
A Methodology for the Statistical Characterization of
Genetic Algorithms

Angel Fernando Kuri-Morales1

1 Instituto Tecnológico Autónomo de México
Río Hondo No. 1, México D.F.

akuri@rhon.itam.mx

Abstract. The inherent complexity of the Genetic Algorithms (GAs) has led to
various theoretical an experimental approaches whose ultimate goal is to better
understand the dynamics of such algorithms. Through such understanding, it is
hoped, we will be able to improve their efficiency. Experiments, typically,
explore the GA’s behavior by testing them versus a set of functions with
characteristics deemed adequate. In this paper we present a methodology which
aims at achieving a solid relative evaluation of alternative GAs by resorting to
statistical arguments. With it we may categorize any iterative optimization algo-
rithm by statistically finding the basic parameters of the probability distribution
of the GA’s optimum values without resorting to a priori functions. We analyze
the behavior of 6 algorithms (5 variations of a GA and a hill climber) which we
characterize and compare. We make some remarks regarding the relation
between statistical studies such as ours and the well known “No Free Lunch
Theorem”.

1 Introduction

The appeal of using GAs in optimization problems is largely dependent on the fact
that they make very light demands on the characteristics of the functions to optimize.
Their users, on the other hand, have to cope with the problem of choosing the right
breed of GA. Theoretical studies [1], [2], [3], [4] shed some light on what to expect
and [5], [6] and many others have tried to establish the reliability of a given GA
experimentally. Here we focus on the experimental approach wherein, usually,
conclusions are derived from selective and heuristically determined simulations.
Rarely, if ever, these approaches may yield other than qualitative measures for two
main reasons: a) The functions, usually determined “by hand” are limited in scope
and range and b) The probability functions describing the algorithm’s behavior are
unknown and no bounds are, therefore, reachable. We propose a methodology where
both problems are circumvented by a) Generating automatically the functions to
optimize and b) Finding the parameters for the probability distributions of the best
values from statistical theoretical considerations.

This paper is organized in 5 further sections. Section 2 describes the way in which
unbiased functions are determined; section 3 succinctly describes the algorithms
under study; section 4 describes the statistical method; in section 5 we present our
results; finally, in section 6 we reach our conclusions and make some final remarks.

2 Automatic Generation of Unbiased Functions

To generate functions automatically we resort to Walsh functions)(xjψ which form

an orthogonal basis for real-valued functions defined on (0,1)l, where x is a bit string
and l is its length. By using such functions we allow for an easier cluster (schema)
analysis of the results (not included in this paper). We restrict our study to the

functions in 2ℜ and, hence, focus on functions of the form y=f(x) but the method is

easily extendible to nℜ [7]. Henceforth, any function F(x) thusly defined can be
written as a linear combination of the jψ ’s (a Walsh polynomial).

∑
−

=

=
12

0

)()(

l

j
jj xxF ψω

(1)

where

=∧−
=∧+

=
1)(1

0)(1
)(

jxif

jxif
xj π

π
ψ

(2)

jx ∧ is the bitwise AND of x and j;)(xπ denotes the parity of x; and ℜ∈jω .

Therefore, the index j and argument x of)(xjψ must be expressed in comparable

binary. We, therefore, used 48 bits to represent x in a fixed point format ± 23.24 (i.e.
a sign bit; 23/24 bits for the integer/decimal parts of the number) and, consequently,

also 48 bits for the index, i.e. 2424 22 +<<− x and 120 48 −≤≤ j . For example,

a) 1)7(0267,386,88 −=ψ or b) 1)5.7(FF00000 +=ψ . We set a similar range for the Walsh

coefficients, i.e. 2424 22 +<<− jω . Therefore, any Walsh monomial jjψω is

uniquely represented by a binary string of length 96. Finally, we allow at least one but
no more than 48 non-zero terms in (1). Given this last condition, (1) is replaced by

∑
=

=
48

1

)()(
j

jjj xx ψωαγ

where

−
−

=
presentnotistermthjtheif

 presentistermthjtheif
j 0

1
α

(3)

