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Abstract. This paper focuses on notions for the security of digital sig-
nature schemes whose resistance against forgery is not dependent on
unproven computational assumptions. We establish successfully a sound
and strong notion for such signature schemes. We arrive at the sound
notion by examining carefully the more established security notions for
digital signatures based on public-key cryptography, and taking into ac-
count desirable requirements of signature schemes in the unconditional
security setting. We also reveal an interesting relation among relevant
security notions which have appeared in the unconditionally setting,
and significantly, prove that our new security notion is the strongest
among all those for unconditionally secure authentication and signature
schemes known to date. Furthermore, we show that our security notion
encompasses that for public-key signature schemes, namely, existential
unforgeability under adaptive chosen-message attack. Finally we propose
a construction method for signature schemes that are provably secure in
our strong security notion.

1 Introduction

In this paper, we address security notions for signature schemes that do not
depend on any computational assumption.

Since the discovery of public-key cryptography [10], significant advances have
been reported on digital signature schemes [21][11]. Although it is shown in
[10] that a trapdoor function allows to create digital signature schemes in the
public-key setting, a number of technical problems arise if digital signatures are
implemented using a general trapdoor function as suggested in [10]. Thus it is
important to have a formal notion of what a secure digital signature scheme is,
and to construct a digital signature scheme which can be proven to be secure
in the formal notion. The current standard security notion was established by
Goldwasser, Micali and Rivest [14]. In the same paper the authors also demon-
strated the first digital signature scheme that was proven to be secure against
a very general attack, called adaptive chosen message attack. Since then, many
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provable secure digital signature schemes have been proposed by researchers
[2][23][7][12][1].

These schemes and the infrastructure within which they operate have a limi-
tation in that their underlying security relies on the presumed computational
difficulty of certain number-theoretic problems such as the integer factoring
problem and the (elliptic curve) discrete logarithm problem. Thus should fu-
ture progress in computers as well as discoveries of revolutionary algorithms
make it computationally feasible to solve larger size number-theoretic problems,
such a presumption would not be able to assure the security of current digital
signatures. This situation is disturbing considering that there are many cases
where documents, such as court and government records, long-term leases and
contracts, are required by law to be kept intact for a long period of time, say
over 50 years.

In attempting to solve this problem, researchers have introduced uncondi-
tionally secure digital signature schemes and authentication codes which do not
rely on any unproven assumption such as the discrete logarithm problem. Like
many other areas in security, there is clearly a need to identify a kind of bench-
marks that one can employ to analyze and compare various signature schemes
in the unconditional security setting. A major contribution of this research is to
establish a strong security notion for all digital signature schemes including un-
conditionally secure ones. Additionally, we will show a concrete construction of
unconditionally secure digital signature schemes which satisfies the requirements
of the strong security notion.

Let us briefly survey existing unconditionally secure schemes. The first uncon-
ditionally secure signature was proposed by Chaum and Roijakkers [5]. There
have been many attempts to enhance conventional unconditionally secure au-
thentication codes [13][27] with extra security-properties that are required by
signature schemes. Major extensions of conventional authentication codes in-
clude the so-called A2-codes [28][29][19][20][18], A3-codes [3][8][30][17][18][31]
and multi-receiver authentication codes (with dynamic senders) [9][24][25][26][18].
Recently, the first unconditionally secure signature scheme that admits provably
secure transfer of signatures has been proposed in [15]. These schemes, how-
ever, have all been proven to be secure against some specific attacks. This raises
a number of interesting questions: what are other possible attacks? More im-
portantly, are these signature schemes secure against other yet to be identified
attacks?

As mentioned earlier, the focus of this research is to establish a strong security
notion for signature schemes whose security does not depend on any computa-
tional assumption. It is discussed by taking into account the security notions for
public-key signature schemes and additional requirements for signature schemes
in the unconditional security setting. Furthermore we examine relations among
all the security notions which have been proposed in the context of uncondi-
tionally secure signature schemes. It turns out that our security notion is the
strongest among all the security notions for unconditionally secure authenti-
cation and signature schemes known so far, and it encompasses the security
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notion for public-key signature schemes, namely existential unforgeability under
adaptive chosen-message attack. Finally we propose a construction method for
signature schemes that are secure in our strong security notion.

