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Abstract. In this chapter we describe a formalism which uses the stochastic pro-
cess algebra PEPA as the inscription language for labelled stochastic Petri nets.
Viewed in another way, the net is used to provide a structure for linking related
PEPA systems. The combined modelling language naturally represents such ap-
plications as mobile code systems where the PEPA terms are used to model the
program code which moves between network hosts (the places in the net). We
demonstrate the modelling capabilities of the formalism on a number of exam-
ples, including a mobile server running MobilelP.

1 Introduction

Over the last decade mobility has had a major impact on the way we design, imple-
ment and manage many computer systems. Mobility may be manifest in the form of
devices which change location and spontaneously connect/disconnect, or in the form of
executable code which is moved around the network for a variety of reasons. In either
case the effect is that the context in which computation is taking place is dynamically
changing, and these changes will have consequences for the performance of the system.
In this chapter we introduce the modelling formalism PEPA nets which have been de-
signed to capture information about mobility and so allow performance models of such
systems be readily and naturally developed.

The rest of the chapter is organised as follows. Section 2 introduces the notation and
terminology of PEPA nets, after a brief introduction to PEPA. (Readers are assumed to
be familiar with the basic ideas of Stochastic Petri Nets, and are referred to [1] for basic
definitions.) In Section 3 we present two small examples, a simple mobile agent system,
and a secure web service, all modelled as PEPA nets. Section 4 is a more detailed case
study of a mobile host accessible via MobilelP. In Section 5 we discuss tool support
for PEPA nets. Related work is discussed in Section 6. Concluding remarks and further
work are presented in Section 7.

2 PEPA nets

In this section we present the concepts and definitions used in PEPA nets. First we
give an intuitive overview of the formalism, followed by a more detailed account of its
definition and its formal properties.

* L. Kloul is on leave from PRISM, Université de Versailles, 45, Av. des Etats-Unis 78000
Versailles, France.
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A PEPA net is a stochastic Petri net with coloured tokens. The tokens represent
mobile objects with state and behaviour, where we use the term mobile loosely to char-
acterise objects which may find themselves in different contexts during execution. The
tokens are described using a stochastic process algebra, Hillston’s Performance Evalu-
ation Process Algebra (PEPA).

The use of stochastic Petri nets for performance models is well-established [1] and
coloured variants, e.g. Stochastic Well-Formed Nets (SWN) [4], have also been de-
veloped. However the use of colours in PEPA nets offers something quite distinct —
the possibility of differentiating between two types of change of state within a system.
Unlike SWN where tokens remain indistinguishable within their colour classes, tokens
within PEPA nets are autonomous components. Firings of the net will typically be used
to model macro-step (or global) changes of state, whereas transitions within the PEPA
tokens are typically used to model micro-step (or local) changes of state as components
undertake activities. Thus modelling with PEPA nets uses both Petri nets and process al-
gebras together as a single, structured performance modelling formalism. There is some
reason to believe that these two formalisms complement each other [7]. In particular,
we have previously demonstrated [12] that PEPA nets offer some expressivity which is
not directly offered by either PEPA or Petri nets.

2.1 Summary of the PEPA language

In the following paragraphs we give a brief overview of PEPA. Readers are referred to
[14] for a more detailed introduction.

The PEPA language provides a small set of combinators. These allow language
terms to be constructed defining the behaviour of components, via the activities they
undertake and the interactions between them. In particular we develop a model as a
model component constructed using static combinators, from a number of sequential
components constructed using dynamic combinators.

openWite openRead
wite T fead
cl ose cl ose

Fig. 1. Simple file protocol

Consider a Fi | e class with methods openRead( ), openWite(), read(),
write() and cl ose() . The order in which the methods can be applied defines a
protocol for a Fi | e object. This could be represented as shown in Figure 1. We can
express this as a PEPA component as below:

File £ (openRead, r,,).InStream + (openWrite, r,).OutStream
InStream = (read, r,.).File + (close, r.).File
OutStream = (write, r,).File + (close, r.).File



Here £ denotes definitional equality and a constant or identifier (e.g. File) is used to
assign a name to a pattern of behaviour associated with a component. Each activity such
as (openRead, r,) has an action type (openRead) and an exponentially distributed dura-
tion, denoted by its parameter (r,). The basic mechanism for describing the behaviour
of a system is to give a component a designated first action using the prefix combina-
tor, denoted “.”. However, the life cycle of a component may be more complex than
any behaviour which can be expressed using the prefix combinator alone. The choice
combinator, denoted by +, captures the possibility of competition between different
possible activities: only one will succeed and the other alternative will be discarded (for
the moment). The competition is resolved via the race policy.

File is a sequential component and prefix and choice are the dynamic combinators.

Now consider a Fi | e being accessed by a Fi | eReader object. The two compo-
nents must interact via the file protocol. In PEPA this is would be denoted as

File D§ FileReader

where L denotes the set of action types {openRead, read, close}. The combinator D§
denotes cooperation between the components. This is the basis of compositionality
within PEPA. The set which is used as the subscript of the cooperation symbol, the
cooperation set L, determines those activities on which the two components are forced
to synchronise. For action types not in L, the components proceed independently and
concurrently with their enabled activities. However, if a component enables an activity
whose action type is in the cooperation set it will not be able to proceed with that activity
until the other component also enables an activity of that type. The two components then
proceed together to complete the shared activity. The rate of the shared activity may be
altered to reflect the work carried out by both components to complete the activity (for
details see [14]). We write P || @ as an abbreviation for P B<I Q when L is empty.

In some cases, when an activity is known to be carried out in cooperation with
another component, a component may be passive with respect to that activity. This
means that the rate of the activity is left unspecified (denoted T) and is determined
upon cooperation, by the rate of the activity in the other component. All passive actions
must be synchronised in the final model.

In the case of the Fi | e object cooperating with a Fi | eReader we may wish to
impose that the Fi | e object may only be read by this Fi | eReader . This is denoted
using the hiding combinator, /:

(File I FileReader) /{read}

Hiding provides the possibility to abstract away some aspects of a component’s be-
haviour. In a component P/ L, the set L of visible action types will be considered in-
ternal or private to the component and will appear as the unknown type 7. Hiding and
cooperation are the dynamic combinators.

