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Abstract. Many two-dimensional incompressible inviscid vortex flows
can be simulated with high efficiency by means of the contour dynamics
method. Several applications require the use of a hierarchical-element
method (HEM), a modified version of the classical contour dynamics
scheme by applying a fast multipole method, in order to accelerate the
computations substantially. In this paper it is shown that the acceleration
of contour dynamics simulations by means of the HEM can be increased
further by parallelising the HEM algorithm. Speed-up, load balance and
scalability are parallel performance features which are studied for several
test examples. Furthermore, typical simulations are shown, including an
application of vortex dynamics near the pole of a rotating sphere. The
HEM has been parallelised using OpenMP and tested with up to 16
processors on an Origin 3800 cc-numa computer.

1 Introduction

Large-scale vortices are coherent structures that can be found in the oceans, the
atmosphere of our planet as well as in the atmosphere of other planets. Exam-
ples of terrestrial nature are high and low-pressure areas, eddies in the ocean
and the large polar vortex. Other planetary examples are the Great Red Spot
on Jupiter, the Great Dark Spot on Neptune and huge rotating dust structures
on Mars. The thickness of the layer of fluid these structures evolve in (on Earth:
1 – 10 km), is small compared to the horizontal size of the coherent structure
itself (on Earth: 100 – 1000 km). This geometrical confinement, together with
the planetary rotation and the density stratification in the fluid layer, implies
quasi two-dimensionality of the flow. The motion of such large-scale structures
is slow compared to the rotation speed of the planetary body implying that
these structures are nearly non-divergent. Their dynamics can in good approx-
imation be described by the two-dimensional incompressible inviscid variant of
the Navier-Stokes equations, viz. the 2D Euler equations.

A suitable and elegant numerical technique for simulating two-dimensional
(2D) vortex flows is the contour dynamics method [2] [6]. The collection of 2D
vortices is approximated by nested patches of uniform vorticity. Only the evo-
lution of the contour edges needs to be computed for determining the complete
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dynamics of the vortices and this makes the method efficient because no grid
is needed. However, when highly complicated flow patterns emerge during a
simulation, the conventional numerical scheme becomes inefficient in its time-
complexity. Another class of problems concerns the evolution of vortices in the
presence of non-uniform background vorticity. The non-uniform background vor-
ticity is usually a local approximation of the latitudinal variation of the Coriolis
force. For example, when simulating the dynamics of vortices, located near the
poles of a rotating sphere (the local approximation is denoted as the γ-plane),
the initial vorticity distribution is rather intricate due to the necessity to dis-
cretise, together with the vorticity patches, the background vorticity field1. An
acceleration of the method is in this case already appropriate from the start of
the simulation. The hierarchical-element method for contour dynamics (HEM)
[4] solves for the limited applicability of the conventional scheme.

The algorithmic structure of the HEM has certain features that makes paral-
lelisation a good means for speeding-up contour dynamics simulations to an even
greater extent. The HEM has been parallelised using OpenMP, which is a new
industry standard for parallel programming on shared-memory architectures.
The parallel HEM has been tested for speed-up, scalability and load balancing
for several test cases and typical vortex configurations including one with a non-
uniform background vorticity field. It is shown in this paper that the parallel
HEM is a decent tool for studying flows with non-uniform background vorticity.

2 The HEM for Contour Dynamics

The spatial discretisation used in a contour dynamics method consists of three
parts: The discretisation of the continuous vorticity profile into a piecewise-
uniform vorticity distribution, interpolation of the bounding contours of the
regions of uniform vorticity, and the redistribution of the nodes on the contours
during the simulation. For the present introduction to contour dynamics and the
HEM it is sufficient to focus on the first part of the spatial discretisation.

The dynamics of a 2D incompressible, inviscid fluid flow is described by
the Euler equation and the equation of mass conservation. The latter implies a
divergence-free velocity field or ∇ · u = 0, with u(r, t) the velocity vector. The
Euler equation, which expresses the balance of linear momentum, is then written
as

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p , (1)

with p the pressure and ρ the density. The vorticity is defined as ω(r, t) = ∇×u.
For a 2D flow, u = (u, v)T , r = (x, y)T and ω = ω ez. The non-divergence
condition implies the definition of a stream function ψ(r, t) through u = ∂ψ

∂y and

v = −∂ψ
∂x . By taking the curl of (1) we obtain an expression for conservation of

1 More precisely, the potential vorticity is the conserved quantity and should thus be
discretised [5].

1011Contour Dynamics Simulations with a Parallel Hierarchical-Element Method



vorticity of a fluid particle in two dimensions, viz.