2 Approaches to the Notion of Unconditional Security

2.1 Discussion

In this section, we consider how unconditionally secure signature schemes should
be defined. By unconditionally secure one generally means that security must not
depend on any computational assumption. To address the question, there are two
issues to be discussed. The first is how to establish a proper model for signature
schemes, and the second is to define, in a formal way, unconditional security
notion in that model.

When introducing a model for unconditionally secure signature schemes, care
should be taken so that properties of public-key signature schemes are captured.
In addition, the model should be as simple as possible.

We start with the following typical model for signature schemes.

Definition 1 A signature scheme Π = (Gen, Sig, V er) consists of a key gen-
eration algorithm, Gen, a signing algorithm, Sig, and a verification algorithm,
V er.

1. Key Generation: The key generation algorithm outputs a signing-key x
for a signer and a verification-key y for a verifier, respectively.

2. Signature Generation: For a message m, the signer creates a signature
a := Sig(x,m) using his signing key x. The pair (m, a) is a resultant signed
message.

3. Verification: The verifier checks whether (m, a) is created by the signer us-
ing his verification key. More precisely, the verifier accepts it as having origi-
nated from the signer if V er(y,m, a) = true, and rejects it if V er(y,m, a) =
false.

Definition 2 Let x be a signing-key of a signer. A signed message (m, a) is said
to be valid if a = Sig(x,m). Likewise, a signature a of a message m is said to be
valid if a = Sig(x,m). Otherwise, (m, a) is said to be invalid.

To simplify our discussions, we consider a model of signature schemes in
which there are a single signer S and multiple verifiers V1, V2, . . .. We wish a
signature scheme to fulfill the following requirement.

Requirement 1

1. Verifiability: Any verifier can non-interactively check whether a signed mes-
sage received from a signer is valid with his own verification-algorithm. In
other words, he can check the validity of a received signed message without
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communicating with others after receiving the signed message. More pre-
cisely, for any verifier V with his verification-key y, (m, a) is regarded as a
valid signed message if and only if V er(y,m, a) = true. In other words, if
(m, a) is valid, V er(y,m, a) = true; and if (m, a) is invalid, V er(y,m, a) =
false.

2. Resolution for Dispute by a Third Party: If a dispute occurs among users, a
third party (called an arbiter) can resolve the dispute in a reasonable way:
The third party has his own verification-key, and he resolves a dispute among
users following the resolution-rule below.
– Resolution-Rule: Let T be the third party and yT be his verification-key.
If a signer S denies the fact that he has created a signed message (m, a)
held by a verifier V , then V should be able to present (m, a) to T . T
rules in favor of V if V er(yT ,m, a, ) = true and in favor of S otherwise.

Here, we assume that the third party honestly follows the resolution-rule
and honestly outputs its result when a dispute occurs. However, we assume
that the third party is not always fully trusted. Namely, we assume that the
third party might forge a signature.

3. Security (unforgeability): It is infeasible for any adversary to forge a signa-
ture. Here, we assume that not only a verifier may be dishonest but also the
signer and a third party may be dishonest. Each of them may become an
adversary who may wish to forge a signature.

The level of security we require will be discussed in greater details in Section 2.2.
Requirement 1 can be relaxed in such a way that a small error probability is

allowed.

Requirement 2 Verifiability and Resolution for Disputes by a Third Party in
Requirement 1 can be relaxed as follows:

1. Verifiability: For any verifier V with his verification-key y, if (m, a) is valid,
the verifier always accepts it (i.e. V er(y,m, a) = true); and if (m, a) is
invalid, the probability that the verifier erroneously accepts it is at most ε1,
where ε1 is a very small quantity.

2. Resolution for Disputes by a Third Party: If a dispute between a signer
and a verifier occurs, the resolution-rule in Requirement 1 is applied. How-
ever, we admit the following: If (m, a) is valid, T always accepts it (i.e.
V er(yT ,m, a, ) = true); and if (m, a) is invalid, the probability that T erro-
neously accepts it is at most ε2, where ε2 is a very small quantity.

In a digital signature scheme based on public-key cryptography, a verification-
key for a verifier can be public and shared among all verifiers. The following
theorem indicates that such a signature scheme cannot be secure against an
adversary with unlimited computing power.

Theorem 1 Consider a signature scheme which satisfies Requirement 1. If it is
infeasible for an adversary with unlimited computing power to succeed in forging
a signature, then the verification-key for each verifier must be kept secret from all
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other verifiers. Similarly, consider a signature scheme which satisfies Require-
ment 2 with εi �= 0 (i = 1, 2). If it is infeasible for an adversary with unlimited
computing power to succeed in forging a signature, then the verification-key for
each verifier must be kept secret not only from all other verifiers but also from a
signer.