Denoting with τ the number of non-zero terms in 3 we see that a full (τ =48)
function’s binary representation is 4,608 bits long. We denote the space of all
possible functions defined by (3) with Ξ and its cardinality with ξ . It is easy to see

that ∑
=

≈
47

1

96)2(
i

iξ which is a very large number. Therefore, the method outlined

above provides us with an unlimited reservoir of functions in 2ℜ . Equally

importantly, the random selection of a number τ and, thereafter, the further random
selection ofτ different indices and τ different jω ’s yields a uniquely identifiable

function from such reservoir. It is also important to point out that, to make a fair
comparison, a large (122,516) pool of Walsh functions was randomly generated. Then
the)(xγ ’s which the algorithms were required to minimize were all gotten from the

same pool, thus allowing us to test the algorithms in a homogeneous functional
environment.

3 Algorithms

We compared the following algorithms: a) A random mutation hill climber (RHC)
described in [8], b) A simple (canonical) GA (CGA) described in [9] where, however,
the best individual was externally preserved but did not participate in the genetic
process, c) A simple eliTist (ETA) GA where the best individual was preserved and
did participate in the genetic process, d) A statistical GA (SGA) described in [10]
which does not rely on a population of individuals but, rather, on a unique statistical
genome which captures the stochastic nature of the whole population, e) An eclectic
GA (EGA) described in [11] which is actually a self-adaptive poli-algorithm (a GA
with deterministic coupling/selection plus a RHC), f) A so-called Vasconcelos GA
which is simply the EGA stripped of the RHC and self-adaptive mechanisms of the
EGA. In what follows we refer to the algorithms in a) to f) as A(i), i=1,...,6. The
interested reader may see the references.

It should be pointed out that, for the purposes of this work, we are restricting the
use of these algorithms to minimize the functions of Ξ and that the process of
minimization is unconstrained, i.e. we search for the least value of the functions in
(3) in a pre-defined number of generations with the parameters illustrated in table 1.
We use the following: ≡cP probability of crossover, ≡mP probability of mutation,

≡N population’s size, ≡T size of elite; “*” means the parameter is self-adaptive, “-“
means the parameter is not applicable.

Table 1. Operational Parameters for Selected Algorithms

Algorithm Pc Pm N T
CGA 0.9 0.005 50 1
TGA 0.9 0.005 50 1
EGA * * * 50
SGA - 0.005 50 5
VGA 0.9 0.005 50 50
RHC - - 1 1

4 Statistical Methodology

We want to answer the following. Q: For any given algorithm A(i), what is the
probability that we find a certain minimum value (denoted by κ) for any)(xγ given

that A(i) is iterated G times?
Since one of our premises is that the)(xγ be selected randomly from Ξ we do not

know, a priori, anything about the probability distribution function of the κ ’s. To
answer Q we rely on the following known theorems from statistical theory.

T1) Any sampling distribution of means (sdom) is distributed normally for a large
enough sample size n.

Remark: This is true, theoretically, as ∞→n . However, it is considered that any
n>20 is satisfactory. We have chosen n=36.

T2) In a normal distribution (with mean Xµ and standard deviation Xσ) approxi-

mately 1/10 of the observations lie in the intervals: Xµ –5 Xσ to Xµ -1.29 Xσ ; Xµ -

1.29 Xσ to Xµ –0.85 Xσ ; Xµ -0.85 Xσ to Xµ –0.53 Xσ ; Xµ -0.53 Xσ to Xµ –

0.26 Xσ ; Xµ -0.26 Xσ to Xµ and the symmetrical Xµ to 0.26 Xσ , etc.

Remark: These deciles divide, therefore, the area under the normal curve in 10
unequally spaced intervals. The expected number of observed events in each interval
will, however, be equal.

T3) The relation between the population distribution’s parameters [which we
denote with µ (the mean) and σ (the standard deviation)] and the sdom’s parameters

(which we denote with Xµ and Xσ) is given by Xµµ = and Xn σσ ⋅= .

Remark: In our case Xσσ 6= .

