The Mobius State-level
Abstract Functional Interface!

Salem Derisavi?, Peter Kemper?, William H. Sanders?® and
Tod Courtney ®

& Coordinated Science Laboratory, Electrical and Computer Engineering Dept.,
and Computer Science Dept., University of Illinois at Urbana-Champaign
1808 W. Main St., Urbana, IL, U.S.A.

b Informatik IV, Universitit Dortmund, D-44221 Dortmund, Germany

Abstract

A key advantage of the Mobius modeling environment is the ease with which one
can incorporate new modeling formalisms, model composition and connection meth-
ods, and model solution methods. We present a new state-level abstract functional
interface (AFI) for Mobius that allows numerical solution methods to communicate
with Mobius state-level models via the abstraction of a labeled transition system
(LTS). This abstraction and its corresponding implementation yield a useful sepa-
ration of concerns. We illustrate use of the Md&bius state-level AFI by implementing
two state-space representations and several numerical solvers for steady-state and
transient analysis.

Key words: Markov chain analysis, Kronecker representation

1 Introduction

Model-based evaluation tools have been developed for many different mod-
eling formalisms and use many different model solution techniques. Md&bius

Email addresses: derisavi@crhc.uiuc.edu (Salem Derisavi),

peter.kemper@udo.edu (Peter Kemper), whs@crhc.uiuc.edu (William H.
Sanders), tod@crhc.uiuc.edu (Tod Courtney).
! This material is based upon work supported in part by the National Science
Foundation under Grant No. 9975019, by the Motorola Center for High-Availability
System Validation at the University of Illinois (under the umbrella of the Motorola
Communications Center), and by the DFG, Collaborative Research Centre 559.

Preprint submitted to Elsevier Science 24 January 2003

[15,20,19,35,16] is a recent attempt to build a general multi-formalism multi-
solution hierarchical modeling framework that permits the integration of a
large number of modeling formalisms and model solution techniques. A key
step in achieving this multi-paradigm approach is providing an appropriate
interface between models expressed in different modeling formalisms, model
composition and connection methods, and model solvers (e.g., simulators and
state-space generators). This is achieved by using the notion of a model-level
abstract functional interface (AFI) [22,15]. The M&bius AFI provides an ab-
stract notion of actions (events), state variables, and properties, and a com-
mon set of methods that permits heterogeneous models to interact with one
another and with solvers without requiring them to understand details of the
formalisms in which the constituent models are expressed.

There has been a great deal of research in methods for dealing with the state-
space explosion problem in state-based models by either avoiding or tolerating
large state spaces. These methods have dramatically increased the size of mod-
els that can be analyzed. For example, there have been many attempts to avoid
large state spaces by detecting symmetries in models, and exploiting lumping
theorems. Approaches with this aim include stochastic well-formed nets [12],
stochastic activity networks (SANs) and replicate/join model composition [36],
and stochastic process algebras [25,5,2,27], among others. Other people have
attempted to tolerate large state spaces through use of variations of decision
diagrams; such variations appear in the context of stochastic models as multi-
terminal binary decision diagrams (MTBDDs) [26,1,28], probabilistic decision
diagrams [4, 10], and matrix diagrams [13]. These methods are based on the
idea of sharing isomorphic substructures to save space and gain efficiency.
Kronecker representations also allow representation of large transition rate
matrices; different variants exist to reflect a modular [8] or hierarchical [6,7]
structure, or to allow matrix entries to be functions [23,37]. In addition, on-
the-fly generation [18] and disk-based methods [17,32] make it possible to
avoid the storage of a large state-level model by generating required matrix
entries as needed, or by storing them on disk rather than in main memory,
respectively.

All of the above approaches are interesting candidates for integration into
Mobius, even though most of them were developed separately from one an-
other and in the context of single modeling formalisms and/or model solution
methods. Interestingly, although there is such a broad spectrum of avoidance
and tolerance techniques, the techniques all place very similar requirements
on the subsequent numerical model solution methods. In particular, the nu-
merical model solution methods typically involve execution of a sequence of
matrix-vector multiplications on some variant of the generator matrix of the
resulting continuous-time Markov chain (CTMC). Methods that require this
include the Power method, the Jacobi method, and the Gauss-Seidel method
for stationary analysis and uniformization for transient analysis. Clearly, nu-

merical analysis is much richer in theory (for examples, see [37,3]); however,
the mathematical objects that are usually employed are matrix elements, rows,
columns and submatrices, and simple algebraic operations thereon. Submatri-
ces are used, for example, in iterative aggregation/disaggregation methods
like KMS [33] or Takahashi’s [39] method. Those simple methods, which em-
ploy a homogeneous set of basic operations, thus appear most frequently in
combination with the techniques discussed above.

The rich variety of techniques to deal with the state-space explosion problem,
and the fact that many numerical solution methods share similar basic oper-
ations, have motivated us to develop a state-level, as opposed to the existing
model-level, AFI for Mobius. By doing so, we can separate state-space and
state transition rate matrix generation and representation issues from issues
related to the solution of the resulting state-level models. Creating a state-
level AFT also allows us to create and implement numerical solution methods
that do not require information about the data structures used to represent a
state-level model. The key idea of this approach is to formulate a state-level
AFT that allows numerical solution methods to see a model as a set of states
and state transitions or, in other words, as a labeled transition system (LTS).
The state-level interface we have created supports access to states and transi-
tions in an efficient way via container and iterator classes. We are not the first
ones to build an interface that allows one to iterate on an LTS; e.g., in the
field of protocol verification, the Caesar/Aldebaran tool [24] provides different
iterators for this purpose that seem to rely on preprocessor expansion, and
in his thesis [31], Knottenbelt gives an abstract C++ representation of states
in the form of a non-template class. In contrast, we follow an object-oriented
approach that uses templates similar to those used in the C++ standard tem-
plate library (STL) [34].

By creating a state-level AFI, we achieve more independence than is possible
using the model-level M6bius AFI alone; this has advantages for both tool de-
velopers and tool users. In particular, our approach, when used together with
the Mobius model-level AFI, avoids redundant reimplementations of the three
steps (model specification, state-space and state transition rate matrix gener-
ation, and numerical analysis) taken when solving models numerically using
state-based methods. That significantly reduces the effort that is necessary
to implement, validate, and evaluate new approaches. Furthermore, it allows
users to perform direct comparison of alternative approaches, without having
to reimplement the work of other researchers; thus, they avoid the risk of be-
ing unfair when doing a comparison. Finally, it facilitates cooperation among
researchers in developing new solution methods and combining existing ones;
e.g., within Mobius, largeness-avoidance techniques based on lumpability can
be combined with any state-based analysis method. In short, we achieve a
situation in which research results that focus on model reduction, state-space
exploration, L'T'S representation, or analysis can be developed independently

but be used with one another. Obviously, tool users profit from this integrated
approach, since more state-space generation and model solution methods be-
come available to them. Likewise, we make the Mobius framework more useful
to researchers who are creating techniques to avoid or tolerate large state
spaces.

The remainder of this paper is structured as follows: Section 2 specifies the
requirements a state-level AFI must meet in order to be effective. In Section 3
we present the state-level AFT in detail, explaining the motivation behind the
choices we made in developing it, and discuss the extensions we made with re-
spect to [21] to support the notion of a submatrix to support decompositional
methods like KMS and Takahashi’s method. In Section 4, we describe the im-
plementation of two new state-level classes that use the AFI: an unstructured
sparse-matrix representation as it is used in Mobius and a Kronecker repre-
sentation that is employed in the APNN toolbox. Section 5 then analyzes two
examples that are frequently considered in the literature for the performance
of numerical analysis methods. We perform transient as well as steady-state
analysis. Finally, we show that the overhead induced by the Mobius state-level
AFT is small and is outweighed by the advantages it achieves.

2 Requirements

The transformation of a model from a high-level, user-oriented representation
into a state-level model by a state transition graph generation is a transfor-
mation that may be technically complex, but it does not create additional
information in the process. Instead, the goal of the transformation process is
to create a representation that is as compact as possible, but can efficiently
perform the operations needed during numerical solution. To do that, we must
study the type and amount of state and state transition information that al-
gorithms access and the pattern of the accesses. In the following, we describe
the characteristics that a state-level AFI should have and summarize how we
have considered each one when designing the Mobius state-level AFI.

Functionality. A state-level AFI must have functionality sufficient to serve a
large set of analysis techniques. More specifically, it must be easy to use and
must include a sufficiently complete set of functions such that all of the analysis
algorithms we are interested in can be written using this common interface.
After studying a number of transient and steady-state solvers, we decided to
include (among other things) function calls in the interface, so that we could
access the elements of the rate matrix in a row-oriented, column-oriented, or
arbitrary order. Matrices are sometimes partitioned into submatrices or blocks,
so we added functionality to operate on specific submatrices. More details are
given in Section 3.