A proof for the above theorem will be provided in the full version of this
paper.

A consequence of Theorem 1 is that with a signature scheme that allows
an adversary to have unlimited computing power, its key generation algorithm
must generate verification-keys for all verifiers, and more importantly, distribute
the verification-keys to verifiers separately in a secure way. For this reason we
have to assume that the number of verifiers is limited. This is in contrast with a
public-key signature scheme in which a single public verification-key is adequate
and there is no limit placed on the number of verifiers.

To further simplify our discussions, we introduce into our model a trusted
authority, denoted by TA. The roles of TA are to generate a signing-key and
verification-keys by using a key generation algorithm, and to distribute the
signing-key to the signer and verification-keys to each verifier, in a secure way.

2.2 Unforgeability

We now discuss security notions in our signature model. Let U :={S,V1,V2, . . . ,Vn}
be a set of users, where S is a signer and Vi (1 ≤ i ≤ n) are verifiers.

We note that the signer has information-theoretic advantage over other ver-
ifiers since the signing-key is secret information known only to the signer. We
also note that each verifier has information-theoretic advantage over other users,
since his verification-key is secret information known only to the verifier. From
these facts it follows that we should take into account not only the secrecy of the
signer’s signing-key but also the secrecy of each verifier’s verification-key. This
is different from public-key signature schemes in which we need not to consider
information-theoretic advantages of a verifier.

On the secrecy of the signer’s signing-key, the following security notion can be
considered, in conjunction with security notions for public-key signature schemes
[14]:

Definition 3 (Forgery and Attacks against a Signer)[14]: Consider an adversary
who can be either a dishonest verifier or an outsider in our model.

– Types of Forgery:
1. Total Break: An adversary is able either to extract the signing key, or to

find an efficient signing algorithm that is functionally equivalent to the
signing algorithm equipped with the genuine signing key.

2. Selective Forgery: An adversary is able to create a valid signature for a
particular message or a class of messages chosen a priori.

3. Existential Forgery: An adversary is able to forge a valid signed message
that signer has not created, but the adversary has little or no control
over which message will be the target.
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– Types of Attacks:
1. Key-Only Attack: If a dishonest receiver is an adversary, the only key

information he knows is the information on his verification-key. If an
outsider is an adversary, he knows no secret key information, other than
publicly available information on the scheme.

2. Message Attacks: An adversary is able to examine signatures correspond-
ing either to known or chosen messages. Message attacks can be further
subdivided into three classes:
(a) Known-Message Attack: An adversary has valid signatures for a set

of messages which are known to the adversary but not chosen by
him.

(b) Chosen-Message Attack: An adversary obtains valid signatures from
a chosen list of messages before attempting to forge another signed
message.

(c) Adaptive Chosen-Message Attack: An adversary is allowed to use
the signer as an oracle; the adversary may request signatures of mes-
sages which may depend on the signer’s signing key and previously
obtained signed messages. That is, at any time the adversary can
query the signer with messages chosen at his will, except for the
target message.

The strongest signature scheme is one that is secure against existential forgery
under adaptive chosen message attack.

Next we consider the secrecy of a verifier’s verification-key.

Definition 4 (Forgery and Attacks against a Verifier): Let V be a verifier. In
the following, an adversary means a dishonest signer, a dishonest verifier, or an
outsider in our model.

– Types of Forgery:
1. Total Acceptance Forgery for V : An adversary is able either to compute

the verification-key information of the verifier V , or find an efficient
verification algorithm that is functionally equivalent to the verification
algorithm equipped with the genuine verification-key.

2. Selective Acceptance Forgery for V : An adversary is able to make a sig-
nature, which will be accepted by V , for a particular message or a class
of messages chosen a priori.

3. Existential Acceptance Forgery for V : An adversary is able to make a
signed message that has not been created by the signer but will be ac-
cepted by V . The adversary has little or no control over which signed
message will be targeted.

– Types of Attacks:
1. Key-Only Attack: The only key information which an adversary knows is

the adversary’s secret key. In a case that the adversary is a signer in our
model, the only key information available to him is that of his signing
key. Otherwise if the adversary is a verifier, the only key information
known to him is that of his verification-key.
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2. Signature Attacks for V : An adversary is able to examine verification re-
sults of V corresponding either to known or chosen signatures. Signature
attacks can be further subdivided into three classes:
(a) Known-Signature Attack for V : An adversary has some signed mes-

sages and he knows whether these will be accepted by the verifier V
or not. However, these are not chosen by him.