The syntax of PEPA may be formally introduced by means of the grammar shown
in the lower part of Figure 2. In that grammar S denotes a sequential component and
P denotes a model component which executes in parallel. I stands for a constant which



denotes either a sequential or a model component, as defined by a defining equation.
Model components capture the structure of the system in terms of its static components.
The dynamic behaviour of the system is represented by the evolution of these compo-
nents, either individually or in cooperation. The form of this evolution is governed by
a set of formal rules which give an operational semantics of PEPA terms. The semantic
rules, in the structured operational style, are presented in Figure 8 in the Appendix.

The semantics of each term in PEPA is given via a labelled transition system. In
the transition system a state corresponds to each syntactic term of the language, or
derivative, and an arc represents the activity which causes one derivative to evolve into
another. The complete set of reachable states is termed the derivative set of a model and
these form the nodes of the derivation graph which is formed by applying the semantic
rules exhaustively.

The timing aspects of components’ behaviour are represented on each arc as the
parameter of the negative exponential distribution governing the duration of the corre-
sponding activity. The interpretation is as follows: when enabled an activity a = (a, )
will delay for a period sampled from the negative exponential distribution which has
parameter r. If several activities are enabled concurrently, either in competition or in-
dependently, we assume that a race condition exists between them. The evolution of
the model will determine whether the other activities have been aborted or simply in-
terrupted by the resulting state change. In either case the memoryless property of the
distribution eliminates the need to record the previous execution time.

When two components carry out an activity in cooperation the rate of the shared
activity will reflect the working capacity of the slower component. We assume that each
component has a capacity for performing an activity type «, which cannot be enhanced
by working in cooperation, unless the component is passive with respect to that activity
type. For a component P and an action type «, this capacity is termed the apparent
rate [14] of « in P. It is the sum of the rates of the « type activities enabled in P. The
apparent rate of « in a cooperation between P and @ over « will be the minimum of
the apparent rate of « in P and the apparent rate of a in ().

The derivation graph is the basis of the underlying Continuous Time Markov Chain
(CTMC) which is used to derive performance measures from a PEPA model. The graph
is systematically reduced to a form where it can be treated as the state transition diagram
of the underlying CTMC. Each derivative is then a state in the CTMC. The transition
rate between two derivatives P and @ in the derivation graph is the rate at which the
system changes from behaving as component P to behaving as Q. It is denoted by
q(P, Q) and is the sum of the activity rates labelling arcs connecting node P to node Q.
In order for the CTMC to be ergodic its derivation graph must be strongly connected.
Some necessary conditions for ergodicity, at the syntactic level of a PEPA model, have
been defined [14]. These syntactic conditions are imposed by the grammar in Figure 2.

2.2 Introduction to PEPA nets

In outlining a framework of design paradigms for mobile code systems in [8], Fuggetta
et al. emphasise three architectural concepts: components, interactions and sites. The
importance of including an explicit notion of location has also been recently highlighted
by Kohler et al. [17], who additionally choose entities and movement as primitives. In



PEPA nets the places of the PEPA net represent sites or locations, the PEPA compo-
nents represent components or entities. Interactions are represented by PEPA cooper-
ations, which may only take place between co-located components, and movement is
represented by firings of the PEPA net which move a token from one place to another.
Thus in PEPA nets we have two distinct types of change of state: firings and transitions.

A firing in a PEPA net causes the transfer of one token from one place to another.
The token which is moved is a PEPA component, which causes a change in the subse-
quent evaluation both in the source (where existing cooperations with other components
now can no longer take place) and in the target (where previously disabled cooperations
are now enabled by the arrival of an incoming component which can participate in these
interactions). Firings have global effect because they involve components at more than
one place in the net.

A transition in a PEPA net takes place whenever a transition of a PEPA compo-
nent can occur (either individually, or in cooperation with another component). Com-
ponents can only cooperate if they are resident in the same place in the net. The PEPA
net formalism does not allow components at different places in the net to cooperate
on a shared activity. An analogy is with message-passing distributed systems without
shared-memory where software components on the same host can exchange informa-
tion without incurring a communication overhead but software components on different
hosts cannot. Additionally we do not allow a firing to coincide with a transition which is
shared, i.e. it is not possible for two components in one place to cooperate and transfer
to another place as an atomic action. Thus transitions in a PEPA net have local effect
because they involve only components at one place in the net.

There are distinct alphabets for transitions and firings, meaning that the same action
type cannot be used for both. Thus there can be no ambiguity between them.

A PEPA net is made up of PEPA contexts, one at each place in the net. A context
consists of a number of static components (possibly zero) and a number of cells (at least
one). Like a memory location in an imperative program, a cell is a storage area to be
filled by a datum of a particular type. In particular in a PEPA net, a cell is a storage area
dedicated to storing a PEPA component. For example, if we consider the FileReader
introduced earlier, it might reside in a fixed location of the system and interact with any
files copied into its scope. This would be denoted

File[.] B FileReader
L

The components which fill cells can circulate as the tokens of the net. In contrast, the
static components cannot move. Most variants of Petri nets do not include static tokens,
the closest concept being “self loops” where a token is deleted from a place and then
immediately replaced. Here static components provide the infrastructure of the place
and act as cooperation partners in synchronisation activities with tokens. Contexts have
previously been used in both classical process algebras [20], and in the stochastic pro-
cess algebra PEPA [5].

We use the notation @[-] to denote a context which could be filled by the PEPA
component ) or one with the same alphabet. If ) has derivatives Q' and Q" only and
no other component has the same alphabet as ) then there are four possible values for
such a context: Q[-], Q[Q]. Q[Q'] and Q[Q"]. Q[-] enables no transitions. Q[Q] enables



the same transitions as Q). Q[Q’] enables the same transitions as @', etc. As usual with
PEPA components we require that the component has an ergodic definition so that it is
always possible to return to a state which one has previously reached.

We use capitalised names to denote PEPA components (such as P and @) and low-
ercase for PEPA transitions (such as a and b). We use bold capitalised names for places
(such as P; and P5) and bold lowercase for firings (such as a and b).