Economy. The effort to support and implement the AFI for a particular state
transition graph representation must be minimal, so as not to put an unnec-
essary burden on an AFI implementor. For state transition graph representa-
tions, it should be possible to support the required functionality in a natural,
straightforward manner.

Clearly, economy and functionality are in conflict with one another, and a
compromise must be reached. In our case, this means that we refrain from
defining operations from linear algebra, such as matrix-vector multiplication,
in the interface, since that could lead to an endless demand for further oper-
ations. We rather follow an approach in which a state-based analysis method
reads information via the AFI, but does not transform it using the interface.

Generality. A state-level AFI should be “solution-method neutral,” in the
sense that it is not tailored toward any particular state transition graph rep-
resentation or solution method. For example, many sophisticated algorithms
rely on additional structural information. Kronecker methods are based on a
compositional model description. Most variants of decision diagrams require
an order on the variables, and heuristics on the order make use of information
present in a model.

Flexibility. A state-level AFI must give implementors the opportunity to find
creative optimizations in their implementations. For example, it should al-
low a developer who implements the interface for a particular state transition
graph representation to exploit the special structure that may be present in
the underlying state transition graph, in order to optimize the interface im-
plementation. Ideally, all the optimizations that are possible in a traditional
“monolithic” implementation should also be applicable to an implementation
that uses the developed AFI. In Section 4, we will give an example of such pos-
sible state-space-specific optimizations when we describe the implementation
of the interface for the Kronecker-based state transition graphs.

Performance. The performance of implementations using the interface must
be competitive with the monolithic implementation. To achieve this we fol-
low two design goals. First, we provide an AFI that is able to exploit the
state-space-specific optimizations in the interface implementation. Second, we
attempt to minimize the amount of overhead due to separation of the analy-
sis algorithm and the state transition graph representation. The overhead is
mostly caused by non-fully-optimized C++ compilation, extra function calls
and assignments, and construction and deconstruction of temporary objects
in the stack.

To summarize, we seek an interface that is straightforward to use and imple-
ment, is sufficient in functionality to support a wide variety of state transition
graph representations and numerical solution methods, and provides good

performance. A compromise among these goals is obviously necessary in any
particular practical implementation of such an interface. We believe we have
achieved an appropriate balance in our state-level AFI definition, which is
described in the next section.

3 State-level AFI Definition

In this section, we will first formalize the notion of a labeled transition system
by giving a definition that contains the key elements that specify a state-level,
discrete-event system. Then, we briefly review several solution methods for
continuous-time Markov processes, which are a special case of discrete-event
systems, to derive the basic operations that a state-level AFI needs to provide
so that a wide range of solution methods can be implemented using the AFT.
Finally, we show how containers and iterators help us achieve the separation
of concerns discussed earlier, and show how our C++ realization of a state-
level AFI satisfies the requirements described in Section 2. In particular, with
respect to the requirements described in Section 2, we address flexibility of
the Mobius state-level AFT in Section 3.2, and its functionality and economy
in Sections 3.3 and 5. We illustrate the generality of the AFI by implementing
two conceptually different state transition graph representations in Section 4.

3.1 Labeled Transition System Definition

To define an appropriate state-level abstract functional interface for Mobius,
we start by defining a labeled transition system (LTS). We define an LTS =
(S, 80,0, L, R,C), where:

S is a set of states and sy € S is the initial state

0 C S xR x L xS is the state transition relation, which describes possible
transitions from a state s € S to a state s’ € S with a label [€ L and a
real value A € R

R : S x N — R is the value of the n'" rate reward for each state in S

C: 6 x N — R is the value of the n'" impulse reward for each transition in

J

The label [gives additional information concerning each transition, typically
related to the event (in the higher-level model) that performs it. The real
value A can have several different meanings. In the following, it is taken to
be the exponential rate of the associated transition, because we are primarily
interested in the numerical solution of the CTMC derived from a stochastic
model. However, one can also consider probabilistic models, where A € [0, 1]

gives the probability of a transition, or weighted automata, where A > 0
denotes a distance, a reward, or costs of a transition. By integrating both
rates and labels in the definition of the LTS, we can use the interface based
on it for both numerical solution and non-stochastic model checking. In the
latter case, transition time is unimportant, and one may wish to consider the
language that is generated by the transitions that may occur in the LTS. R
and C are functions that define a set of rate and impulse rewards, respectively,
for the LTS. They define what a modeler would like to know about the system
being studied. Note that we could define ¢ as a function from S x S to R x L;
that would be sufficiently descriptive for many models. However, since we
wanted to able to represent more general semantics (e.g., non-determinism)
we chose to define § as it was shown above.

Since we focus on Markov reward models in this paper, an LTS defines 1)
a real-valued (S x S) rate matrix R(i,7) = Y.cp e, Where E C § is the
set of transitions with (i, e, *,), and 2) a set of n reward structures. The
generator matrix) of the associated CTMC is then defined as @ = R —
diag(rowsum(R)), where the latter term describes a diagonal matrix with
row sums of R as diagonal entries. The reward structures associated with the
Markov model are determined by R and C.

3.2 Use of Containers and Iterators

The philosophy we took when designing the state-level AFI and its imple-
mentation was inspired by the concept of “generic programming” [34] and
the associated “containers” and “iterators” constructs in the STL (Standard
Template Library) and generic class libraries. The idea was to decouple the
implementations of a data structure and an algorithm operating on it, since
the two are conceptually different. In other words, these concepts facilitate the
implementation of algorithms that operate on data structures that are differ-
ent and have different implementations, but support the same functionality.
This decoupling is achieved through identification of a set of general require-
ments (called concepts in generic programming terminology and realized as
member functions) met by a large family of abstract data structures. In our
case, the “set of requirements” is a state-level AFI that provides the function-
ality necessary to implement a large class of solution methods efficiently. The
requirements allow us to separate the numerical solution method that operates
on a state-level model from the particular data structure that implements the
model. This separation makes it easy to develop numerical solution methods
and makes them applicable to any state-level model that complies with the
state-level AFI. Since the implementation of the AFI is separate from, and
therefore does not interfere with, the analysis algorithm, we have the flexi-
bility to optimize the internal implementation of the AFI for any particular

state-level model (one of the characteristics mentioned in Section 2).

The two notions that help achieve this separation are those of “containers”
and “iterators.” Containers are classes (usually template classes) whose pur-
pose is to contain other objects; objects are instantiations of classes. Template
container classes are parameterized classes that can be instantiated so that
they can contain objects of any type. A container is a programming abstrac-
tion of the notion of a mathematical set. By hiding the implementation of
the algorithm for accessing the set elements inside the container class, we give
developers both the ability to use a unified interface to access objects inside a
container, and the flexibility to optimize the implementation of the container.
In the Mobius state-level AFI, a container is used to represent a subset of
transitions of an LTS. For example, the elements of a row or a column of a
rate matrix constitute a row or column container object.

Iterators are the means by which the objects in a container are accessed. They
can be considered “generalized” pointers, which allow a programmer to select
particular objects to reference. The following operations are usually defined
for iterator classes and implemented in the iterators that we define as part of
the Mobius state-level AFT:

e Navigation operators, such as ++ and ——, which return iterators for (re-
spectively) the next element and the previous element relative to the element
pointed to by the iterator.

e Dereferencing operators, which enable us to access the object.

e Comparison operators, which define an order on the objects of the container.

3.3 State-Level AFI Classes

We use containers to represent sets of transitions. Before explaining how we
do that, we review several common numerical solution methods to illustrate
the access patterns they require from an LTS representation. These patterns
will suggest how the transitions of a state-level model should be placed in
container objects. We then give a precise programming representation for the
transitions contained in containers. This implementation, together with a set
of methods returning information about the whole model (e.g., the number of
states) along with a number of methods to facilitate computation of reward
structures defined on the models, provides a complete state-level AFI.

3.3.1 Required Operations

We now briefly recall iteration schemes of some simple but frequently em-
ployed iterative solution methods, namely the Power, Jacobi, Gauss-Seidel,

and Takahashi methods for stationary analysis, and uniformization for tran-
sient analysis. This review will help us determine both the type of container
classes that a state-level object should provide to a solver, and also the gen-
eral information the solver needs concerning a model. Table 1 summarizes the
iteration schemes. More details can be found in, for example, [37].