T4) The proportion of any distribution found within k standard deviations of the
mean is, at least, 1-1/k2.

Remark: Chebyshev’s bound generality makes it quite a loose one. Tighter bounds
are achievable but they may depend on the characteristics of the distribution under
study. We selected k = 4, which guarantees that our observations will occur with
probability = 0.9375.

T5) For a set of r intervals, a number of Oi observed events in the i-th interval, a
number of expected Ei events in the i-th interval, p distribution parameters and

1−−= prν degrees of freedom, the following equation holds.

05.0
)(4

4
3

3
2

210
1

2

=

++++>−∑

=

νννν ccccc
E

EO
ZP

r

i i

ii

 98829512.10 +≈c

 06290867.21 +≈c

 06021040.02 −≈c

 00205163.03 +≈c

 00002637.04 −≈c

(4)

where ≡)(ZP probability that the distribution is normal.

Remarks: The summation on the left of (4) is the 2χ statistic; the polynomial to

the right of the inequality sign (call it)(νT) is a least squares Chebyshev polynomial

approximation to the theoretical 2χ for a 95% confidence level. In our case, 7=ν
for which ≈)(νT 14.0671. Furthermore, if we choose the deciles as above, we know

that iEi ∀= 10/η , where η is a sample of size n. A further condition normally

imposed on this goodness-of-fit test is that a minimum number of observations θ
(usually between 3 and 5) be required in each interval. Thus, (4) is replaced by

() 05.0
)(4

4
3

3
2

210
1

2

=

∀<∨

++++>−∑

=

iOccccc
E

EO
ZP i

r

i i

ii θνννν
(5)

Making 5=θ and using the parameters’ values described above, equation (5) finally
takes the following form.

() 95.05&0671.14
10

20100
10

1

22

=

≥

≤+−∑

=
i

i

ii O
OO

ZP
η

ηη
(6)

4.1 Algorithm for the Determination of the Distribution’s Parameters

In what follows we describe the algorithm which is an evident conclusion resulting
from all the foregoing considerations. We describe it for the characterization of any
minimization algorithm. The reader should keep in mind that this is one of A(i).

1. Generate a random binary string as per (3); this is one possible)(xγ .

 2. Minimize)(xγ iterating A(i) for G generations.

 3. Store the best value κ .
 4. Repeat steps (1-3) 36 times.
 5. Calculate the average best value κ .
 6. Repeat steps (4-5) 50 times.
 7. Calculate κµ and κσ .

 8. Standardize the κ ’s.

 9. Repeat steps 4-5,7-8 until 2χ <14.0671 and Oi ≥ 5.

10. The sdom’s distribution is now known to be normal with P(Z)=0.95.
11. Calculate κµµ = and κσσ 6= . We have extracted the expected best value of κ
for this algorithm; we also know κ distribution’s standard deviation.
12. In the absence of knowledge of the characteristics κ ’s probability distribution
function we appeal to T4, from which we find:

9375.0)44(=+≤≤− σµκσµP (7)

But now we can answer Q, for we know that 0625.0)(≤> κκP (where σµκ 4+= :

the worst case κ) or, equivalently, that 0625.0)24(≤+> κκ σµκP . We now know

that the probability that the best (minimum) value found by A(i) when minimizing
)(xγ (for any given x in Ξ) exceeds κ is statistically negligible. In other words, we

have found a quantitative, unbiased measure of A(i)’s performance in 2ℜ .

5 Results

The methodology just described was applied to all A(i) algorithms systematically
increasing the number of generations G(i) such that G(i)=30,50,100,150 for i=1,2,3,4.
We show the results for G(1-4) in tables 2-5. The column with heading “Relative”
shows the performance relative to the best algorithm; “Samples” shows the number of
κ ’s that were needed to calculate before normality was achieved; “Funcs” denotes
the number of functions which were minimized during this experiment.