Note that the expression of the structural information contained in a PEPA net could
be represented by any transition-based modelling formalism. Indeed it would be pos-
sible to use a PEPA component to control the possible “firings” (macro-steps) of the
model. However, we feel that there are some advantages to using a Petri net in this role.
Firstly, using a different formalism gives a clearer separation of concerns within our
model making it both easier to construct and to understand. Furthermore, this macro-
level is often of a size that can benefit from graphical representation, to give an in-
tuitive understanding of the coarse structure of the model. Finally, the movement of
components—to a new host or context—has resonance with the systems we study.

Markings in a PEPA net The marking of a classical Petri net records the number of
tokens which are resident at each place in the net. Since the tokens of a classical Petri
net are indistinguishable it is sufficient to record their number and one could present
the marking of a Petri net with places Py, P, and P; as (P, : 2,P, : 1,P; : 0). If
an ordering is imposed on the places of the net a more compact representation of the
marking can be used. Place names are omitted and the marking can be written using

vector notation thus, (2, 1, 0).
Consider now a PEPA net with places P1, P2 and P3 as shown below.

P1[Q] Z Q[QI DI R
P2[Q] £ Q[QI DI S
P3[Q] = Q[Q] DI (Rl S)

KUL

From its use in the contexts at each place we see that @) is a component which can
move as a token around the net whereas R and S are static components which cannot
move. There is a copy of R at place Py and another at P3. There is a copy of S at
place P, and another at P3. Clearly the marking of a PEPA net needs to record the
current location of the tokens circulating in the net, and their current state. However,
this is not sufficient to establish the state of the system — the local state captured by
each place’s marking will also depend on the current state of the static components in
the place. Thus to identify these states we allow place definitions to specify a particular
state of each of the static components. Thus, in the example above, if S can evolve to

S' we can define P5[Q] = Q[Q] >J 5.

Net-level transitions in a PEPA net A labelling function £ is used to associate an
activity, consisting of an action type and a rate, (a, r), with each net level transition ¢.
Note that it is possible that £(¢;) = £(t;) but ¢; # ¢;. The first element of a pair (o, r)
specifies an activity which must be performed in order for a component to move from



the input place of the transition to the output place. The activity type records formally
the activity which must be performed if the transition is to fire. The second element
is an exponentially-distributed random variable which quantifies the rate at which the
activity can progress in conjunction with the component which is performing it. For a
firing to be enabled there must be a token in the input place of the net-level transition,
that token must enable the corresponding activity, and there must be an empty cell at
the output place of the transition of the correct token type.

As an example, suppose that Q) is a component which is currently at place P, and
that it can perform an activity « with rate r; to produce the derivative @)'. Further, say
that the net has a transition between Py and P, labelled by (a,rs2). If @ performs
activity « in this setting it will be removed from P, (leaving behind an empty cell)
and @' will be deposited into P (filling an empty cell there).

A priority function = maps action types to the natural numbers, and can be used to
eliminate some firings from the labelled multi-transition system: only enabled firings
with the highest priority value are considered eligible to fire. For example, suppose that
@ is a component which is currently at place Py and that it can perform activities of
types a, B and v where 7(a) = w(8) = 2 whereas 7(y) = 1. Further, suppose that
there are net transitions between Py and each of P5, P53 and P4 labelled by «, 5 and
~ respectively. Assuming that there are appropriate empty cells in all places, @@ may
perform activity . and be deposited in place P2, or activity 8 and be deposited in place
P but it cannot perform activity v and be deposited in place P4. Only if there are no
empty cells in places P, and P3 will activity -y become enabled.

Net structure of a PEPA net The class of nets that we currently use for modelling
the net structure of a PEPA net is restricted to structural state machines, i.e. nets whose
transitions can have only one input place and one output place! . This means that we
can represent conflicts at the net level, while synchronisations are not allowed. This is
consistent with the fact that PEPA components cannot cooperate on a shared activity
when they are resident in different places.

It is usual with coloured Petri nets to associate functions with arcs, offering a gener-
alisation of the usual, basic “functions” offered by arc multiplicities. In PEPA nets the
arc functions are implicit. The modification of a token which takes place when it is fired
is wholly specified by the action type of the firing, the definition of the token and the
semantics. Furthermore, although we allow multiple tokens within net places, only one
token can move at each firing. Thus arc multiplicities greater than one are not allowed.

Formal definition The introduction of contexts requires an extension to the syntax of
PEPA. This extension is presented in Figure 2.

We assume that there is a set .4 of PEPA action types which can be partitioned into
disjoint subsets Ay and .A; corresponding to firings and local transitions respectively.

Definition 1. APEPAnet Nisatuple N = (P,T,I1,0,¢,w,C, D, My) such that
— P is afinite set of places;

L This restriction has recently been relaxed by allowing more general net structures [10].



N:u=DtM (net)

(definitions and marking)

M == (Mp,...) (markingg D==I25 (component defn)
Mp ::=P[C,...] (place marking) | P[C] £ P[C] (place defn)
| P[C,..]= PlCIBAP (place defn)
(marking vectors) (identifier declarations)
S = (a,r).S  (prefix) P = Pl>§ P (cooperation) C =" (empty)
| S+S (choice) | P/L (hiding) | S (full)
| I (identifier) | PIC] (cell)
| I (identifier)
(sequential components) (concurrent components) (cell term expressions)

Fig. 2. The syntax of PEPA extended with contexts

— 7T is afinite set of net transitions;

— I:T — P isthe input function;

— O : T — P is the output function;

- £:T — (A, Rt U {T}) is the labelling function, which assigns a PEPA activity
((type, rate) pair) to each transition. The rate determines the negative exponential
distribution governing the delay associated with the transition;

m : Ay — Nis the priority function which assigns priorities (represented by natu-
ral numbers) to firing action types;

C : P — P is the place definition function which assigns a PEPA context, contain-
ing at least one cell, to each place;

D is the set of token component definitions;

M is the initial marking of the net.

PEPA nets are governed by the semantic rules for PEPA and few additional rules —
both sets are provided in the Appendix. Informally the new rules can be interpreted as
follows:

— The Cell rule defines that a cell which is filled by a component @) is able to make
the same transitions as () itself. There are no rules to infer transitions for an empty
cell because an empty cell enables no transitions.