(b) Chosen-Signature Attack for V : An adversary obtains some signed
messages whose verification results (i.e. the results whether these are
accepted or not by V ) are known to him. These are chosen before
attempting to forge a signed message.

(c) Adaptive Chosen-Signature Attack for V : An adversary is allowed
to use the verifier V as an oracle; the adversary may request for
an answer as to whether a signed message will be accepted by V .
The signed message may be dependent on V ’s verification-key and
verification-results obtained previously from V . That is, at any time
the adversary can query the verifier with any signed messages, except
for the target.

Finally, some clarifications on the types of forgery and attacks on verifiers
follow.

Definition 5 (Forgery Range among Verifiers)

1. Forgery for All Verifiers: An adversary can forge a signature for all verifiers.
2. Forgery for Selective Verifiers: An adversary can forge a signature for a

particular verifier selected by the adversary.
3. Forgery for Existential Verifiers: An adversary can forge a signature for a

verifier, but the adversary has little or no control over which verifier will be
the victim.

The above discussions suggest that a strong security notion be considered
along the following line: Under adaptive chosen-message and adaptive chosen-
signature attacks, it is infeasible for an adversary to succeed in not only exis-
tential forgery but also existential acceptance forgery against any verifier. The
following theorem whose proof is straightforward is helpful, as it shows that it
will be sufficient to consider only existential acceptance forgery, rather than both
existential forgery and existential acceptance forgery.

Theorem 2 Let Π be a signature scheme. If Π is existentially acceptance un-
forgeable for any verifier under adaptive chosen-message and adaptive chosen-
signature attacks, then it is also existentially unforgeable under adaptive chosen-
message and adaptive chosen-signature attacks.

Based on Theorem 2, we can define a strong security notion as follows:

Definition 6 (Strong Security) Let Π be a signature scheme. Then Π is called
secure if it is existential acceptance unforgeable for any verifier under adaptive
chosen-message and adaptive chosen-signature attacks.
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2.3 Some Remarks on Security Notions

In this subsection we consider some conditions that should be met when dis-
cussing security notions for signature schemes in unconditional security setting.

– The security parameter: In signature schemes with computational secu-
rity in public-key cryptography, the security parameter is introduced to gov-
ern the overall security of a scheme, the length and number of messages, and
the running time of algorithms. Similarly, a security parameter k for uncon-
ditional secure signature schemes can be defined. This parameter determines
the overall security, the key-length of signing-keys and that of verification-
keys, the length of messages and that of signatures, and the running time of
algorithms.

– The number of colluders: There may exist dishonest users, and some
dishonest users might collude in order to succeed in forgery. In this paper we
adopt the idea of threshold schemes. Namely, we assume that there exists
at most ω colluders among the users U = {S, V1, V2, . . . , Vn}. In discussing
signature schemes with unconditional security, at least from a theoretical
viewpoint, introducing the pre-defined number of colluders does not pose
a problem in practice when compared with digital signature schemes with
computational security, because even in the latter case at most polynomially
many colluders are implicitly assumed when discussing security.

– The numbers of signing and verifying operations: In order to describe
security notions in a more formal way, we should introduce a number up to
which an adversary can have access to the signing oracle, and a number up to
which the adversary can have access to the verification oracle. We introduce
a number up to which a signer is allowed to generate signatures, denoted
by ψ, and a number up to which each verifier is allowed to check received
signatures, denoted by ψ′. This implies that an adversary can obtain at
most ψ valid signed message from the signer, and at most ψ′ − 1 verification
results on signed messages from the target verifier. This should be contrasted
to public key signature schemes in which an adversary is allowed to obtain at
most poly(k), where k is a security parameter, valid signed messages, and an
unlimited number of verification results using a publicly known verification-
key.

3 Security Notions and Their Relations

3.1 The Model

As mentioned in the previous section, we consider the following simplified model
of signature schemes:

Definition 7 A signature schemeΠ consists of (U ,TA,M,X ,Y,A,Gen,Sig,V er):
1. Notation:

– U = {S, V1, V2, . . . , Vn} is a finite set of users, where S is a signer and
Vi(1 ≤ i ≤ n) are verifiers,
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– TA is a trusted authority,
– M = {Mk}k∈N is a sequence of finite sets of possible messages, where

Mk ⊂ {0, 1}lM (k), and lM (k) is a polynomial of k. Hereafter, k means a
security parameter.