Method Iteration scheme

kD) = 7®)pP where P = (1Q + I) and o >
1/(maxi_|Qil)
7kt = (1 — w)n® 4 wr (L + U)D~! where 0 < w < 2 is
the relaxation factor.
Gauss-Seidel a1 = (1 = w)n® + w[(x® L + 7" +DU) D1 where 0 <
w < 2 is the relaxation factor.

k k k k k ..
o) =7/ lxP N AL = 6P Qli, e

ij
v AF) = k) with vFe =1, (aggregated eqn system)

Power

Jacobi

Takahashi DG = 2MVQLL + eIl +
> i u](-k)qbgk)Q[j, i] for i =1,2,..., N (block eqn systems)
) L () (ke

Uniformization | T(t) = > k=0 e‘at(o;%kﬂ(k) where 7(t) is the transient solu-
tion and 7(¥) is obtained as in the Power method.

Notes:

(1) @ is the generator matrix of the underlying Markov process.
(2) 7 is an appropriately selected initial distribution.

(3) Q=D — (L+U), where D is a diagonal matrix and L and U are,
respectively, strictly lower and strictly upper triangular matrices.

(4) Qli,j] and DJi, 1] are, respectively, blocks of @ and D.

(5) e is the column unity vector.

(6) A is called the coupling matriz.

Table 1
Iterative solution methods

Notably, all of the iteration schemes we describe, except Takahashi’s method,
are based on successive vector-matrix multiplications, where matrices P and ()
are only minor transformations of the rate matrix R given by an LTS as men-
tioned above. For Takahashi’s method, the given description does not specify
how the aggregated equation system and the N non-homogeneous block equa-
tion systems, one for each block, are solved. If iterative solution methods are
applied in those systems, Takahashi’s method reveals a vector-matrix multi-
plication as an essential operation on submatrices, just as it did for matrices.
Typical access patterns for matrix-vector multiplications are accesses by rows
or by columns. However, a closer look reveals that only Gauss-Seidel requires

a sequential computation of entries 7*+1)(4); Gauss-Seidel completes compu-
tation of 7**1(;) before continuing with 7*#+1(j) for a j > i. This means
that Gauss-Seidel implies a multiplication that accesses a matrix by columns.
All other iteration schemes can also be formulated with an access by columns
or by rows; in fact, the order in which matrix elements are accessed need not
be fixed at all, as long as all nonzero matrix elements are considered. This
has been frequently exploited for iterative methods on Kronecker representa-
tions, e.g., in [8]. Since access by rows is the same as access by columns on a
transposed matrix, we consider it to be part of the interface as well. Decom-
positional methods like Takahashi’s method access submatrices’ elements, so
the same access pattern used for whole matrices must also be supported for
submatrices.

3.3.2 AFI Classes

Motivated by the numerical solution methods, we now define the data struc-
ture that represents a transition and the set of functions that comprise the
state-level AFI. Different access patterns are made possible through a number
of methods that return container objects that, for example, contain elements
in a row or column. We also define methods that return information on the
number of states of the model (for dimensioning vectors) and on the initial
state (for defining an initial distribution, as in uniformization). Accessing el-
ements of the rate matrix through containers hides the enumeration of the
states (mapping of the state representation to the row/column index of the
state) in the state-level class. The freedom to choose this mapping creates an
opportunity to optimize the implementation of the state-level class. Kronecker-
based models take particularly great advantage of this property, as described
in Section 4.2.

Figure 1 shows the interface of the template class used to represent a transi-
tion. The template parameters are _StateType, _RateType, and _LabelType,
which represent the data types used for states (5), transition rates (R), and
transition labels (L), respectively. There are four methods that return the
characteristics of a transition. They are row(), col(), rate(), and label(),
which are used to access (i.e., read and write), respectively, the starting state
and ending state of a transition and a transition rate and label.

Each pattern of access to transitions of an LTS corresponds to one container
class. Therefore, in order for us to provide the numerical solution methods
discussed in Section 3.3.1 with the different patterns of access they need, the
number of methods that return container objects in the AFI must be the same
as the number of patterns.

The state-level AFI provides three main container classes that provide ac-

10

template <class _StateType, class _RateType, class _LabelType>
class Transition {
public:
typedef _StateType StateType;
typedef _RateType RateType;
typedef _LabelType LabelType;
StateType& row();
StateType& col();
RateType& rate();
LabelType& label();
RateType& reward(int RewardNumber);

Fig. 1. Transition class interface

cess to the whole matrix. getRow(StateType s, row& r) assigns to r the
container consisting of transitions originating from a given stateE] s. Simi-
larly, getColumn(. ..) gives access to transitions leading to a given state and
getAllEdges(...) gives access to all transitions in no particular order.

To support access to submatrices, the interface contains variants for each of
the access patterns we described for the whole matrix; for example, for access
by rows it contains getSubMatrixByRows (StateType rowstart, StateType
rowend, StateType colstart, StateType colend, submatrixbyrow& sm),
which assigns to sm the container consisting of elements of the submatrix speci-
fied by the four limiting values for row and column indices. The state-level AFI
provides supplementary methods for determining the number of submatrices
and their index ranges. They do so via a trading mechanism, in which the
solver specifies a range for the number of elements of the partition as well as a
value it prefers among those. The range and the preferred value are separately
specified for both the columns and rows of the whole matrix. The state-level
object subsequently responds with a specific partition whose number of ele-
ments is within the specified range and corresponds closely to the requested
preferred value. If the state-level object is unable to come up with a valid
partition, it throws an exception. This procedure allows the solver to select a
level of granularity, since it can determine the total number of states, while
the state-level object can choose detailed settings in order to retain efficient
access.

Later in this section, we give more details on submatrix, an example con-
tainer class that getSubmatrix() returns. This container provides access to

2 When it is clear from the context, we deviate from C++ syntax and remove
the class scope operator (i.e., ClassName: :) from the beginnings of names of class
members. For example, we write getRow() instead of LTSClass: :getRow().

11

the elements of a submatrix in no specific order. The same ideas apply to the
definition of container classes that provide other patterns of accesses to the
whole matrix and also to the submatrices.

To facilitate the analysis of the LTS, we also need the following methods
defined in LTSClass: getNumberOfStates(), which returns |S|, and get-
InitialState(), that returns the index of sg.

In order to have a state-level interface that enables us to compute reward
structures for stochastic models, we should also incorporate rate rewards and
impulse rewards into the interface. The following methods (except reward)
are defined in LTSClass to allow access to the reward structure:

o getNumberOfRateRewards() and getNumberOfImpulseRewards() return
the number of rate rewards defined on the states and the number of im-
pulse rewards defined on the transitions of the LTS, respectively.

e reward(int n), which is defined in the Transition class, returns the value
of the n'" impulse reward for a transition.

e getRateReward(int n) returns the set of values of the n'" rate reward for
all the states. The set is provided through a container class that can itself
be accessed using its corresponding iterator class.

All of the container classes, their associated iterator classes, the methods re-
turning container objects, and the additional methods mentioned above are
encapsulated into an LTSClass class that provides the complete state-level
AFI. Note that all of the implementation details of LTSClass are hidden from
the solution methods operating on it, and that the only way they can see
LTSClass is through its interface, i.e., the state-level AFI.

3.3.83 FExample Container Class: submatrix

Figure 2 illustrates the interface of the submatrix container class and its cor-
responding iterator class. submatrix and other container classes are declared
as inner classes of the LTSClass class. A container class definition must im-
plement all the functionality described earlier (navigation, dereferencing, and
comparison operators) as well as provide a prototype of a particular access
method (in this case, access to all elements of a submatrix without any spe-
cific order). In order to avoid most of the extra method calls, we have inlined
all the method definitions.

The submatrix class is a container that contains the elements of a submatrix
of the rate matrix corresponding to the LT'S. In particular,

e begin() initializes an iterator such that it corresponds to the first element
of the submatrix.

12

class submatrix {

public:

class iterator {

public:
iterator();
“iterator();
Transition& operator*();
Transition* operator—>(); // dereference
iterator& operator++(); // navigate forward
iterator& operator——(); // and backward
bool end(); // signal end
bool operator==(iterator &it); // compare
bool operator!=(iterator &it);
const iterator& operator=(iterator const &it); // assign

¥

void begin(iterator& it); // init iterator

¥

void getSubmatrix(StateType _row_start, StateType _row_end,

StateType _col_start, StateType _col_end, submatrix& sm);

Fig. 2. Container class submatrix and its associated iterator

end () returns true if the iterator is past the last element of the submatrix
and false otherwise.

operator+-+ (operator——) advances the iterator to the next (previous)
element in the submatrix and returns an iterator for the next (previous)
element in the submatrix. This operator, along with begin() and end(),
makes it possible to iterate through all elements of a submatrix.
operator-> and operator* are dereferencing operators. They make it pos-
sible to access the individual components of an element (i.e., a transition
object).

getSubmatrix () initializes sm of class submatrix to the submatrix specified
by the range indices given as parameters.

operator=, the assignment operator, is used to assign one iterator to an-
other. Notice that the interface should be implemented such that after
it1=1t2 is executed, it1 and it2 point to the same element and can ad-
vance ndependently of one another. That enables analysis algorithms to
have multiple iterators on different parts of the matrix simultaneously.
Equality (operator==) and inequality (operator!=) operators should be
implemented such that two iterators are equal if and only if they point to
the same element of the matrix.

