1.26:1.30; and those of  HGα  are
1.17:1.33:1.67: with the exception of  HGα all methods are closely clustered and
seem to be insensitive to the algorithm. Also noteworthy is the fact that the relative
difference between the best and worst performances is 67%.



5 Conclusions

From the previous results it follows that method K has yielded the best of all those we
analyzed. This seems to contradict the reported experience regarding the mentioned
methods. For example, in [8] the following is concluded:

“Penalties which are functions of the distance from feasibility are better performers
than those which are merely functions of the number of violated constraints...”

Likewise, in [1], [9], [10] and [11] it is assumed that, as seems intuitively
satisfying, those methods which take advantage of greater information are the most
adequate to establish penalty functions. Interestingly, in none of these the validity of
this intuitive dictum is proven either theoretically and/or experimentally. In [1], in
fact, the conclusions (for only three functions) are contradictory; something which, in
light of our results, is to be expected. Hence it is valid to ask whether this expectation
is not satisfiable in general and, in fact, the results we found seem to experimentally
refute the previously mentioned intuition. However,  assuming that the intuitive
assertion were correct, some possible explanations for the apparent anomaly are the
following.

a) In this comparative analysis the same parameters for the penalty method were
applied to all functions. Would it be more adequate, perhaps, to adjust the parameters
particularly for every function?

b) It is possible that the combination of full elitism and the algorithm implemented
in KGα  maintain a varied population and this favors the efficiency of the method
and that this accelerates, in general, the identification of the best value.

c) It is also possible that method K (in those cases where none of the method
reaches the feasible region) does find points which satisfy a larger number of
constraints in 100 generations while other methods are “closer” to satisfying all
constraints.

This last hypothesis is illustrated in figure 1.

   Point found by
   method K

Point found by the methods which
consider the magnitude of the
violation

Fig. 1. The point found by the methods which consider the size of the violation does not
satisfy any constraint, whereas method K complies with one of them

If this were the situation we could conclude that method K finds the feasible points
“trying” to satisfy the constraints one at a time and the methods which consider the
magnitude of the constraint (as in three of the remaining methods) “try” to find the
solution considering all constraints simultaneously.



d) It is possible that these results hold only for this suite of functions and that the
suite displays this atypical behavior coincidentally. In this regard we must mention
that we tested the calculated bounds with functions outside the suite and, as expected,
the values are consistent with our study.

e) Finally, we may consider that method K is better because the suite consists (or is
considered to consist)  of  “simple” functions. This argument depends on what we
mean by a “simple” function. Although some of the functions in the suite would
generally be considered to be in this category, some others certainly do not. At any
rate, we may point out that if method K is better in those not-so-especially-difficult
functions (those which we find on a day-to-day basis) then one possible conclusion is
that it should be applied by default, resorting to some of the other methods only in
case of a specifically complex or anomalous function.

There is much work still to be done. We plan to extend the study to a set of
functions generated automatically in such a way that the possible bias in the suite is
eliminated. In a mechanized set we also expect to make the difficulty inherent to the
functions in the set more homogeneous.
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