— The Transition rule states that the net has local transitions which change only a
single component in the marking vector and that these transitions are exactly the
transitions generated by the PEPA semantics (including the extension for contexts).



— The Firing rule takes one marking of the net to another marking by performing a
PEPA activity and moving a PEPA component from the input place to the output
place. This has the effect that two entries in the marking vector change simulta-
neously. In order for a firing to take place it must be the case that the type of the
enabled firing has the highest priority level in the set of enabled firings. In other
words, for a firing to occur there must not be any other firing satisfying the En-
abling rule (empty destination cell) which has a higher priority.

— The Enabling rule determines when a transition is considered to be enabled. In
addition to ensuring that there is a valid token to fire we must also check that there
is an empty cell in the destination place into which the token can be transferred.
The Enabling rule ensures that this is the case, and defines a transition relation,
decorated with the priority level of the corresponding activity type. The rate at
which the activity is enabled is calculated as in the PEPA semantics of cooperation.

From the operational semantics a derivation graph and underlying CTMC can be
extracted from any PEPA net, and this is the basis on which performance analysis is
carried out.

The net bisimulation relation PEPA nets are equipped with an equivalence relation
called net bisimulation. This relation is important both in theory and in practice. In the
evolution of the state space of a model by our tool we only store states up to net bisim-
ulation, i.e. we carry out automatic aggregation over equivalent states. This provides a
dramatic reduction in the state space of the model under certain conditions.

Our relation is defined in the style of Larsen and Skou [19], based on a conditional
transition rate between markings. The conditional transition rate from marking M to
marking M' via action type «, denoted g(M, M', a), is the sum of the activity rates
labelling arcs connecting the corresponding nodes in the derivation graph which are
labelled by the action type «. The total conditional transition rate from a marking M
to a set of markings E is defined as

q[M,E,O[] = Z q(MJMIJQ)
M'eE

Definition 2. An equivalence relation over markings, R C M x M, is a net bisimu-
lation if whenever (M, M') € R then for all « € A and for all equivalence classes
Ee M/R,

qlM,E,a] = ¢[M', E, ]

3 Examples

3.1 A mobile agent system

We present a small example to reinforce the reader’s understanding of PEPA nets. In this
example a roving agent visits three sites. It interacts with static software components at
these sites and has two kinds of interactions. When visiting a site where a network probe
is present it interrogates the probe for the data gathered on recent patterns of network



traffic. When it returns to the central co-ordinating site it dumps the data which it has
harvested to the master probe. The master probe performs a computationally expensive
statistical analysis of the data. The structure of the system allows this computation to
be overlapped with the agent’s communication and data gathering. The marshalling and
unmarshalling costs for mobile code applications are a significant expense so overlap-
ping this with data processing allows some of this expense to be offset.

The structure of the application is as represented by the PEPA net in Figure 3. This
marking of the net shows the mobile agent resident at the central co-ordinating site. In
this example the activities which can cause a firing of the net are go and return.

(g07 Al) (g07 )\T)
- T1 7 T3
Py Ps @ P3
mEA M 7T
(return, y;) (return, pr)

Fig. 3. A simple mobile agent system

Formally, we define the places of the net as shown in the PEPA context definitions
below. We denote the local state of the context P, by P5. This local state is arrived at
when the static component Master has evolved to Master’.

P1[Agent] £ Agent[Agent] Probe

X
{interrogatey

Pa[Agent] & Agent[Agent] aster

>
(dampy M

P)[Agent] £ Agent[Agent] Master’

B
{dumps

P3[Agent] £ Agent[Agent] Probe

<
{interrogate;

The initial marking of the net is (P1[.], P2[Agent], P3[_]) The behaviour of the
components is given by the following PEPA definitions.

Agent £ (go, \).Agent’ Master £ (dump, T).Master’
Agent’ £ (interrogate, r;).Agent”  Master’ £ (analyse, r, ).Master
Agent” £ (return, u).Agent”’ Probe £ (monitor, r,,).Probe +
Agent” £ (dump, r4).Agent (interrogate, T).Probe

The derivation of the transition system underlying the model (Figure 4) gives us its
underlying CTMC. This CTMC is solved for its stationary distribution and performance
measures are calculated from that.



(P[], Po[Agent™], Py[—])

(P1[~ P3[Agent], P3[—])
[ J [ J [ J

(Pr[Aggnt"], P[], P5[~]) (Pr[=].\P3 (], Ps[Aggnt"))

(Pu[Agent’). P[], Py[-]) | (PL[-), P[], PalAgent’))
adpt”), P, Py i (B[] PalAgent], Py[-) B (BBl A PilAgent')
[ ] [ ] [ ] [ ] [ ]
(P1[Agent'], P[], Ps[-]) (Pi[=], P[], P3[Agent])
__return interrogate N
i . analyse
Global transitions Local transitions -~ --~~---- >

dump

Fig. 4. The transition system of the mobile agent example

3.2 Secure Web Service

Our second example is a model of a mobile object system where a client sends SOAP
message objects to a remote Web service. Our scenario is that a financial tycoon is
sending requests for stocks and share price information to a remote Web service which
provides this information. These requests for information are encrypted. An eavesdrop-
per could make use of the information in the messages if they were sent as clear text.
The Web service itself is protected by a firewall.

The token type The tokens exchanged in the system are SOAP messages in vari-
ous formats. These may either be sent across the network as clear text or encrypted to
preserve their contents. A SOAP message may be parsed to build an in-memory data
structure which can be read and modified as needed. This data structure is a DOM tree
(a Document Object Model tree).
SoapMessage & (sendgr, rsc).SentClearMessage + (encrypt, re).EncryptedMsg
+ (parse, rp).DOMtree

SentClearMessage £ (copyClear, T).SoapMessage

Encrypted messages can be decrypted to recover their initial contents or sent across the
network in encrypted form.

EncryptedMsg = (decrypt, rq)-SoapMessage + (sendenc, rse).SentEncMessage
SentEncMessage £ (copyEncrypted, T).EncryptedMsg



In both cases, we model the transmission of a SOAP message as a two-phase process,
separating the cost of making the decision to send (sendg|, sendenc) from the cost of
copying the bytes across the network (copyClear, copyEncrypted).