– X = {Xk}k∈N is a sequence of finite sets of possible signing-keys. Here,
Xk ⊂ {0, 1}lX(k), and lX(k) is a polynomial of k,

– Y = {Yk}k∈N is a sequence of finite sets of possible verification-keys.
Here, Yk ⊂ {0, 1}lY (k), and lY (k) is a polynomial of k,

– A = {Ak}k∈N is a sequence of finite sets of possible signatures. Here,
Ak ⊂ {0, 1}lA(k), and lA(k) is a polynomial of k,

– Gen is a key generation algorithm which on input a security parameter
1k, outputs a signing-key and verification-keys,

– Sig : X × M −→ A is a signing algorithm,
– V er : Y × M × A −→ {true, false} is a verification algorithm.

2. Key Generation and Distribution by TA: The TA generates a signing-
key x for the signer S, and a verification-key yVi for each verifier Vi using
Gen. Here, Gen is a probabilistic algorithm which produces, on input 1k,
where k is a security parameter, keys (x, yV1 , yV2 , . . . , yVn) of matching sign-
ing and verifying keys, where x ∈ Xk and yVi ∈ Yk for 1 ≤ i ≤ n. TA then
transmits the signing-key x to the signer S and the verification-key yVi to
the verifier Vi in a secure way. After delivering these keys, TA may erase
the keys (x, yV1 , yV2 , . . . , yVn) from his memory. The signer keeps secret his
signing-key, and each verifier keeps secret his verification-key.

3. Signature Generation: For a message m ∈ Mk, the signer S generates a
signature a = Sig(x,m) ∈ Ak by using the signing-key x in conjunction with
Sig. The pair (m, a) is regarded as a signed message. Here, we assume that
Sig is deterministic, but in general it might be randomized. If it is deter-
ministic, for a message m and a signing-key x, the signature a = Sig(x,m)
is uniquely determined, while in the case of a randomized algorithm, each
time a different signature can be produced for the same message.

4. Signature Verification: On receiving (m, a) from the signer S, a veri-
fier Vj checks whether a is valid by using his verification-key yVj ∈ Yk.
More precisely, Vj accepts (m, a) as a valid signed message if and only if
V er(yVj ,m, a) = true. Here, we assume that V er is deterministic.

In addition, in the above model a trusted party (or an arbiter) is selected
among verifiers. When a dispute occurs, the trusted party can resolve the dispute
with his verification-key by following the resolution-rule described in Require-
ment 1.

Let ψ be a number up to which the signer is allowed to generate signatures,
and ψ′ be a number up to which each verifier is allowed to check received signa-
tures, respectively, and let ω be the number of possible colluders among users. Let
W := {W ⊂ U| |W | ≤ ω}. Each element of W represents a group of possibly col-
lusive users. For a set T and a non-negative integer t, let ℘T

t := {T ⊂ T | |T | ≤ t}
be the family of all subsets of T whose cardinalities are less than or equal to t.
Of course, the empty set ∅ is always contained in ℘T

t .
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3.2 A Strong Security Notion

With notations above, we can now discuss security notions for uncondition-
ally secure signature schemes. We start with introducing exponentially negligible
functions in order to strictly describe a small error probability in Requirement
2.

Definition 8 (Exponentially Negligible Function) Let ε(k) be a function defined
over the positive integers k ∈N that takes non-negative real numbers. Then, ε(k)
is called exponentially negligible if there exists an integer k0 and some constant
a (1 < a) such that ε(k) ≤ 1

ak
for all k ≥ k0.

Using notations we have introduced, we now formulate the strong security
notion in our signature model as follows:

Definition 9 (Strong Security) Let k be a security parameter and ε(k) an
exponentially negligible function. For simplicity, we will denote ε(k) by ε.