Table 2. Comparison of Algorithms for 30 Generations

κµ κσ κ Relative Samples Funcs

VGA -68.817 4.862 47.871 1.000 86 3096
EGA -64.585 4.717 48.623 1.016 66 2376
TGA -65.316 4.778 49.356 1.031 81 2916
CGA -67.716 4.974 51.660 1.079 89 3204
SGA -68.755 5.122 54.173 1.132 98 3528
RHC -49.133 5.549 84.043 1.756 1170 3510

RHC was iterated so as to force comparable computational costs in all algorithms.
The values in columns 2, 3 and 4 are, for convenience, divided by 106.

Table 3. Comparison of Algorithms for 50 Generations

κµ κσ κ Relative Samples Funcs

VGA -67.212 4.505 40.908 1.000 72 2592
EGA -68.271 4.778 46.401 1.134 72 2592
TGA -70.618 5.012 49.670 1.214 71 2556
CGA -69.668 5.081 52.276 1.278 87 3132
SGA -70.796 5.380 58.324 1.426 63 2268
RHC -49.133 5.549 84.043 2.054 70 3500

Table 4. Comparison of Algorithms for 100 Generations

κµ κσ κ Relative Samples Funcs

EGA -68.780 4.855 47.740 1.000 70 2592
VGA -73.295 5.123 49.657 1.040 70 2520
SGA -73.947 5.202 50.901 1.066 70 2520
TGA -69.768 5.138 53.544 1.122 66 2376
CGA -71.713 5.381 57.431 1.203 86 3096
RHC -49.181 5.529 83.515 1.749 35 3500

Table 5. Comparison of Algorithms for 150 Generations

κµ κσ κ Relative Samples Funcs

VGA -74.535 4.020 21.945 1.000 76 2736
EGA -69.065 3.828 22.810 1.039 69 2484
TGA -71.813 4.120 27.067 1.233 73 2628
SGA -77.519 4.360 27.121 1.236 77 2772
CGA -73.788 4.233 27.810 1.267 87 3132
RHC -49.133 5.549 84.041 3.830 24 3600

Notice that the number of samples needed was not homogeneous. This is interest-
ing in that the typical method of finding the estimators for the mean and variance the
size of the sample remains fixed. Here it is seen that a variable sample size is needed
and that its size is considerable.

On the other hand, the best GA (relative to κ) does not remain constant, although
in all cases VGA and EGA alternate the first and second places. Although EGA yields
a poor κ for G(4), its low performance is offset by a lower (better) deviation. As
expected, the RHC was worse than any of the GA variations.

When κ (and not κ) is considered, however, the order of performance is
significantly modified. SGA displays the best κ throughout, with VGA improving as
generations increase. EGA, on the other hand, displays a more modest behavior. Also
notable is the fact that performance improves markedly when the number of
generations is increased.

In the following three graphs we show the performances for κ ’s upper bound (κ),
mean value (κ) and standard deviation (σ), respectively. The horizontal axis
displays G(i); its scale is divided by 10. The vertical axis displays κ , κ and σ ,
respectively; its scale is divided by 106.

Fig. 1. Performance of Different GAs for κ .

In figures 1 and 2 we have omitted the graph for RHC to allow for better reading of
the other algorithm’s performances.

Fig. 2. Performance of Different GAs for κ .

In figure 3 we show how the standard deviations change with the number of
generations. Of all algorithms EGA displays the most constant behavior. We may
remark that this is so because of its self-adaptive nature.

Fig. 3. Standard Deviations for Different Algorithms

6 Conclusions

We have shown that it is possible to characterize a set of algorithms and quantify their
expected behavior. To do this it is necessary to invest a considerable amount of
computer resources. In the experiments reported, a total of 69,154 functions were
minimized. In exchange for this considerable effort we extracted solid values for κ
and κ .

Analysis of the resulting data may be extended well beyond the comments above.
We are unable to do this here for reasons of space, but hope to do this in a paper to
appear soon. Nonetheless, we can, very generally, state that the conclusions that we
arrive at are consistent with our expectations in most cases. For instance, self-
adaptation yields “smoother” behavior; proportional selection is less good than ranked
(λµ +) schemes; uniform crossover favors convergence; hillclimbers are worse than

GAs in general, etc. Moreover, we are not only able to validate our intuition, but to do
so quantitatively. For example, not only do we know that VGA is better than CGA
with G(4) generations, but how much better.