DOM trees may be read or modified. As an in-memory data structure they first must
be serialised (using the export activity) if they are to be sent across the network.

DOMtree = (read, rr).DOMtree + (modify, rm).DOMtree + (export, rx).SoapMessage

Static components SOAP message tokens of various forms are exchanged between
the places of the net. Static components at these places interact with the tokens. On the
client side is the user, making requests of the remote Web Service. The user encrypts
requests before they are sent and decrypts replies when they are received.

User = Encrypt 4+ Decrypt
Encrypt = (encrypt, T).(sendenc, T).User
Decrypt = (decrypt, T).(parse, T).(read, T).Request
Request = (modify, T).(export, T).User

Running on the firewall is a gatekeeper process which performs three distinct func-
tions: decrypting user requests, bouncing flawed requests and encrypting replies from
the server. The gatekeeper receives requests from the user and decrypts them. The de-
crypted message might be a well-formed request, in which case it is forwarded to the
server. Alternatively it might be in an invalid format, request a non-existent service, or
have suspicious attachments. In this case it is bounced back to the user with a diagnostic
error message attached. This decomposition of responsibilities means that the load on
the server is reduced.

All of the communication with the user is sent in encrypted format. Behind the
firewall the messages are exchanged in the clear. Thus sendenc always sends to the user
and send|, always sends to the server.

GateKeeper = Filterln 4+ Bounce + FilterOut
Filterin = (decrypt, T).(sendy,, T).GateKeeper
Bounce £ (decrypt, T).FilterOut
yp
FilterOut = (encrypt, T).(sendenc, T).GateKeeper

Behind the firewall the share price Web service runs on the server. Its life cycle is
parsing, reading, modifying, serialising and returning requests.

WebService £ (parse, T).(read, T).(modify, T).(export, T).(sendg|y, T).WebService
The PEPA net The PEPA net of the system sites the above static components at places

of the net and specifies the communication between different places of the net by nam-
ing the transitions which must be fired for tokens to move from place to place?. The

2 Note that for convenience we represent places as large rectangular boxes.



User is operating the client machine, the GateKeeper process runs on the firewall, the
WebService on the server behind the firewall.

Client side

User |>§ SoapMessage[ SoapMessage]

(copyEncrypted,rece) % # (copyEncrypted,rce)

GateKeeper DI_Q EncryptedMsg][_]

1 T
(copyClear,rce) I?l I;l (copyClear,ree)

WebService DI_Q SoapMessage]_]

Server side

The synchronisation set used at each place, L, is { decrypt, send,, parse, read, modify,
export, encrypt, sendenc }

4 Casestudy: MobilelP

In this section we present a larger case study of modelling with PEPA nets. Based on the
Internet protocol, Mobile IP is a standard protocol that makes user mobility transparent
to applications and higher level protocols like TCP. It allows a mobile node to freely
roam between network links and to remain always accessible. To achieve this the mobile
node uses two IP addresses: a home address which is statically assigned on its home
network and a care-of address which changes at each new point of attachment. On the
home network, a proxy known as a home agent is responsible for forwarding all packets
which are addressed to the mobile node on to its current care-of address.

Whenever the mobile node moves, it sends to its home agent a binding update mes-
sage containing its home address, its current care-of address and the lifetime for which
the binding should be honoured [16]. The home agent may refresh a binding cache entry
by regularly requesting the transmission of the latest care-of address.

When the mobile node receives, via its home agent, a packet from a correspondent, it
sends a binding update message to this correspondent. The correspondent may maintain
a binding cache allowing its transmit function to redirect the packets to the mobile
node’s current care-of address [16]. The mobile node maintains a list of all its current
correspondents and has to send them a binding update message each time it changes its
point of attachment. Figure 5 summarises the main steps of the Mobile IP protocol.

In this study we assume that the system is composed of N domain or network
hosts, besides the home network and the correspondent network. We assume that the
home agent sends requests to the mobile node to update the care-of address. Once the
correspondent has the care-of address, its transmit function redirects the packet to this
address, saving one network hop relative to the route through the home agent [16].



Mobile Node
T N
Correspond| 7 - ﬁ\\\ — ‘
= 4 N
1 // INTERNET | Foreign Agent
ﬁ\\\ 2 7
P 3 ~
N -/
7
Home Agent N~/

1 Correspondent sends IP packets addressed to the mobile node

2 Mobile Node sends the binding update message to the home agent

3 Home agent forwards the IP packets to the mobile node

4 Mobile Node sends the binding update message to the correspondent

5 Correspondent sends the following IP packets directly to the mobile node

Fig. 5. The Mobile IP Protocol

4.1 The PEPA net Model

The system is modelled using the PEPA net model depicted in Figure 6 where the
home network of the mobile node is represented using a place called HOME M. The
networks to which the mobile node may move are modelled by places DOMAIN;
wherei =1,..., N.Place HOME_C models the home network of the mobile node’s
correspondent.

Note that for the sake of readability in Figure 6 the rates of the activities labelling
the firings are omitted. Moreover only the arcs between DOMAIN; and HOME_M on
one hand, and HOME _C on the other, are depicted. The arcs between the other domains
and HOME_M and HOME_C are analogous.

To model the part of the protocol which manages the interaction between the home
agent and the mobile node during its stay in place DOMAIN;, we use two components
ProtoMA and CommuMA. Similarly, components ProtoMC and CommuMC are used to
model the protocol interactions between the mobile node and the correspondent, and
ProtoAC and CommuAC for the exchanges between the home agent and the correspon-
dent. Components Mobile, Agent and Corresp model the behaviour of the mobile node,
the home agent and the current correspondent of the mobile node respectively. In con-
trast to Mobile, the last two components are static. All these components and places are
explained in detail in the following.