1) For W ∈ W such that Vj , S �∈W , we define P strong
1 (Vj ,W ) as

P strong
1 (Vj ,W ) := max

yW
max

MS={(mS ,aS)}∈℘
Mk×Ak
ψ

max
MVj

={(mVj
,aVj )}∈℘

Mk×Ak
ψ′−1

max
MV1 ,...,MVl

,...,MVn∈℘
Mk×Ak
ψ′ (l �=j)

max
(m,a)

Pr(Vj accepts (m, a)

| yW ,MS ,MVj ,MVl , {V er(yVl ,mVl , aVl)|(mVl , aVl) ∈MVl}
(1 ≤ l ≤ n, l �= j))

where MS is taken over ℘Mk×Ak

ψ such that any element of MS is a valid
signed message; MVj is taken over ℘Mk×Ak

ψ′−1 such that V er(yVj ,mVj , aVj ) =
false for any (mVj , aVj ) ∈MVj ;MVl is taken over ℘

Mk×Ak

ψ′ for 1 ≤ l ≤ n, l �=
j; and (m, a) runs over Mk × Ak such that (m, a) �∈MS and (m, a) �∈MVj .
Note that the condition (m, a) �∈ MS means that for any (mS , aS) ∈ MS

either m �= mS , or m = mS and a �= aS holds. Next we define

P strong
1 := max

Vj ,W
P strong

1 (Vj ,W ).

2) For W ∈ W such that Vj �∈W and S ∈W , we define P strong
2 (Vj ,W ) as

P strong
2 (Vj ,W ) := max

x
max

yW−{S}
max

MVj
={(mVj

,aVj )}∈℘
Mk×Ak
ψ′−1

max
MV1 ,...,MVl

,...,MVn∈℘
Mk×Ak
ψ′ (l �=j)

max
(m,a)

Pr(Vj accepts (m, a)

| x, yW−{S},MVj ,MVl , {V er(yVl ,mVl , aVl)|(mVl , aVl) ∈MVl}
(1 ≤ l ≤ n, l �= j))

whereMVj = {(mVj , aVj )} is taken over ℘Mk×Ak

ψ′−1 such that V er(yVj ,mVj ,aVj )
= false for any (mVj , aVj ) ∈MVj ; MVl is taken over ℘Mk×Ak

ψ′ for 1 ≤ l ≤ n,
l �= j; and (m, a) ∈ Mk × Ak runs over invalid signed messages such that
(m, a) �∈MVj . We define P strong

2 := maxVj ,W P
strong
2 (Vj ,W ).
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Then, a signature scheme Π is said to be (n, ω, ψ, ψ′)-secure if

max{P strong
1 , P strong

2 } ≤ ε

3.3 Relations among Security Notions

One of the purposes in this paper is to clarify which is the strongest among all
the security notions that have appeared in unconditionally secure authentication
codes and signature schemes. We focus on security notions for the following
notable schemes: multireceiver authentication codes (MRA) [9][24], Johansson’s
scheme [18], Wang and Safavi-Naini’s scheme [31] and Hanaoka, Shikata, Zheng
and Imai’s scheme [15]. Specifically, we analyze a relation among our strong
security notion and those of MRA, Johansson’s scheme, Wang and Safavi-Naini’s
scheme, Hanaoka, Shikata, Zheng and Imai’s scheme, respectively.

We describe security notions of those schemes as follows. LetΠ be a signature
scheme (or an authentication code) along with our signature model. Then, Π is
said to be (n, ω, ψ)MRA-secure if the success probability of all attacks considered
in MRA [9][24] is exponentially negligible under the following conditions: there
exists at most ω colluders among the users; and the number up to which a signer
is allowed to generate signatures is ψ. Similarly, Π is said to be (n, ω, ψ)HSZI-
secure if the success probability of all attacks considered in Hanaoka, Shikata,
Zheng and Imai’s scheme [15] is exponentially negligible under the same con-
ditions. Also, we can define (n, ω, ψ)ext-secure by slightly modifying security
notions of Johansson’s scheme [18], and Wang and Safavi-Naini’s scheme [31]
so as to fit our signature model (the precise definition of (n, ω, ψ)ext-secure is
described in Appendix).

From the definitions of security notions for the model in Definition 7, an
interesting statement can be obtained:

Theorem 3 The following relations among security notions hold:

(n; !;  ;  0)strong-secure (n; !;  )HSZI-secure

(n; !;  )ext-secure (n; !;  )MRA-secure

-

-
�

�
@

@

? ?

6 6
@ @

�������9

where “X-secure −→ Y-secure” means that X-secure always implies Y-secure,
while “X-secure �−→ Y-secure” means that there exists a signature scheme which
is X-secure but not Y-secure.

A detailed proof will appear in the full version of this paper.