Much as the submatrix class has been defined to provide access to the ele-
ments of submatrices with no specific order, we have similarly defined classes
to provide row-oriented and column-oriented access to submatrices. Moreover,

13

row, column, and allEdges, along with their corresponding iterators, have
been defined to provide row-oriented and column-oriented access, and access
to all transitions (with no specific order) for the whole matrix.

3.4 FEvaluation

The state-level AFI defined in this section is clearly good at supporting itera-
tive solution methods that are based on the enumeration of matrix elements.
Nevertheless, if we consider a wide range of state-level representations and
solution methods, we find certain cases that remain unsupported, e.g.,

e methods that represent probability distributions by some type of decision
diagrams, like MTBDDs [26, 1, 28] or PDGs [4, 10]. These so-called “sym-
bolic” approaches perform an iteration step by multiplying numerical values
of subsets of states with subsets of matrix entries instead of single elements.
The selection of the considered subsets would make it necessary to reveal
the underlying compositional structure of the LTS. However, the “hybrid”
approach mentioned in [28] not only has the potential to perform better,
but also uses a vector representation. That approach could therefore work
with the state-level AFT as it is.

e methods, like the shuffle algorithm by Plateau et al. [23,37], that are based
on a compositional state-space representation and that divide transitions
into conjunctions of partial transitions. Unlike the Kronecker approaches
employed in Section 4.2, the shuffle algorithm iterates through submod-
els, so either 1) it needs to reside behind the state-level AFI, while the
state-level AFT supports a matrix-vector multiplication, or 2) it needs to be
implemented by a solver, in which case the state-level AFI needs to reveal
the compositional structure of the LTS.

e methods that use decompositions of a matrix and rely on a specific prop-
erty, like nearly completely decomposability. So far, a solver can only check
whether the derived partition shows this property, and has no ability to
direct the state-level object in its decisions on how to partition the matrix.
There are some heuristic methods to compute NCD partitions [38] that
could be implemented to compute partitions for the flat state-level object.
The lack of rigorous theoretical results on computing NCD partitions means
that this restriction is merely a consequence of the state of the art.

In summary, the basic functionality provided by the state-level AFI is sufficient
to allow us to proceed with several solution methods. For specific algorithms,
additional functionality may be needed, especially to reveal more information
on the structure of the LTS. However, before such extensions can be consid-
ered, it is important to ensure that the fundamental approach is applicable in
practice and performs sufficiently well. Once that has been established, more

14

elaborate functionality can be built on top of the state-level AFI. In fact, in
this paper we already extend on the work in [21] by supporting submatrices.

4 Example State-level AFI Implementations

To demonstrate the generality of the AFI developed in Section 3, we de-
scribe how two conceptually different LTS representations can provide the
same state-level AFI. In particular, we have implemented two AFI-compliant
state-level classes based on 1) “flat” unstructured LTS representation based on
sparse-matrix representation and 2) structured LTS representation amenable
to Kronecker representation. To test these representations, we also imple-
mented several solvers that use the state-level AFI to solve models. The set of
solvers includes the Jacobi method, SOR, an iterative aggregation /disaggregation
method (Takahashi) for stationary analysis, and uniformization for transient
analysis. Since all solvers comply with the AFI, we can use any of them with
either of the state-level objects to solve the models. In this section, we describe
the implementation details of two complete state-level classes.

To make all AFI-compliant numerical solution methods applicable to an AFI-
compliant state-level object, we need to implement the complete set of meth-
ods described in Section 3.3 for the object. However, for some LTS repre-
sentations, there may be some access patterns that cannot be implemented
efficiently in terms of space or time requirements. In such cases, a mecha-
nism must notify the analysis algorithm that a specific access pattern has
not been implemented efficiently for that state-level object. We use the C+-+
exception-handling mechanism to do that. In particular, if an LTS class does
not provide efficient implementation for a particular access pattern X, calling
the corresponding getX method raises an exception that is caught by the anal-
ysis algorithm. Conceptually, it is a signal to the analysis algorithm that it
cannot perform efficiently on this L'T'S representation.

4.1 Flat State-level Object

In the Mobius modeling tool, the modeler can generate a CTMC from a high-
level stochastic model whose transitions’ time distributions are all exponential.
The CTMC and the associated reward structures are stored in two files that
will, in a later phase, be fed into an appropriate numerical solver that solves
the Markov chain and computes the measures of the model we are interested
in. In an attempt to show the generality of the state-level AFI, we wrapped
this interface around the two files.

15

In Mobius, the LTS is stored in a row-oriented format in the file. When read
into memory, it is stored in a compressed sparse row format. In order to sup-
port both row- and column-oriented access patterns, we had to sacrifice either
speed (by converting back and forth between compressed row and column
formats) or space (by storing both formats). In order to achieve separation
of concerns, it is essential that we be able to dynamically modify the inter-
nal data structure of the LTS without changing the interface. In the case of
flat LTS representation, we chose to sacrifice speed (and save space) because
typical solution methods use only one of the formats during their run-times.
Basically, the conversion from one format to another is performed when the
solver wants to access the LTS in the format that is not readily available in the
state-level object. Notice that this conversion needs only one scan through all
the elements of the matrix; that is an amount of work constantly proportional
to the amount of work needed for a single iteration of a fixed-point numerical
solution method.

We also need to provide methods to access submatrices of the LTS represen-
tation (seen as a matrix). It is easy to see how a submatrix with arbitrary
dimensions can be extracted from a matrix that is stored in, for example,
column-oriented format; we go through each of the appropriate columns one
by one, and within each column, we extract the appropriate rows and the
corresponding rates. However, we have two options here: 1) to perform the
algorithm each time we want to access the elements of a submatrix, or 2) to
perform the algorithm only once for all the submatrices needed during the
execution of the solution algorithm and change the representation of the LTS
from a single sparse matrix to a two-dimensional array whose elements are
sparse representations of submatrices.

There are some advantages and disadvantages to each option. By choosing the
first one, we can provide both efficient methods for column-oriented access and
methods for submatrix-oriented access, since we keep the sparse column for-
mat. The drawback is that accessing submatrices will not be as efficient as
possible, especially when the submatrices are small (i.e., the number of ele-
ments of the partition is large). In that respect, the second option is superior.
By providing instant access to the submatrices of a matrix, a 2D array of
sparse matrices is the most efficient way to obtain submatrix-oriented access.
However, the second option also has two disadvantages. First of all, since
the 2D array of submatrices is computed in advance, the partitioning of the
matrix also needs to be known in advance. Second, after the representation
is transformed, we cannot have efficient column-oriented access to the whole
matrix unless we transform the representation back to sparse column format.
Since most (if not all) decompositional solution methods fix the partitioning
at the beginning of the algorithm and also use only submatrix-oriented access
throughout the algorithm, the two disadvantages are not vital; therefore, we
chose the second option. Once again, we see how the state-level AFT gives us

16

the freedom to dynamically modify the internal data structure of the state-
level object to provide efficient access methods for the solution algorithms
based on their pattern of access to the object.

In our implementation, when a solution algorithm asks the flat state-level
object for a specific partitioning on columns and rows, the object can conform
to the request as long as the number of elements in each partition (both
column and row) is less than or equal to the number of states. In such a case,
the object provides the solution algorithm with submatrices whose sizes differ
at most by one.