Dω

Dt
=

∂ω

∂t
+

∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
= 0 , (2)

whereas the vorticity ω and the stream function ψ are related through the Pois-
son equation

∇2ψ = −ω . (3)

Using the Green’s function of the Laplace operator for an infinite 2D domain,
G(r; r′) = 1

2π ln |r− r′| (with |r| =
√
x2 + y2), the stream function can be found

explicitly as

ψ(r, t) = − 1
2π

∫∫
R2

ω(r′, t) ln |r − r′| dx′dy′ . (4)

As is depicted in Figure 1, an initially continuous vorticity distribution ω(r, 0)

is approximated by a piecewise-uniform distribution ω̂(r, 0) =
∑M

m=0 ωm . It
consists in this case of a constant background vorticity ω0 and a number of
nested patches Pm with vorticity values ωm (with m ≥ 1).

�

Figure 1 – Five nested patches with uniform vorticity. Right-top: Vorticity jumps.
Right-bottom: Node redistribution.

We assume for the moment that no background vorticity is present, i.e.
ω0 = 0. Due to the conservation of vorticity the piecewise-uniform distribu-
tion of vorticity remains piecewise-uniform in the course of time. The nested
patches Pm(t) deform during the flow evolution although its area is conserved,
and the bounding contours Cm(t) of the patches Pm(t) will not cut neighbouring
boundary contours. Equation (4) can be reformulated as

ψ(r, t) = − 1
2π

M∑
m=1

ωm

∫∫
Pm(t)

ln |r − r′| dx′dy′ . (5)

The velocity field u(r, t) is obtained by taking the derivatives of ψ(r, t) with
respect to x and y and subsequently applying Stokes’ theorem for a scalar field.
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The following expression can be derived [2] [4] [6]:

u(r, t) = − 1
2π

M∑
m=1

ωm

∮
Cm(t)

ln |r − r′| dr′ , (6)

where dr′ denotes an infinitesimal vector tangential to the boundary. From (6)
it follows that the evolution of patches of uniform vorticity is fully determined
by the evolution of their bounding contours.

For contour dynamics the source distribution consists of patches of uniform
vorticity. For the implementation of an acceleration scheme based on Poisson
integrals, Vosbeek et al. [4] developed the Hierarchical-Element Method in or-
der to reduce the O(N2) operation count typical of the conventional contour
dynamics approach. The HEM is an adaptation to the method of Anderson [1]
and has a time-complexity of O(N). We present here an overview of the general
structure of the HEM which is relevant for the parallelisation strategy.

In the HEM all the patches of uniform vorticity are assumed to reside in
a square numerical domain, while the dynamics still involves the infinite plane.
This square domain is then subdivided into a set of hierarchical levels with 2l×2l

boxes at levels l = 1, . . . , lf with lf a finest level.

Figure 2 – Left: Construction of an outer ring around one of the boxes at the finest
level by means of direct evaluation. Right: Construction of a ring at a consecutive
coarser level. Four smaller rings contribute to one coarser ring. Note that only part of
the HEM domain is shown.

Keeping in mind that our numerical approach is based on the use of rings as
computational elements (and using Poisson integrals) we introduce at the finest
level lf a ring with K nodes around each box (Figure 2 left). By means of direct
evaluation, the velocity is determined at each node on the ring. These rings are
called the outer rings. Four outer rings at the finest level yield the input for the
construction of one outer ring at the subsequent coarser level, the parent level,
through a Poisson integral. In a similar way outer rings are constructed up to
the level l = 2 (see Figure 2 right). At level l = 2, another kind of ring is formed
via the constructed outer rings. This ring, a so-called inner ring, is to be used
for the construction of inner rings at finer levels again all the way down to level
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l = lf − 1 by means of a similar Poisson integral. This is illustrated in Figure 3
(for lf = 4), at levels l = 3, . . . , lf − 1 an inner ring is constructed from a parent
inner ring at level l − 1 and from outer rings at the same level l. Level l = 1
(four boxes) is irrelevant in these hierarchical approximations.