4 Construction

In this section we propose a construction method for signature schemes which
is secure in terms of our strong security notion. We describe the key generation
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algorithm, Gen, signing algorithm, Sig, and verification algorithm, Ver, using
the notations introduced in Section 3.1.

– Key Generation Algorithm: The key generation algorithm, Gen, which,
on input 1k, picks a k-bit prime power q, constructs a finite field F q with q el-
ements. It also picks uniformly at random 2n elements v(1)

1 ,v
(2)
1 ,v

(1)
2 ,v

(2)
2 , . . . ,

v(1)
n ,v

(2)
n in F q

ω+ψ′
for verifiers V1, V2, . . . , Vn, respectively, and constructs

two polynomials Fd(Y1, Y2, . . . , Yω+ψ′ , Z) (d = 1, 2) over F q with ω+ψ′ + 1
variables Y1, Y2, . . . , Yω+ψ′ , Z as follows:

Fd(Y1, . . . , Yω+ψ′ , Z) =
ψ∑

i=0

ω+ψ′∑

j=1

a
(d)
ij Z

iYj +
ψ∑

i=0

a
(d)
i0 Z

i (d = 1, 2),

where the coefficients a(d)ij are chosen uniformly at random from F q. Then, a
signing-key for the signer S is x := (F1(Y1, . . . ,Yω+ψ′ ,Z),F2(Y1, . . . ,Yω+ψ′ ,Z))
and a verification-key for the verifier Vi is yVi := (v(1)

i ,v
(2)
i , F1(v

(1)
i , Z),

F2(v
(2)
i , Z)) for 1 ≤ i ≤ n. The algorithmGen returns (F q,x,yV1 ,yV2 , . . . ,yVn).

We consider the case where Mk ⊂ F q.

– Signing Algorithm: The signing algorithm Sig which, on input the signing-
key x = (F1(Y1, . . . , Yω+ψ′ , Z), F2(Y1, . . . , Yω+ψ′ , Z)) and a message m, re-
turns a signature a := (F1(Y1, . . . , Yω+ψ′ ,m), F2(Y1, . . . , Yω+ψ′ ,m)).

– Verification Algorithm: The verification algorithm V er which, on in-
put (yVi ,m, a), where a = (F1(Y1, . . . , Yω+ψ′ ,m), F2(Y1, . . . , Yω+ψ′ ,m)) and
yVi=(v

(1)
i ,v

(2)
i , F1(v

(1)
i , Z), F2(v

(2)
i , Z)), computes evaluation values e

(d)
1 ,e

(d)
2

(d = 1, 2) as follows:

e
(d)
1 := Fd(Y1, . . . , Yω+ψ′ ,m)|(Y1,...,Yω+ψ′ )=v(d)

i

e
(d)
2 := Fd(v

(d)
i , Z)|Z=m (d = 1, 2).

Ver then returns “true” if e(d)1 = e(d)2 for d = 1, 2, and “false” otherwise.

The following theorem proves the security of the above construction in our
strong security notion.

Theorem 4 The above construction results in an (n, ω, ψ, ψ′)-secure signature
scheme, where ω, ψ, ψ′ can be taken in such a way that

0 ≤ ω ≤ n, 0 < ψ < q, 0 < ψ′ ≤ q + 1− √
q,

and the success probability of attacks is less that 1/q.

Once again a proof for the theorem will be provided in the full version of this
paper.
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5 Concluding Remarks

In this paper, we have established a sound security notion, which is likely to
be the strongest possible, by taking into account the security notion for public-
key signature schemes and some desirable requirements for signature schemes in
the unconditional security setting. And we have examined relationships among
security notions which have appeared in unconditionally secure schemes both for
authentication and signature. We have demonstrated that our security notion
is the strongest among all the notions proposed so far. An interesting aspect is
that our security notion includes that of public-key signature schemes. We have
further presented a construction method for unconditionally secure signature
schemes which is provable secure in our strong security notion.
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Appendix: A Security Notion
for Extended A2 and A3-Codes

Johansson’s model [18] for a class of broadcast authentication scheme is an ex-
tension of that of A2-codes. Also, Wang and Safavi-Naini’s model [31] is an
extension of that of A3-codes. Taking into account security notions of these
models, we arrive at the following security notion by modifying their notions so
as to fit our signature model. In that sense, the following security notion can
also be regarded as that of an extension of A2 and A3-codes.