4.2 Kronecker-based State-level Object

Kronecker representations of CTMCs can result from several modeling for-
malisms, including generalized stochastic Petri nets (GSPNs). GSPNs are
supported by the APNN toolbox [11], which implements many state-based
analysis methods using Kronecker representations. In order to achieve an im-
plementation of an LTS interface, we modified SupGSPN, a numerical solver
of the APNN toolbox that uses a modular Kronecker representation and im-
proved algorithms from [8]; the improvement is that they avoid binary search,
as described in [13]. The state-level AFT imposes a producer-consumer relation-
ship between the LTS object and the solver. The solver consumes the nonzero
matrix entries produced by the LTS object. It is possible to relax the coupling
between producer and consumer by using a buffer for the produced elements
whose capacity is larger than one. To make the matrix-vector multiplication
code within SupGSPN be a producer, one changes the pieces that perform
multiplications of vector elements with matrix elements into code that writes
the matrix elements into the buffer for the consumer. There are at least two
ways to arrange the switch of control flow between producer and consumer.
One way involves threads; the consumer would be a thread that waits if the
buffer is empty and notifies the producer that the buffer should be filled, and
the producer would be a thread that fills the buffer until it is full and notifies
the consumer that matrix elements in the buffer are ready to be used. This
method comes with the overhead of a thread switch for moving the control
flow between producer and consumer, but has the potential to be used in a
parallel implementation. The second method is to make the consumer call a
method of the producer asking it to fill the buffer. This approach implies that
the method call also provides an object that encapsulates the state of the
producer such that it can avoid costly reinitialization and recomputation by
proceeding from the same state from which it returned last time. The state of
the producer includes its local variables and the line of code from which the
computation will continue. The drawback of this approach is that there must
be a method call whenever the buffer needs to be filled. We focus on the latter

17

approach.

In order to implement allEdges iterator, we modified algorithms Act-RwCl
and Act-RwCl of [8]. These algorithms are well-suited for the Kronecker rep-
resentation since they can simply follow the internal structures of the Kro-
necker terms; however, the resulting sequence of matrix entries will not show
an order on row or column indices. To create an iterator, we replaced the
multiplication of matrix and vector elements in the last lines, namely 19 and
13, with statements that 1) return the matrix element to the iterator object
and 2) ensure that the algorithms proceed to serve a subsequent increment
operation right after that line. Algorithms Act-CIEl, and Act-CIEl; of [8] are
used as a basis for the column iterator. They are modified accordingly.

A Kronecker representation of the generator matrix Q of a CTMC is based in
its simplest form on a diagonal matrix D for the diagonal entries and a sum of
terms over all labels [€ L. Each term in the sum gives all the rates for all state
transitions with that label. Each term is given by a Kronecker product ® over
the much smaller state-transition matrices of the N components into which
the overall model is decomposed. For more details see, for example, [7,8,37].

N
QIZM@Q%LD

leL i=1

In order to implement the submatrix iterators with reasonable efficiency, we
support only partitions that contain no more parts than there are states in
the first component of the Kronecker representation, i.e., the dimensions of Q]
restrict the granularity of the partition. The advantage of this restriction is
that additional effort for the submatrix iterator is restricted to the treatment
of the first component ¢ = 1 only. This also corresponds to the root element
of the multi-valued decision diagrams that represent the reachable fraction of
the cross-product of component state spaces. If this restriction is prohibitive
in any case, one can permute the components to make the one with the largest
state space the first one. Alternatively, one can merge components to achieve
one with more states, a procedure known as grouping. One can implement the
approach in at least two ways. One is to partition the matrices of the first
component and modify the Kronecker representation:

N
Q= > SYuwQl,jo®aqQr
k=2

i,j€Partition [

where Q}[i, j](x,y) = Q} (z,y) if x is an element of part 7 and y is an element of
part 7, and 0 otherwise. Therefore, Q}[7, j], and Q} are of the same dimension.
This has been suggested in [30] as a way to achieve a partition of the generator
matrix into submatrices that are blocks of columns; that partition turns out

18

to be useful for parallel matrix-vector multiplications. For a partition into
more than a few parts, it leads to a substantial increase in Kronecker terms.
Hence, we follow a different approach that keeps the component matrices as
they are. We dynamically restrict the accesses to the multi-valued decision
diagrams that perform the projection on the reachable subset of states, in
order to consider only states that belong to the required subsets of row and
column states.

To avoid permanent creation and destruction of iterator objects and other
data structures, the implementation has memory management of its own that
recycles memory space. Reusing memory reduces the effort needed to initialize
an iterator object. For example, in SOR, a column iterator is needed for each
column, but columns are typically accessed in sequential, increasing order, so
that if we reuse memory space of the i*® iterator, only a partial update of
the internals of the (i + 1)* iterator object is necessary upon creation. For
the allEdges iterator, we implemented one variant that determines single
elements and a second, buffered variant that pulls a set of elements from
the Kronecker representation in order to reduce the number of method calls
needed to proceed on the Kronecker data structures. Since CMTCs typically
have extremely few elements per row or column, other iterators that give
an ordered access by columns or rows write all entries into a buffer, so that
access to the Kronecker representation takes place only in the iterator begin ()
method.

In Section 5, we consider examples that are formulated as GSPNs. However,
the presented approach is rather independent from the modeling formalism
used to describe a stochastic discrete event system in Mobius. Any model-
ing formalism supported by Md6bius has to implement a model-level AFT that
provides a uniform, notation-independent representation of a discrete event
system to an analysis engine. Our presented approach relies only on this model-
level AFT to interact with a model in M6bius, and consequently it is completely
unaware of the modeling notation used to specify a given model, i.e., it works
the same way for stochastic automata networks as for a process algebra like
PEPA. The APNN toolbox supports GSPNs, but the applied modular Kro-
necker representation is the same for model formalisms with shared actions
like stochastic automata networks and stochastic process algebras. Again, the
fact that we consider GSPNs is not a restriction to our appraoch.

5 Performance

In order to be useful, the Mobius state-level AFT must not unacceptably de-
grade the performance of numerical solvers. Clearly, use of the AFI does not
increase the time complexity of numerical solution methods that are based

19

on the explicit enumeration of all transitions in a state-level representation,
since in principle one can always implement the AFI using the original nu-
merical solution algorithm and interrupt its enumeration of matrix elements
whenever a single entry is considered. The enumeration then continues with a
call for the next increment or decrement operation. This mechanism implies
a constant overhead, which is irrelevant in the computation of the order of a
numerical solution algorithm. Nevertheless, in practice, constant factors must
be sufficiently small.

In this section, we evaluate the performance implications of the use of the
Mobius state-level AFI for two examples taken from the literature: Flexible
Manufacturing System (FMS) described by Ciardo et al. [14] and a parallel
communication protocol (Courier protocol) designed by Woodside and Li [40].
We also compare the efficiency of different methods of accessing the elements
of the generator matrix, i.e., the column, allEdges, and submatrix iterators.
We consider the two AFT implementations discussed in the previous section.
The first implementation is based on a sparse-matrix representation of the
LTS, and originates from the numerical solver of Mébius and UltraSAN. The
second AFI implementation uses a Kronecker representation of the LTS and
is derived from the SupGSPN numerical solver in the APNN toolbox. Both
implementations are evaluated with respect to the existing non-AFI versions
of the solvers from which they originate.

We did experiments on different architectures, operating systems, and compil-
ers. For a number of experiments we tried two compiler versions (gcc versions
2.95.2 and 3.2.1) on the same platform. The performance difference was no
more than 2%, so we decided to perform all the experiments only with ver-
sion 2.95.2, with which we have had good experiences so far. We observed
that with the same compiler version (gcc version 2.95.2) and optimization
parameter settings (-O3), the relative performance of two programs varied
significantly across platforms. We considered a Sun Enterprise 400MHz and a
Sun Ultra60 450MHz running Solaris, and a PIII 1GHz PC running Linux. All
the machines had enough RAM to hold all the data needed by the programs.
The following tables present the running times on the PIII 1GHz machine.
In [21], we used the Sun Ultra60 machine to perform a subset of the compar-
isons we do in this paper, i.e., the comparisons made in Table 5.1. For Solaris
machines, we observed that APNN was faster than Kron LTS by 30 to 60%,
and for the PC running Linux we observed an inverse relation: the Kron LTS
was faster by about 20%. A similar pattern shows itself when we compare
Mobius and Flat LTS, i.e., Mobius is faster by about 8% on Solaris machines,
and slower by about 5% on Linux machines. We are currently investigating
the reasons for that behavior. Our initial hypothesis is that the variations are
due to hardware and/or compiler differences across platforms, such as cache
size, register bank size, and instruction re-ordering. So far, we conclude that
the overhead is overweighted by platform-specific and compiler-specific effects,

20

that it is sufficiently limited to retain the same time complexity, and that the
constant factors are almost always less than 2.

5.1 FExample Models

In [14], FMS is described to illustrate the benefits of an approximate analysis
technique based on decomposition. The model has been used in many papers
as a benchmark model for CTMC analysis (e.g., [41,9]). For simplicity, we
consider a variant in which transitions have marking-independent incidence
functions and rates. The model is parameterized by the number of parts that
circulate in the FMS. The model distinguishes three types of parts, and we
assume that there are the same number of pieces (V) of each type. For the
Kronecker methods we partition the model into three components as in [9].