Component ProtoMA; models the protocol part which consists of updating the care-of
address at the home agent level. When the mobile node changes its point of attachment,
it generates a binding update message, action generatey, 5. Here, the rate associated
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Fig. 6. The PEPA net model

with this action is unspecified since ProtoMA does not generate this message, but has
just to transmit it. This is modelled using the firing action transmity, ;4 with rate r;.
Once component ProtoMA is in HOME _M, it allows the home agent to update the care-
of address using the synchronizing action updateA with rate A. A ProtoMA; component
is associated with each place DOMAIN;,i =1,...,N.

ProtoMA; £ (generatey 5, T).(transmityy 5, 71).ProtoMA;;

ProtoMA;; = (updateA, \).(return;, r5).ProtoMA;

Component CommuMA; allows us to model the exchanges between the home agent
and the mobile node once the binding update message has been received by the home



agent. Once the communication is established (via newSessionA), the home agent will
either generate a packet or an update request to be forwarded to the mobile node using
firing action forwardApkt_i or forwardArqt_i. Back in place DOMAIN;, CommuMA;
delivers the packet (deliverApkt) or the request (deliverArqt) to the mobile node. The
delivery may fail if the mobile node has already migrated somewhere else or just re-
turned to its home network. Component CommuMA,; is associated with place DOMAIN;.
Formally, the behaviour of this component is as follows.

CommuMA,; £ (newSessionA, T).(openA, a1 ).CommuMA;q
CommuMA;, = (generateApkt, T).(forwardApkt_i, asz).CommuMA;;
+ (generateArg, T).(forwardArqt_i, as).CommuMA;4
+ (close;, az).CommuMA;

CommuMA;, £ (deliverApkt,pl).CommuMAig + (fail, u2).CommuMA,;

CommuMA;; £ (return, a4).CommuMA;o

CommuMA;4 = (deliverArqt, u13).CommuMA;; + (fail, p14).CommuMA;3

Component ProtoMC; models the protocol part which consists of updating the care-
of address at the correspondent level. Once the binding update message is generated, it
is forwarded to the correspondent using firing activity transmity, .. Then it allows the
home agent to update the care-of address using the synchronizing action updateC with
rate A;.

ProtoMC; £ (generatep ¢, T).(transmitp, ¢, r3).ProtoMC;;
ProtoMC;; = (updateC, Ay ).(return;, 74 ).ProtoMC;

Component CommuMC; allows us to model the effective exchanges between the mo-
bile node and the correspondent. Once the communication is established (newSessionC)
by the mobile node, the correspondent may either generate a packet or an update re-
quest that will be forwarded using firing transition forwardCp j or forwardCyq; j
respectively. The delivery may succeed or fail if the mobile has already moved. In
the first case, the mobile node may either stay silent (silent) or generate a packet
(generateMpkt) which is forwarded, using firing transition forwardekt, to the cor-
respondent. The communication is considered finished when transition close; is fired
at the correspondent level. A component CommuMC; is associated with each place
DOMAIN;, i =1,...,N.

CommuMC; = (newSessionC, T).(openC, 3;).CommuMCio
CommuMC;p = (generateCMpkt, T).(forwardekt_i’Ba).CommuMC,-l

+(generateCMqt, T).(for\Nardert_i, B5).CommuMC,y
+(close;, B2).CommuMC;



CommuMC;; = (deliverCpyt, v1)-CommuMCis + (fail, vz).CommuMCys

CommuMC;y £ (generateMpkt, T).(forwardekt, B4).CommuMC;3
+(silent, v3).CommuMC;s

def

CommuMCis deliverMp;, v4).CommuMCiq

def

(
CommuMC;4 = (deliverC,.;, vs).CommuMC;s + (fail, vg).CommuMCs
CommuMC;s = (return, 8g).CommuMC;g

Component ProtoAC models the case where the mobile node returns to its home net-
work and has to send a binding update message to its current correspondent. This com-
ponent is associated with place HOME _M and returns to it once the care-of address has
been updated at the correspondent level using activity updateCh with rate A».

ProtoAC £ (generateHp ¢, T).(transmity ¢, 75).ProtoAC,
ProtoAC; = (updateCh, X;).(return, rg).ProtoAC

Component CommuAC models the communication between the correspondent and
the home agent if the mobile node has left its home network or with the mobile node
itself if not. It is associated with place HOME _C and forwards the packets generated
by the correspondent to the mobile node in its home network. This is modelled using
the firing action forwardekt with rate ~;. If the mobile node is present, the packets
are delivered to it with action deliveGCkt. Component CommuAC then forwards the
packets generated by the mobile node to the correspondent. This is done with the fir-
ing action forwardekt with rate ~,. If the mobile node is not in its home network,
the correspondent’s packets are saved (saveCpkt) by the home agent and component
CommuAC goes back to HOME_C using firing action return at rate ~ys.

CommuAC = (generateCApkt, T).(forwardekt, ~1).CommuAC,
CommuAC; £ (deliveGCkt,wl).CommuAcz + (saveCpkt,wQ).CommuAC4
= (

[e!

CommuAC, = generateMpkt,w3).(for\Nardekt,72).C0mmuAC3
+(silent, wy).CommuAC,
CommuAC; £ (deliverMhyy¢, ws).CommuAC

CommuAC, = (return, ~;).CommuAC

Component Mobile models the behaviour of the mobile node whatever its current
point of attachment. It may generate packets, receive packets or simply choose to move
to another network, modelled using actions genemteMpkt, deliveGCkt and migrate;
respectively. When the mobile node changes its point of attachment, it first generates
a binding update message for its home agent with action generatey 5 at rate 7 and
then opens a new communication session (newSessionA). It may then receive from



its home agent either an update request (deliver Arqt) or a correspondent’s packet
(deliverApkt). In this last case, it generates a binding update message for the cor-
respondent with action generatey . at rate 73 and establishes a new communication
session (newSessionC). In network 4, the mobile node may stay in the current network
or, with probability p;, move to another network j with firing action migrate;, j # .
It may also return to its home network with the firing action returny,.