The light grey area at each level in Figure 3 is a so-called well-separated
area. It is the area with just the optimal distance for a certain box size [4].
The eight dark grey boxes at the finest level are the immediate neighbours of
the box containing the evaluation points. Here, direct evaluation of velocities
are needed which require O(mn) operations with m the number of nodes in
the eight neighbouring boxes and n the number of nodes in the evaluation box.
Outer rings and inner rings are both needed in the hierarchical tree of levels to
calculate all the contributions from the subdivided vorticity at the finest level.
The construction of the outer rings is necessary to provide information for all
the approximating rings. The inner rings contain all information from the outer
regions and pass this information on to the next finer level inner ring.

Figure 3 – The HEM in action for lf = 4. The little box with slanted lines contains
evaluation points. Solid rings are outer rings and dotted rings are inner rings.

If a small number of nodes makes up the vorticity field, it is inefficient to use
a very fine meshed finest level with many boxes. In this case, the HEM is even
more inefficient than the conventional contour dynamics scheme. On the other
hand, however, too many nodes in a box is not efficient either because of the
expensive direct interaction computations in each small domain of nine boxes
at the finest level. The HEM accounts for these two restrictions by determining
the hierarchical tree depth in an adaptive manner during a simulation. Optimal
intervals for N are being chosen in such a way that K keeps the same order as
the number of nodes per box. This leads to an O(N) method.

3 Parallelisation Strategy

Parallelisation of the already existing HEMmethod is achieved by using OpenMP.
It is however important to know a priori if the numerical scheme can be paral-
lelised in a convenient way. Therefore, the global structure of the HEM should be
considered first. Particularly, the parallelisation of the algorithms for the velocity
computations and the node redistribution should be taken into account. The nu-
merical structure of the HEM consists of a hierarchy of levels with boxes. At the
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finest level these boxes contain pieces of contours, whereas coarser boxes contain
the approximating outer and inner rings. Velocity computations are carried out
at each level in the tree and parallelisation along all hierarchical boxes seems
appropriate. Although most of the computations are at the finest level, the ring
computations at each consecutive coarser level—requiring a modest amount of
CPU-time—should be included for parallelisation as well. Obviously, parallelisa-
tion is most effective when implemented per level. Each level is then decomposed
into several subdomains which can have one or several boxes, whereas multiple
processors can be assigned to these subdomains. The part of the algorithm deal-
ing with the redistribution of the nodes can not be skipped in the parallelisation
process, because it still contributes significantly, depending on the evolving con-
tours. Parallelisation of this part is however completely different, because it
has no box-wise HEM structure. For this part, contour-wise parallelisation is
adapted. This short paper however will only focus on the much more impor-
tant box-wise parallelisation of the velocity computations, which is carried out
independently from the node redistribution.

The assignment of processors can be scheduled in various ways. Two schedul-
ing policies in OpenMP used for the parallel HEM are static scheduling and
dynamic scheduling. When each subdomain is treated as a static subdomain, a
processor assigned to this subdomain stays put until all processors have finished
their own local job. After that, they proceed in unison to their next assigned sub-
domain. Static scheduling can be very inefficient when the computational load is
non-uniform. However, when an algorithm has a predefined uniform load, pro-
cessors can be assigned to steady portions of the algorithm and minimize the
communication overhead showing an efficient static scheduling policy. Dynamic
scheduling, on the other hand, implies that a processor can proceed with the
next available subdomain when it has finished its own local job, even when
other processors are still busy with their first computation.
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Figure 4 – Left: Example of static scheduling for the HEM in OpenMP. Right: Dynamic
scheduling for the same domain.