We also use a GSPN model of a parallel communication software system [40]
that has been considered for benchmarking CTMC analysis techniques (for
example, see [29]). The model is parameterized by the transport window size
TWS, which limits the number of packets that are simultaneously communi-
cated between the sender and receiver. To obtain a Kronecker representation,
we use the same partition into four components that was used in [29].

The dimensions of the CTMCs associated with a number of model configu-
rations are shown in Table 2; column |S| shows the number of states, and
column NZ(Q) gives the number of off-diagonal nonzero matrix entries in Q.
For those model configurations, Jacobi and Gauss-Seidel solvers perform as
shown in Table 5.1. The first column gives the parameter setting of N or
TWS. The other columns refer to results obtained with the original Mobius
implementation, the sparse-matrix state-level AFI (Flat LTS) implementation,
the APNN toolbox implementation, and the Kronecker state-level AFI (Kron
LTS) implementation. For each tool we present the times spent using the Ja-
cobi and the Gauss-Seidel solution methods. Table 4 shows the performance
of our AFI-compliant transient solver. Each computation time is the average
CPU time in seconds taken to perform a single iteration step.

In the original Mobius and the sparse-matrix AFI implementations, a Gauss-
Seidel iteration is on average 20% faster than a Jacobi iteration. The reasons
are that 1) computation of 7(**+1) in each iteration involves only a few accesses
to the elements of m and @, and a few floating-point operations, 2) accessing
the memory is much more expensive than a floating-point operation, and 3) in
our implementation, the number of memory accesses in the Jacobi method is
one more than in the Gauss-Seidel method. That relationship does not hold for
Kronecker implementation, which allows the use of more efficient algorithms
for enumerating matrix entries in an arbitrary order (the allEdges iterator in

21

(a) FMS

(b) Courier protocol

N s [Nz TWS s Nz
4 35910 237120 1 11700 48330
5 152712 1111482 2 84600 410160
6 537768 4205670 3 419400 2281620
7 1639440 | 13552968 4 1632600 9732330
8 4459455 | 38533968 5 5358600 34424280
9 11058190 | 99075405 6 15410250 | 105345900
Table 2
CTMC size of the studied models
(a) FMS
Moébius Flat LTS slowdown APNN Kron LTS slowdown
N % %
JAC | SOR JAC | SOR | JAC | SOR JAC | SOR JAC | SOR | JAC | SOR
4 | 0.024 | 0.018 | 0.023 | 0.018 -4 0 0.038 | 0.046 | 0.029 | 0.048 -24 4
5 0.112 | 0.086 | 0.106 | 0.086 -5 0 0.178 | 0.214 | 0.132 | 0.223 -26 4
6 0.418 | 0.323 | 0.397 | 0.326 -5 1 0.671 | 0.809 | 0.471 | 0.822 -30 2
7 1.31 1.01 1.24 1.02 -5 1 2.18 2.62 1.48 2.59 -32 -1
8 H - - - - - 5.85 7.45 4.18 7.33 -29 -2
9 - - - - - - 14.97 | 19.14 | 10.73 | 18.67 -28 -2
(b) Courier protocol
Mébius Flat LTS slowdown APNN Kron LTS slowdown
TWS % %
JAC SOR JAC SOR | JAC | SOR JAC | SOR JAC | SOR | JAC | SOR
1 0.0063 | 0.0046 | 0.0058 | 0.0046 -8 0 0.009 | 0.017 | 0.0065 | 0.017 -28 0
2 0.047 0.037 0.044 0.035 -6 -5 0.096 0.14 0.07 | 0.134 =27 -4
3 0.257 0.198 0.233 0.195 -9 -2 0.518 0.74 0.37 | 0.714 -29 -4
4 1.03 0.802 0.954 0.792 -7 -1 2.17 3.05 1.49 2.94 -31 -4
5 - - - - - 7.23 | 10.51 4.98 | 10.12 -31 -4
6 - - - — — - 21.5 | 32.01 15.49 | 30.74 -28 -4

& The state space is too large to be explicitly constructed.

Table 3

Time per iteration (in seconds) for the studied models on the PC running Linux

the interface) than for an order by columns as required for Gauss-Seidel [§].
In [21], we presented results in the same format that we used in Table 5.1, but
measured them on a Sun workstation running Solaris. There we observed that
the state-level AFI was slower than the original implementations in Mobius
and the APNN toolbox. As in [21], the “slowdown” columns in Table 5.1 give
the percentage of decrease in speed caused by the overhead of the state-level
AFI. For the Mobius and sparse-matrix AFI implementations, the slowdown
for the Jacobi solver is computed by subtracting column 2 from column 4 and
dividing the result by column 2; likewise, the slowdown for the SOR solver

22

(a) FMS (b) Courier protocol

N | Flat LTS | Kron LTS TWS | Flat LTS | Kron LTS
4 0.024 0.030 1 0.0056 0.0071
5 0.116 0.139 2 0.048 0.073
6 0.435 0.488 3 0.257 0.38
7 1.36 1.53 4 1.09 1.54
8 4.39 5 - 5.29
9 - 11.3 6 - 16.2

2 The state space is too large to be explicitly constructed.

Table 4
Time per iteration (in seconds) for the transient solver on the PC running Linux

is computed by subtracting column 3 from column 5 and dividing the result
by column 3. The same formula is used to compute the slowdown column for
comparison between the APNN toolbox and Kron LTS implementations.

Note that on Linux (used for the experiments presented in this paper), we often
observe a speedup instead of a slowdown when using the state-level AFI, as
indicated by the negative values in the “slowdown” columns. The slowdown
for the sparse-matrix AFI implementation is always less than or equal to
1% on Linux (it is almost always less than 10% on Solaris machines [21]).
In solving the models using the Kronecker approach on Linux machines, we
use on average 29% less time for the allEdges iterator (in the Jacobi AFI
implementation) and on average 1% less time for the column iterator. Again,
inverse observations have been reported on Solaris machines; in solving the
larger models on Solaris machines, we use on average 57% more time for the
allEdges iterator and on average 47% more for the column iterator [21]. For
the APNN toolbox, irrespective of the architecture and operating system,
the allEdges iterator remains significantly faster than the column iterator
(in the SOR implementation). The results for Jacobi use an implementation
of the buffered allEdges iterator with buffer size of 128 matrix entries. For
N € {3,4,...,7}, we run an experiment series with buffer sizes in the range of
20 21 . 21 The observed computation times describe a curve that initially
decreases sharply, reaches a minimum in an interval that contains 128 matrix
entries for all values, and only gradually increases for increasing buffer sizes.
Hence, we fixed the buffer size to 128 for the Jacobi al1Edges iterator reflected
in Table 5.1. We also measured the performance of the newly implemented
transient solver, in which uniformization makes use of the al1Edges iterator.
The running times in Table 4 are similar to those observed for the Jacobi
method (shown in Table 5.1). The numbers are slightly higher than those
for Jacobi because the computation of the transient distribution involves an
additional accumulation of vectors.

23

5.2 Comparison of Iterators

In order to measure the efficiency of submatrix access methods in the two
state-level classes that we implemented, we could choose either of two ap-
proaches: 1) solve the above-mentioned models using Takahashi’s method and
measure the running time of a single outer iteration, or 2) measure the amount
of time it takes to go through all elements of the generator matrix using the
submatrix container. The main drawback of the first approach is that each
outer iteration of Takahashi’s method involves a variable number of inner it-
erations on diagonal blocks, which makes the running time of a single outer
iteration far from meaningful. One advantage of the second approach is that
it does not count the time to perform computations specific to a solution
method. Another advantage is that we can extend the second approach to use
it not only to measure the efficiency of the submatrix iterator but also to
compare it to other iterators, i.e., col and allEdges, in a fair and insight-
ful way. Recall that in Section 4.1 we described two approaches for providing
submatrix access methods. In the first implementation of the flat state-level
object, we used the first (inefficient) approach. After comparing the different
access methods on the object using the experiments described below, we ob-
served that the approach was too inefficient compared to col and allEdges,
so we reimplemented the necessary parts to reflect the second approach. After
choosing the second approach for comparing efficiency of iterators, we wrote
a simple piece of code that reads all the matrix elements from the state-level
object using each type of the container classes.