Mobile = (generateMpkt,n).Mobile + (delivercpkt, T).Mobile

N
+ Z(migratei,pi x 01).Mobile;
i=1
Mobile; = (generatey 4, 72).(newSessionA, s1).Mobile,
Mobile, = (deliverApkt, T)-Mobile; + (deliverArqgt, T).Mobile; + (returny, d2).Mobile
Mobiles = (generateyy ¢, 73).(newSessionC, sz ).Mobiley
Mobiley = (deliverArqt, T).Mobile7 + (deliverApkt, T).Mobiley

+(deliverCrqt, T).Mobiles + (deliveGCkt7 T).Mobiley
+(generateMpkt, 74).Mobiles + (returny,, d2).Mobiles

+ i (migrate;, p; x d5).Mobileg
i=1/i#i
Mobiles = (generatehy,,c, 75).Mobile
Mobileg = (generateyy 5, 76) - (NewSessionA, sq ).Mobiles
Mobile; = (generatey, 5, 77).Mobile,
Mobiles = (generatey,,c, 73)-Mobile,

Component Agent models the home agent’s behaviour. It is given by the following
PEPA equations:

def

Agent = (updateA, T).Agent, + (saveCpkt, T).Agent,
Agent, = (saveCpkt, T).Agent, + (generateArgt, »1).Agent; + (updateA, T).Agent,
Agent, = (generateApkt, v9).Agent, + (updateA, T).Agent, + (saveCpkt, T).Agent,

def

Agent; = saveCpkt, T).Agent, + (updateA, T).Agent,

Component Corresp models the behaviour of a correspondent of the mobile node. It
may generate packets to send to the mobile node in its home network (generateCApkt)

and receive packets from the mobile node when it is still there (deliverMhpkt). It may
also receive a binding update message from the mobile node (updateC). In this case, the



correspondent may generate packets (generateCMpkt) or update requests (generateCArqt)
to send to the mobile node in its current attachment point. Action type updateCh models

the case where the correspondent receives a binding update message from the mobile
node back in its home network.
Corresp = (generateCApkt, c1)-Corresp + (deliverMhpkt, T).Corresp
+(updateC, T).Corresp,
Corresp, = (generateCMpkt,c2).Corresp1 + (generateCMq, cs).Corresp,
+(de|iverMpkt, T).Corresp; + (updateC, T).Corresp,
+(updateCh, T).Corresp

The Places The places of the PEPA net are defined as follows:

HOMEM % (ProtoAC[ProtoAC] D (Mobile[MobiIe] D (CommuAC[_] >
3

((CommuMA1 L1 ..1. | CommuMAN[.]) % (Agent [%?
(ProtoMA1[-] || ... || ProtoMAN[-]))))))

HOME C £ ((((ProtoAC] ] B Corresp) B (CommuMCy[ ] | ... || CommuMCy[.]))
B4 (ProtoMCy[_] || ... || ProtoMCy [_])) %? CommuAC[CommuAC])

Lg

DOMAIN; £ ((( (ProtomA;[ProtoMA;] b1 Mobile{_]) I CommuMA; [CommuMA,])
Lio Li1
LD(] ProtoMCi[ProtoMC¢]> IL>Q CommuMC; [CommuMCi])
12 13

where s = 1... N and the synchronizing sets are defined as follows

Ly = {generateHp ¢} L; = {deliverMpkt, generateCMpkt, generateCMyqt }
L, = {deliveGCkt, generaIeMpkt} Ls = {updateC}

Ly = {savecpkt} Ly = {generaIeCApkt, deliverMhpkt}

Ly = {generateApkt, generateArqr} Lio = {generatey a}

L5 = {updateA} L;; = {newSessionA, deliverApkt, deliverArqt }

Lg = {updateCh} L1> = {generateyy - }

Ly3 = {newSessionC, generateM pkts deliveGCkt, deliverCrqt }

5 Tool Support

The PEPA stochastic process algebra is supported by a range of tools including the
PEPA Workbench [9] and the Mobius Modelling Framework [6]. We have implemented
the PEPA nets formalism as an extension of the PEPA Workbench. The PEPA modelling
tools, together with user documentation, papers and examples are available from the
PEPA Web page which is located at ht t p: / / ww. dcs. ed. ac. uk/ pepa.



We have provided tool support for PEPA nets in two forms. The PEPA Workbench
for PEPA nets is a dedicated tool which can be used to generate the Markov process
underlying a PEPA net in a format suitable for solution by a number of solvers. In con-
trast, the PEPA net compiler allows the existing tool support for PEPA to be exploited
by translating a PEPA net model into an equivalent PEPA model [10]. For example, this
gives us the ability to use the PRISM probabilistic symbolic model checker [18] which
has been extended to support PEPA.

PEPA Wor kbench for PEPA Nets Version 0.83 "Hanover Street"
Conpi | i ng the nodel

Generating the derivation graph

The nodel has 982740 states

The nodel has 2059174 transitions

The nodel has 3379038 firings

Witing the hash table file to nodel | Pv6NAL. hash

Exi ti ng PEPA Wor kbench.

Fig. 7. The PEPA Workbench for PEPA nets processing the MobilelP example

The input language of the tool is an extension of the concrete syntax used for storing
PEPA language models. The topology of the net is specified by providing a textual
description of the places and the arcs connecting them. The use of the PEPA Workbench
for PEPA nets is illustrated in Figure 7.

6 Rdated work

Stochastic Petri nets and stochastic process algebras have complementary strengths. A
comparison of the two formalisms [7] concludes that “there is scope for future work
incorporating the attractive characteristics of the formalisms ... from one paradigm into
the other”. Some work has been done in this area in beginning to develop a structural
theory for process algebras [11] on the one hand and in importing composition oper-
ations from stochastic process algebras into net formalisms on the other [23, 15, 13].
In contrast the work on PEPA nets aims to use both Petri nets and process algebras
together as a single, structured performance modelling formalism.

Complementary to own work is Valk’s work on Elementary Object Systems [24].
In this work an extension of Petri nets is presented in which the tokens circulating in
the net structure (called the System net) are themselves Petri nets (termed Object nets).
Object nets move like ordinary tokens and they can change their markings but not their
structure. Three different types of transitions are defined. Transitions occurring in the
Obiject net (i.e. in the marking) are called system autonomous and represent the object
internal behaviour. An interaction takes places when both the Object and the System
net enable transitions with the same attached label. A third type of transition causes a
change in the System net only and it is called transport. In PEPA nets we do not allow
such transitions, since a firing cannot occur without modifying the state of a component.