Definition 10 Let k be a security parameter and Varb ∈ U −{S} an arbiter (or
a trusted party).
1. Success probability of impersonation and substitution by verifiers: For W ∈

W such that Vj , Varb, S �∈W , we define P ext
I,S (Vj ,W ) as

P ext
I,S (Vj ,W ) := max

yW
max

M∈℘
Mk
ψ

,{(m,a)}m∈M
max

(m′,a′)

Pr(Vj accepts (m′, a′) | yW , {(m, a)}m∈M )

where M is taken over ℘Mk

ψ , {(m, a)}m∈M is a set of |M | valid signed mes-
sages with m ∈M , and m′ is taken over Mk satisfying m′ �∈M . Then, P ext

I,S

is defined as

P ext
I,S := max

Vj ,W
P ext
I,S (Vj ,W )

where Vj is taken over all receivers including Varb and W is taken over W
satisfying S, Vj , Varb �∈W .

2. Success probability of attack by colluders including the signer: For W ∈ W
such that Vj , Varb �∈W and S ∈W , we define

P ext
signer(Vj ,W ) := max

x
max

yW−{S}
max
(m,a)

Pr(Vj accepts (m, a) | x, yW−{S})

where m is taken over Mk and a ∈ Ak is taken such that (m, a) is an invalid
signed message, i.e. a �= Sig(x,m). Then, P ext

signer is defined as follows:

P ext
signer := max

Vj ,W
P ext
signer(Vj ,W ),

where Vj is taken over all receivers including Varb and W is taken over W
satisfying Vj , Varb �∈W and S ∈W .

3. Success probability of attack against the sender: For W ∈ W such that
S �∈W , we define

P ext
arbiter 1(W ) := max

yW
max

M∈℘
Mk
ψ

,{(m,a)}m∈M
max

(m′,a′)

Pr((m′, a′) is a valid signed message generated by S | yW , {(m, a)}m∈M )
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where M is taken over ℘Mk

ψ , {(m, a)}m∈M is a set of |M | valid signed mes-
sages with m ∈ M and m′ is taken over Mk satisfying m′ �∈ M . Then,
P ext
arbiter 1 is defined as

P ext
arbiter 1 := max

W
P ext
arbiter 1(W ),

where W is taken over W such that S �∈W . Here, we note that W runs over
W including the cases Varb ∈W .

4. Success probability of attack against a verifier by colluders including the
arbiter: For W ∈ W such that Varb ∈W and S, Vj �∈W , we define

P ext
arbiter 2(Vj ,W ) := max

yVarb

, max
yW−{Varb}

max
M∈℘

Mk
ψ

,{(m,a)}m∈M
max

(m′,a′)

Pr(Vj accepts (m′, a′) | yVarb , yW−{Varb}, {(m, a)}m∈M ),

where M is taken over ℘Mk

ψ , {(m, a)}m∈M is a set of |M | valid signed mes-
sages with m ∈ M and m′ is taken over Mk satisfying m′ �∈ M . Then,
P ext
arbiter 2 is defined as

P ext
arbiter 2 := max

Vj ,W
P ext
arbiter 2(Vj ,W ),

where Vj is taken over all receivers except Varb, and W is taken over W
satisfying Varb ∈W and S, Vj �∈W .

5. Success probability of attack against a verifier by colluders including both
the arbiter and the sender: For W ∈ W such that Varb, S ∈W and Vj �∈W ,
we define

P ext
arbiter 3(Vj ,W ) := max

x
max
yVarb

max
yW−{Varb,S}

max
(m,a)

Pr(Vj accepts (m, a) | x, yVarb , yW−{Varb,S}),

where (m, a) is taken over Mk×Ak such that (m, a) is not accepted by Varb,
i.e. V er(m, a, yVarb) = false. Then, P

ext
arbiter 3 is defined as

P ext
arbiter 3 := max

Vj ,W
P ext
arbiter 3(Vj ,W ),

where Vj is taken over all verifiers except Varb, and W is taken over W such
that Varb, S ∈W and Vj �∈W .
Let ε(k) be an exponentially negligible function. For simplicity, we denote ε(k)

by ε. A signature scheme Π along with our signature model is called (n, ω, ψ)ext-
secure if the following condition is satisfied: under the conditions that there
exists at most ω colluders and that the signer is allowed to generate at most ψ
signatures, the inequality below holds.

max{P ext
I,S , P

ext
signer, P

ext
arbiter 1, P

ext
arbiter 2, P

ext
arbiter 3} ≤ ε
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