Dynamic scheduling suffers more from communication overhead due to the dy-
namic displacements of processors. For an unevenly distributed computational
load, as is the case in many contour dynamics simulations, processors taking
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care of less time-consuming jobs have to wait for the slower jobs and will run
idle when static scheduling is applied. This so-called load imbalance is illustrated
in Figure 4 for a computation with a non-uniform distribution of nodes in the
domain. The left schematic shows a static scheduling which is applied to a finest
level lf = 3 with four processors to assign. Choosing an appropriate subdomain
size—a so-called chunk size in OpenMP—can be convenient for solving a specific
load imbalance problem. The chunk size in Figure 4 is four, and apparently the
load is quite out of balance. Processors 1, 2, and 4 have to wait for number
3 before all can proceed in unison to the next subdomain (black arrow). The
schematic on the right shows how to solve for the load imbalance when using
dynamic scheduling. When processor 1 has finished its computations it will start
immediately computing the first available chunk (keeping the ordering in mind).
When processor 3—the one with the highest load—has finished (black arrow),
processors 1, 2, and 4 have already advanced to the right-top quadrant (gray
arrows). The load imbalance for this configuration has been minimized. Paral-
lelisation of the HEM will benefit the most when using a dynamic scheduling
policy with the smallest possible chunk size, i.e. as small as one box, contrary
to the above illustrative example with four boxes for a chunk. The smaller the
chunk size, the more balanced the load is after finishing a certain level.

In order to study the overall parallel performance of the HEM, two important
features of parallel programming have been analysed, viz. processor scalability
and problem scalability. Processor scalability is given through the parameter S,
the speed-up of the parallelisation, and is defined as the ratio between the work
done by one processor and the total execution time of a parallel programme
with P processors: S = T1/TP . Problem scalability has been studied for differ-
ent values of lf and N . The number of nodes N changes continuously during a
simulation and because of this, lf changes accordingly. When lf is large, more
boxes have to be computed and more communication is necessary between pro-
cessors. In a shared-memory environment this can be a limiting factor for the
parallel performance because communication timing is slow compared to the
crucial computations. The more computations a single processor can do in its
chunk before communicating its results, the better the overall performance. This
feature is called the computation-to-communication ratio.

Originally, the HEM has been introduced as a serial method for accelerating
computationally expensive contour dynamics simulations. The use of OpenMP
for incremental parallelisation of the method results in a fraction of the method
that has been left for serial computation. This fraction depends on a heuristic
pre-processing step and lies between 0.5% and 10% of the total amount of compu-
tations [3]. For the numerical experiments in the next section this has been taken
into account. The serial part of the HEM however acts as a weakest link in the
complete computation and slows down the method significantly. This is clearly
demonstrated by Amdahl’s Law, which states that for an ideal parallel machine
(neglecting communication overhead) the speed-up SAmdahl =

P
Pf+(1−f) , where

f represents the serial fraction and P the number of processors.
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4 Numerical Experiments and Discussion

Three different numerical experiments have been performed. The goal of the
first experiment is to investigate the scalability of the parallelised HEM, without
adding additional nodes during the computation or applying any node redistri-
bution. In the second experiment the role of static and dynamic scheduling on
the speed-up S is discussed. In this numerical experiment both the number of
nodes increases during the simulation (and also lf increases) and node redistri-
bution is included. In a third numerical experiment the parallel efficiency of the
HEM for simulations of vortex evolutions in a non-uniform background vorticity
field has been studied. The effort to obtain a parallelised version of the HEM is
particularly aimed at solving this latter kind of problems.

Example 1 —A first example is the simulation of concentric patches of uniform
vorticity. These patches will stay circular and constant in size. The redistribution
of the nodes is therefore unnecessary. During a simulationN is kept constant and
the contours rotate in a clockwise direction—due to an overall negative uniform
vorticity. The load is distributed symmetrically. To gain insight in the processor
scalability, lf is also kept constant during each simulation. This implies that for
a certain N the optimal lf is not changed accordingly. The following values for
P , N , and lf have been chosen. That is, the range of processors: P = 1, 2, 4, 8, 16,
the problem size:N = 1000, 2000, 4000, 8000, 16000, and the choice of finest level:
lf = 3, 4.
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Figure 5 – S = f(P,N) for lf = 3 and lf = 4. The speed-up for N = 16,000 has a
dashed line indicating Amdahl’s limit for a 98% parallelised algorithm (f = 0.02).