Despite the superficial similarities there are some quite strong differences between
the work on PEPA nets and that on Elementary Object Systems (EOS). Fundamentally,
EOS are without any timing considerations, other than the relative timing imposed by
the Petri net causality relation. In PEPA nets, in addition to this implicit timing infor-
mation we have explicit time delays integrated into behaviour at both the net level and
the token level. Moreover the origins of the works are distinct. Valk’s work is moti-
vated by a desire to provide a fundamental model of object-oriented programming, and
the development of EOS has been strongly influenced by this goal. Our motivation has
been to develop a convenient high-level modelling language for Markov processes, for
systems exhibiting mobility. Recent work by Kohler et al. has examined the possibility
of using Object Systems for modelling mobility and mobile agents [17].

Several process calculi have been developed specifically for modelling mobile com-
putation, primarily for the purpose of functional verification, the most notable being the
m-calculus [21] and the calculus of mobile ambients [3]. The m-calculus, and Priami’s
subsequent extension, the stochastic w-calculus [22], have a very different style of rep-
resenting systems [2], which does not satisfy our criterion of clearly separating state
changes into distinct types related, in the case of mobile computation, to concepts of
location and mobility. In this respect our formalism is closer to the work on mobile
ambients.

The calculus of mobile ambients is intended to capture notion of locations, mobility
and authority for movement. This is achieved by introducing the concept of ambient,
i.e. a bounded place where computation happens. Ambients can be nested into other
ambients and can be moved as a whole. Mobility primitives are provided by consider-
ing capabilities: it is possible to enter into another ambient, to exit from an ambient, to
open an ambient. Processes are executed within ambients and a simple asynchronous
communication mechanism that works within a single ambient is chosen. Communica-
tion across ambients is modelled as the movement of ‘messenger’ agents that must cross
ambient boundaries. (This is similar in style to our own representation of the Mobile IP
protocol.) The most pronounced differences between PEPA nets and the ambient cal-
culus are the lack of timing information in the ambient calculus and the ability to nest
ambients which gives a hierarchical structure to locations which cannot be matched by
the places in PEPA nets.

7 Conclusions

In this tutorial we have introduced the PEPA nets modelling language and focussed on
the use of PEPA nets as a performance modelling formalism tailored for systems with
inherent mobility. We have applied the PEPA nets modelling language to modelling
examples of mobile agent systems where the agents in the system are mobile objects
under a discipline of dynamic binding of names. We have also used PEPA nets to build
larger case studies of mobile system protocols such as MobilelP.

We have implemented a tool set to explore PEPA net models and to generate the
corresponding continuous-time Markov chain representation of the model. These can be
solved by standard numerical procedures for solving continuous-time Markov chains.
Future work remains to investigate efficient state-space generation procedures for PEPA



nets and efficient solution techniques for the generated models. Both of these pro-
grammes of work will take advantage of the hierarchical structure of a PEPA net as
a network of PEPA models.
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A  Semantics of PEPA

The semantic rules, in the structured operational style, are presented in Figure 8; the
interested reader is referred to [14] for more details. The rules are read as follows: if the
transition(s) above the inference line can be inferred, then we can infer the transition
below the line. The notation r,,(E) which is used in the third cooperation rule denotes
the apparent rate of a in E.

A.1 Additional semantic rules for PEPA nets

For any token component its action type set can be partitioned in distinct subsets corre-
sponding to transitions and firings respectively. Thus for a component @, A;(Q) is the
set of local transitions currently enabled in @ and A¢(Q) is the set of firings currently
enabled for Q.
We use the notation
(e, 1)
Pl —)I]—) P2
to capture the information that there is a transition connecting place P, to place P,
labelled by («,r). This relation captures static information about the structure of the
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Fig. 8. The operational semantics of PEPA

net, not dynamic information about its behaviour. The semantic rules for PEPA nets are
those for PEPA plus the additional rules presented in Figure 9;

The Cell rule conservatively extends the PEPA semantics to define that a cell which
is filled by a component ) has the same transitions as @ itself. A healthiness condition
on the rule (a typing judgement) requires a context ¢)[-] to be filled with a component
which has the same alphabet as Q. We write Q =, Q' to state that @ and @’ have
the same alphabet. There are no rules to infer transitions for an empty cell because an
empty cell enables no transitions.

The Transition rule states that the net has local transitions which change only a
single component in the marking vector. This rule also states that these transitions agree
with the transitions which are generated by the PEPA semantics (including the extension
for contexts). Recall that the transition and firing alphabets are distinct. We do not give
priority to one alphabet of actions over the other; the highest-priority firings and the
transitions compete based on a race policy.



The Firing rule takes one marking of the net to another by performing a PEPA
activity and moving a PEPA component from the input place to the output place. This
has the effect that two entries in the marking vector change simultaneously. In order to
take account of the priorities we define a number of supplementary transition relations,
one for each priority level. A net level transition’s eligibility for firing depends on two
conditions. Firstly there must be an empty cell in the destination place into which the
token can be transferred. The Enabling rule ensures that this is the case, and defines a
transition relation, decorated with the priority level of the corresponding activity type.
The rate at which the activity is enabled is calculated as in the PEPA semantics of
cooperation. In order for a firing to take place it must also be the case that the type of
the enabled firing has the highest priority level in the set of the enabled firings. This
is imposed by the Firing rule in which we discard those enabled firings which do not
have the highest priority. In other words for a firing to occur there must not be any other
firing satisfying the Enabling rule (empty destination cell) which has a higher priority.

Cdl:
QI (o, 7) QII

) (Q =a Ql)
QR — Q[Q”]

Transition:
(e, 1)

MP—>MIID

@n (a € At)

(...Mp,...) — (..., Mp,...)
Enabling:

(o, 71) , p (o, 72) p
S (a € Ap)
(.., Pi[.., Q, ..], .y Pj[.., — ..], ) —n(a) (.., Pi[.., - ..], . Pj[.., Q', ..], )

Firing:

(e, 7) , (8,8) "
M —, M M—,, M

(@, 7)

M — M’

Fig. 9. Additional semantic rules for PEPA nets