Based on our experiments with running our AFI-based implementation of
Takahashi’s method on Kronecker and flat state-level objects, we determined
that the solver can save a considerable amount of time by remembering which
submatrices do or do not have non-zero elements in them. This optimization
is justified by the fact that generator matrices are usually very sparse, which
means that a large percentage of the submatrices have only zero elements. In
fact, we performed some experiments to determine the ratio of the number of
zero submatrices to the total number of submatrices. Our results for the FMS
model show that this ratio starts at 0% for 25 submatrices and increases to an
average of 98% for 250,000 submatrices. This very large ratio justifies the use
of the optimization. By skipping those zero submatrices, the solver avoids the
administrative overhead of setting up an iterator for a submatrix that contains
no nonzero elements. Our solver implementation uses a 2D Boolean array to
keep track of zero submatrices. We measured the effect of this optimization
for a set of partitions of different granularities, i.e., we tried using different
numbers of elements for the partition (while keeping the same numbers for
columns and rows).

Table 5 shows the results of the comparison. The numbers reflect the average

24

time in seconds of a single read of all the elements of the generator matrix
of the FMS model. We performed the measurements for the two state-level
objects, for the col, allEdges, and submatrix iterators, with and without
skipping of zero submatrices, and for different numbers of elements in the
matrix partition. The submatrix iterators are of the allEdges kind. The
numbers 10, 20, ..., 500 under the submatrix iterator header are the numbers
of elements in the partition of the rows and columns of the matrix, e.g., 20
means that the matrix is divided into 400 submatrices.

As we can see for flat state-level objects of large models, as the number of
submatrices grows, the time to access all submatrices rises very quickly. If
zero submatrices are skipped, the overhead of accessing 250,000 rather than
25 submatrices drops below 50%. Because accessing an element has a larger
cost in Kronecker representation than in sparse representation, the effect of
skipping zero submatrices is observed differently. In the Kronecker case, if
zero submatrices are not skipped, we see that there is at most 50% overhead
in accessing a large number of submatrices as opposed to a small number of
them. If we skip zero submatrices, the overhead is dramatically reduced to
under 2%.

We can also use the results in the table to compare how efficient submatrix
access methods are compared to the other two methods. For a Kronecker rep-
resentation, we observe that when we skipped zero submatrices, the largest
number of submatrices we tried incurred an average overhead of only 10%
compared to the allEdges iterator, which gives, for the whole matrix, the
same access pattern that the submatrix iterator does. allEdges is definitely
faster than the col iterator, for the reasons mentioned earlier. The results
we observed for the flat state-level object reflect some issues that we need to
explain. The first issue is the fact that the allEdges iterator is on average
16% slower than the col iterator. Theoretically, one should be able to imple-
ment the allEdges iterator as efficiently as col simply by going through all
the columns one by one and using the col container for each one. The reason
we put this artificial difference into our implementation is that we make the
implementation as much as possible like the M6bius implementation of the Ja-
cobi solver, so that we can compare Mobius and Flat LTS as fairly as possible.
The second issue is that for large models, accessing the LTS by submatrix
is faster than col and allEdges for any block size. That is because of the
optimized and simple data structure of the submatrix container that we de-
scribed in section 4.1. Again, we could implement both the col and allEdges
iterators to perform as well as or better than submatrix (as they do for the
Kronecker representation), but in order to compare them fairly (Table 5.1) to
their counterparts in Mobius, we intentionally have not done so.

25

6 Conclusions

In this paper, we have presented a state-level abstract functional interface
for models expressed as labeled transition systems (LTS), and experimentally
compared the performance of solvers using our interface with that of standard
implementation of solvers. Our interface uses containers and iterators to sep-
arate issues related to representation of LTS from issues related to solution
of such systems. The use of our interface thus yields an important separa-
tion of concerns with significant advantages for research related to state-based
analysis methods, as well as for applications that use these methods.

More specifically, we discussed the requirements that a state-level AFI must
fulfill to be useful in practice. The presented AFI was designed accordingly,
and we described the important design issues involved in implementing the
AFT efficiently. In particular, with the help of two examples, we illustrated
the usability of our approach and its impact on the performance of different
numerical solvers in CTMC analysis. The architecture and compiler determine
whether we observe a speedup or slowdown when using the state-level AFI
instead of the original implementations of Mobius and the APNN toolbox.
We thus conclude that we gain much more from the use of the interface than
we lose from the potential minor performance overhead incurred.

We are continuing to work on a full integration of different state-space repre-
sentations in Mobius, based on the new state-level AFI. In addition to im-
plementing known state-space representations, we envision the creation of
adaptive state-level AFI objects that modify their internal data structures
depending on the usage patterns that are dynamically observed. That way,
we could dynamically make use of the space-time trade-off that characterizes
different L'T'S representations.

Compared to previous work [21], we added two more solvers, namely uni-
formization and Takahashi’s method. The latter became possible after we ex-
tended the AFT to support access to submatrices. Access to submatrices is also
useful for parallel numerical solvers. In [30], specific submatrices, namely sets
of columns, are required in order to achieve a parallel uniformization for shared
memory architectures and Kronecker representation. Therefore, the support of
submatrices is useful in broadening the set of sequential and parallel numerical
solvers that can work with the AFI.

Acknowledgments We thank Graham Clark for his comments and ideas
in our discussions on the design of Mobius interfaces, and Peter Buchholz
and William Stewart for sharing their experiences and giving us references
concerning Takahashi’s method. We would also like to thank Jenny Applequist
for her editorial assistance.

26

References

[1] C. Baier, J. P. Katoen, and H. Hermanns. Approximate symbolic model
checking of continuous-time Markov chains. In Proc. Concurrency Theory
(CONCUR’99), volume 1664 of LNCS, pages 146-162. Springer, 1999.

[2] M. Bernardo and R. Gorrieri. A tutorial on EMPA: A theory of concurrent
processes with nondeterminism, priorities, probabilities and time. Theoretical
Computer Science, 202(1-2):1-54, July 1998.

[3] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing Networks and
Markov Chains. John Wiley & Sons Inc., 1998.

[4] M. Bozga and O. Maler. On the representation of probabilities over structured
domains. In Proc. of Int. Conf. on Computer Aided Verification (CAV*99),
volume 1633 of LNCS, pages 261-273. Springer, 1999.

[6] P. Buchholz. Markovian process algebra: Composition and equivalence. In
U. Herzog and M. Rettelbach, editors, Proc. of the 2nd Work. on Process
Algebras and Performance Modelling, pages 11-30. Arbeitsberichte des IMMD,
University of Erlangen, no. 27, 1994.

[6] P. Buchholz. Hierarchical Markovian models: Symmetries and aggregation.
Performance Evaluation, 22:93-110, 1995.

[7] P. Buchholz. Structured analysis approaches for large Markov chains. Applied
Numerical Mathematics, 31(4):375-404, 1999.

[8] P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper. Complexity of memory-
efficient Kronecker operations with applications to the solution of Markov
models. INFORMS J. on Computing, 12(3):203-222, 2000.

[9] P.Buchholz, M. Fischer, and P. Kemper. Distributed steady state analysis using
Kronecker algebra. In Proc. 3rd Int. Workshop on the Numerical Solution of
Markov Chains (NSMC’99), pages 76-95, Zaragoza, Spain, Sept. 1999.

[10] P. Buchholz and P. Kemper. Compact representations of probability
distributions in the analysis of superposed GSPNs. In Proc. of the 9th Int.
Workshop on Petri Nets and Perf. Models, pages 81-90, Aachen, Germany,
2001.

[11] P. Buchholz, P. Kemper, and C. Tepper. New features in the APNN toolbox. In
P. Kemper, editor, Tools of Aachen 2001, Int. Multiconference on Measurement,
Modelling and Evaluation of Computer-communication Systems, Tech. report
No. 760/2001. Universitdt Dortmund, FB Informatik, 2001.

[12] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic well-
formed colored nets for symmetric modeling applications. IEEE Transactions
on Computers, 42(11):1343-1360, Nov. 1993.

27

[13] G. Ciardo and A. Miner. A data structure for the efficient Kronecker solution of
GSPNs. In Proc. of 8th Int. Workshop on Petri Nets and Performance Models
(PNPM’99), pages 22-31, 1999.

[14] G. Ciardo and K. S. Trivedi. A decomposition approach for stochastic reward
net models. Performance Evaluation, 18(1):37-59, 1993.

[15] G. Clark, T. Courtney, D. Daly, D. D. Deavours, S. Derisavi, J. M. Doyle, W. H.
Sanders, and P. G. Webster. The Mobius modeling tool. In Proc. of the 9th
Int. Workshop on Petri Nets and Performance Models, pages 241-250, Aachen,
Germany, September 2001.