We are aware that statistical analysis of this kind do not highlight the particular
cases which are often most interesting. However, they do allow us to affirm what we
can expect from the algorithms in general with a high degree of confidence and,
furthermore, establish bounds on the worse case expected performance of the said
algorithms. If, as is our intent, we must select from a variety of possible algorithms in
order to achieve efficiency, the proposed methodology yields reliable unbiased
elements aimed at making the best choice.

Finally, we would like to comment as to how the results above relate to the No-
Free-Lunch-Theorem (NFLT) [12] which, intuitively put, asserts that we should not
expect any algorithm to be better than any other, in general. We are confronted here

with an apparent contradiction, for we claim that the results above apply, in general.
Clearly, the values for κ and κ in any of the algorithms allow for their
categorization. But the apparent contradiction is easily dispensed with because our
functions do not have the scope required by the NFLT. Although we have worked
with a very large functional space, no matter how large, it does not encompass all the
possible functions. For instance, multivariate and constrained functions are not
included, to mention only two important kinds which have been left out. Therefore,
what interest does it have, if any, to apply the proposed methodology? In the past,
most of the experimental analysis have been biased, demonstrative and of limited
scope, so that there is no way to determine whether some of the conclusions may have
been incorrect. Within the realm of Ξ we are able to avoid biased and merely
qualitative conclusions. In that sense the proposed method is an improvement over
others generally employed.

7 References

1. Mitchell, M., “What Makes a Problem Hard for a Genetic Algorithm? Some Anomalous
Results and Their Explanation", Machine Learning, 13, 285-319, 1993.

2. Back, T., "The Interaction of Mutation Rate, Selection and Self-Adaptation Within a Genetic
Algorithm”, R. Maumnler and B. Manderick, editors: Parallel Problem Solving from Nature,
2, 85-94, Elsevier, Amsterdam, 1992.

3. Fogel, D., Ghozeil, A., “Schema Processing under Proportional Selection in the Presence of
Random Effects”, IEEE Transactions on Evolutionary Computation, Vol. 1:4, 290-293,
1997.

4. Kuri, A., and Galaviz, J., “Towards a New Framework for the Analysis of Genetic
Algorithms”, International Computation Symposium, I.P.N., México, 1998.

5. De Jong, K., Sarma, J., “An Analysis of the Effects of Neighborhood Size and Shape on
Local Selection Algorithms,” Proc. of PPSN-96, the Second International Conference on
Parallel Problem Solving from Nature, Springer-Verlag, 1996.

6. Mitchell, M., Forrest, S., and Holland, J., “The Royal Road for Genetic Algorithms: Fitness
Landscapes and GA Performance”, in F.J. Varela and P. Bourgine, eds., Towards a Practice
of Autonomous Systems: Proceedings of the First European Conference on Artificial Life,
MIT Press, 1992.

7. Schmitzberger, P., “Approximation and Interpolation of High Dimensional Functions by
generalized Walsh Polynomials”, in R. Trobec et al., eds., Proceedings of the International
Workshop Parallel Numerics '96, Gozd Martuljek, Slovenia, 150-164, 1996.

8. Mitchell, M., An Introduction to Genetic Algorithms, 4:129, MIT Press, 1996.
9. Goldberg, D., Genetic Algorithms in Search, Optimization and Machine Learning, Addision-

Wesley, 1989.
10. Kuri, A., “A Statistical Genetic Algorithm”, National Computation Meeting, Hidalgo,

México, 1999.
11. Kuri, A., and Villegas, C., “A Universal Genetic Algorithm for Constrained Optimization”,

6th European Congress on Intelligent Techniques and Soft Computing, Aachen, Germany,
1998.

12. Wolpert, D., and Macready, W., “No Free Lunch Theorems for Optimization”, IEEE
Transactions on Evolutionary Computation, 1:67-82, 1997.