Each combination of P , N , and lf represents a separate simulation. The
results for the scalability S as function of P and N are given in Figure 5 as
3D graphs for different values of lf . According to Figure 5 it is clear that for
N = 16,000, performance is almost ideal for lf = 3 in the complete processor
range P = 1, . . . , 16. Furthermore, an increasing computation-to-communication
ratio can be observed for increasing N in both graphs. The amount of effective
computations per communication step decreases for smaller boxes, resulting in a
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smaller S for increasing lf . This example clearly indicates the parallel efficiency
as function of P , N and lf . For regular simulations however, a constant lf is
certainly not an option. The HEM would lose its O(N) behaviour.

Example 2 — This example will highlight the difference between static schedul-
ing and dynamic scheduling. The simulation itself requires O(103) nodes and is
a relatively ‘cheap’ computation compared to the kind of simulations the HEM
is designed for. The simulation concerns the formation of a tripole from an
azimuthally perturbed isolated monopolar vortex. During the simulation the
redistribution of the nodes is essential due to the formation of high-curvature
segments in the contours. Node redistribution has been parallelised also. Ad-
ditionally, we should keep in mind that N will increase, and as a result the
tree-depth (i.e. lf ) in the HEM will automatically adapt, maintaining an O(N)
operation count. Figure 6a shows the speed-up S(P ) for static and dynamic
scheduling.

The static scheduling policy is clearly spoiling the parallel performance. Dy-
namic scheduling delivers a speed-up curve like the one in Figure 5 for lf = 3.
This is conform the level updates for 500 < N < 5,000. The finest level remains
relatively coarse (lf ≤ 3), and some parallel efficiency is lost due to the fact
that no optimal benefit of load-balancing can be obtained. As a result a few
processors will run idle.
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Figure 6 – (a) Speed-up curves of Example 2. The serial fraction is f = 0.07. (b)
Speed-up curve for the γ-plane simulation of Example 3, f = 0.025.

Example 3 — The last example shows the parallel efficiency of simulations
the HEM had been made for originally. It concerns the evolution of an isolated
monopole—like the one in Example 1—embedded in a non-uniform background
vorticity field. These so-called γ-plane simulations generate complex flow pat-
terns and require at least O(104) nodes. The simulation has 21 contours for the
background field and the monopole, and a node range of 10,000 < N < 30,000.
The test starts with only a tenth of this number but arrive in the mentioned
range quite early in the simulation. The simulation needs considerably more
nodes than the numerical simulations for examples 1 and 2. Redistribution takes
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care of the node supply, particularly in the monopolar region, indicating that
the load is highly out of balance in the overall domain. This implies the use of
dynamic scheduling with the smallest possible chunk size.

Figure 6b shows that the speed-up for the γ-plane is on first site better than
the ‘cheaper’ tripole test, due to a smaller serial fraction. However, the test
needs more nodes and will adjust to a higher lf , thus creating smaller boxes
with on the average still the same amount of nodes in a box. The computation-
to-communication ratio will unfortunately decrease because of this, although a
domain with a greater amount of boxes can benefit more from the load-balancing
effect of dynamic scheduling. Apparently the net effect is a lower efficiency.

5 Conclusive remarks

Despite the (inherently involved) shared-addressing complication of the HEM,
the parallel HEM scales (very) good for small numbers of processors (P ≤ 8) for
every test-case discussed in this paper. For regular HEM simulations we have
however non-uniform node distributions and box-size adaptations, implying a
higher computation-to-communication ratio for certain boxes. The adaptations
are necessary for keeping the favourable O(N) operation count of the HEM. For
P > 8, all tests show that an increasing lf demands an increasing amount of com-
munication between (expensive) computations, whereas the dynamic scheduling
solves for the non-uniform load better when lf is actually high. A more efficient
load-balancing is feasible, i.e. a locally defined tree-depth based on the require-
ment to keep the average number of nodes per finest level box approximately
constant. This approach is not implemented yet and should be pursued in future
investigations. Nonetheless, the current parallel HEM is an important improve-
ment to run γ-plane simulations in a much shorter time for small numbers of
processors.
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