[16] D. D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. M. Doyle, W. H.
Sanders, and P. Webster. The Mobius framework and its implementation. IEEE
Trans. on Software Eng., 28(10):956-969, 2002.

[17] D. D. Deavours and W. H. Sanders. An efficient disk-based tool for solving very
large Markov models. In Proceedings of the 9th Int. Conference on Modelling
Techniques and Tools for Computer Performance Evaluation (TOOLS ’97),
pages 5871, June 1997.

[18] D. D. Deavours and W. H. Sanders. ‘On-the-fly’ solution techniques for
stochastic Petri nets and extensions. IEEE Trans. on Soft. Eng., 24(10):889—
902, 1998.

[19] D. D. Deavours and W. H. Sanders. The M&bius execution policy. In Proc. of
9th Int. Workshop on Petri Nets and Performance Models (PNPM’01), pages
135-144, Aachen, Germany, 2001.

[20] D. D. Deavours and W. H. Sanders. Mobius: Framework and atomic models. In
Proc. of 9th Int. Workshop on Petri Nets and Performance Models (PNPM’01),
pages 251-260, Aachen, Germany, 2001.

[21] S. Derisavi, P. Kemper, W. H. Sanders, and T. Courtney. The Mé&bius state-
level abstract functional interface. In Proc. of the 12th Int. Conf. on Modelling
Techniques and Tools for Computer Performance Evaluation (TOOLS 2002),
pages 31-50, London, UK, April 2002.

[22] J. M. Doyle. Abstract model specification using the M&bius modeling tool.
Master’s thesis, University of Illinois at Urbana-Champaign, January 2000.

[23] P. Fernandes, B. Plateau, and W. J. Stewart. Efficient descriptor-vector
multiplication in stochastic automata networks. JACM, 45(3):381-414, 1998.

[24] J. C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and
M. Sighireanu. CADP: A protocol validation and verification toolbox. In Proc.
of the 8th Conference on Computer-Aided Verification, volume 1102 of LNCS,
pages 437-440. Springer, August 1996.

[25] S. Gilmore, J. Hillston, and M. Ribaudo. An efficient algorithm for aggregating
PEPA models. Software Engineering, 27(5):449-464, 2001.

28

[26] H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi terminal binary decision
diagrams to represent and analyse continuous time Markov chains. In Proc. 3rd
Int. Workshop on the Numerical Solution of Markov Chains, pages 188-207,
Zaragoza, Spain, 1999.

[27] H. Hermanns and M. Ribaudo. Exploiting symmetries in stochastic process
algebras. In Proc. of ESM’98: 12th Furopean Simulation Multiconference, pages
763-770, 1998.

[28] J. P. Katoen, M. Kwiatkowska, G. Norman, and D. Parker. Faster and symbolic
CTMC model checking. In Proc. PAPM-PROBMIV’01, volume 2165 of LNCS,
pages 23-38. Springer, 2001.

[29] P. Kemper. Numerical analysis of superposed GSPNs. IEEE Trans. on Software
Eng., 22(9):615-628, Sept. 1996.

[30] P. Kemper. Parallel randomization for large structured Markov chains. In Proc.
of the Int. Conf. on Dependable Systems and Networks (DSN 2002), pages 657—
666, Washington DC, USA, 2002.

[31] W. J. Knottenbelt. Generalised Markovian analysis of timed transition systems.
Master’s thesis, University of Cape Town, Cape Town, South Africa, July 1996.

[32] W. J. Knottenbelt and P. G. Harrison. Distributed disk-based solution
techniques for large Markov models. In Proc. of NSMC’99: 3rd International

Meeting on the Numerical Solution of Markov Chains, pages 58-75, Zaragoza,
Spain, 1999.

[33] R. Koury, D. F. McAllister, and W. J. Stewart. Methods for computing
stationary distributions of nearly-completely-decomposable Markov chains.
SIAM Journal of Algebraic and Discrete Mathematics, 5(2):164-186, 1984.

[34] D. R. Musser, G. J. Derge, and A. Saini. STL Tutorial and Reference
Guide, Second Edition: C++ Programming with the Standard Template Library.
Addison-Wesley, Reading, MA, 2001.

[35] W. H. Sanders. Integrated frameworks for multi-level and multi-formalism
modeling. In Proceedings of PNPM’99: 8th Int. Workshop on Petri Nets and
Performance Models, pages 2-9, Zaragoza, Spain, September 1999.

[36] W. H. Sanders and J. F. Meyer. Reduced base model construction
methods for stochastic activity networks. IEEE Journal on Selected Areas in
Communications, 9(1):25-36, Jan. 1991.

[37) W. J. Stewart. Introduction to the Numerical Solution of Markov Chains.
Princeton University Press, 1994.

[38] William J. Stewart and Wei Wu. Numerical experiments with iteration and
aggregation for Markov chains. ORSA J. on Computing, 4(3):336-350, 1992.

[39] Y. Takahashi. A lumping method for numerical calculation of stationary
distributions of Markov chains. Technical Report B-18, Department of
Information Sciences, Tokyo Institute of Technology, Tokyo, Japan, June 1975.

29

[40] C. M. Woodside and Y. Li. Performance Petri net analysis of communications
protocol software by delay-equivalent aggregation. In Proc. of the 4th Int.
Workshop on Petri Nets and Performance Models, pages 64—73, 1991.

[41] P. Ziegler and H. Szczerbicka. A structure based decomposition approach
for GSPN. 1In Proc. of PNPM’95: 6th Int. Workshop on Petri Nets and
Performance Models, pages 261-270, 1995.

30

‘uo1pRId)I I9d SPUODSS UL oI SIOQUINN [oPOW SN UO SIOjeIdlr Jo uostredwo)) G o[qe],

“pueuoduwiod 1SIY 81} JO $9YR)S JO IOqUINU WINWIIXEUL 87} SPIIIXF

€SV | 9% | 99°F | 9¢F | 997 | S¢F | 00°C | 29F% | LKV | 9PV | 9FF | L¥¥ | 81F V6VT 6
T8T | IS8T | 08T | 08T | 08T | 08T | %8G | 98°T | 08T | 8LT | LLT | 9LT | L9 c0°'9 8
90 | G690 | G9°0 | S90 | 90 | ¥90 | LOT | @20 | 990 | ¥90 | €90 | €90 | 6850 A4 L
- 120 | 160 | 180 | 180 | 180 | - 820 | €0 | 180 | 080 | 020 | ST6I0 8L9°0 9
- 1900 | 6900 | 6S0°0 | 850°0 | 8%0°0 | — gr0 | SL0°0 | 900 | 6S0°0 | LS00 | S€50°0 88T°0 g
- - G100 | 100 | ¥10°0 | €100 | — e— | 6200 | 810°0 | ¥T0°0 | ¥10°0 | ST10°0 Tr0°0 v
00¢ | 00Z | 00T 03 0% o1 00¢ | 00% | 00T 09 02 o1
uorjezrurydo YA uoryezrurydo JNOYITAN TORION | TOYRINT |
107101 XTILRUQNS se8pATTe TOS
190((0 [eAd[-99R)S Toxpouory] (q)
60T°0 | 660°0 | L60°0 | 9600 | 960°0 | 960°0 | €20 | LIT°'0 | TOT°0 | L60°0 | 960°0 | 9600 | SST1°0 621°0)
700 | €800 | T€0°0 | TE0°0 | 080°0 | 080°0 | 9T°0 | TG00 | G800 | 1€0°0 | 080°0 | 0£0°0 | 6%0°0 0°0 9
g0'0 | S0T0°0 | 8800°0 | ¥800°0 | 8400°0 | 8400°0 | ¥I'0 | 6G0°0 | €100 | 600°0 | &800°0 | 8.00°0 | ¥10°0 g10’0 G
€10°0 | ¥¥00°0 | 9200°0 | 2000 | 81000 | 9T00°0 | €1°0 | €200 | L00'0 | €00°0 | 8T00°0 | 81000 | €000 8200°0 i
00g 00¢ 001 0g 0% 01 00¢ | 00T | 00T 08 07 01
EDB@NHEEQO L EIYYY EOAQdN:‘SSQO QSOJﬁ\S .HOQ@.H@Pﬁ MO@@M@QM N
I10)eI9)l XTIYeuqns mwmﬁm._”._”.m To°

199(qo [9a9[-03e3s e[(®)

31

	Introduction
	Requirements
	State-level AFI Definition
	Labeled Transition System Definition
	Use of Containers and Iterators
	State-Level AFI Classes
	Evaluation

	Example State-level AFI Implementations
	Flat State-level Object
	Kronecker-based State-level Object

	Performance
	Example Models
	Comparison of Iterators

	Conclusions
	References

