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Abstract. P article trackingmethods are a versatile computationaltech-

nique cen tral to thesim ulationof a wide range of scien tiÿcapplications.

In this pap er w e presen t anew parallel approach for the dynamic par-

titioning of particle-mesh computational systems. The approach uses a

framework, the \in-element" particle tracking method, based on the as-

sumption that particle tra jectories are computed by problemdata local-

ized to individual elements. The parallel eþciency of suchparticle-mesh

systems dep endson the partitioning of b oththe mesh elements and the

particles; this distribution can change dramatically b ecause of move-

ment of the particles and adaptive reÿnement of the mesh. T oaddress

this problem we introduce a combined load function that is a function

of b oth the particle and mesh element distributions. We presen t exp er-

iment results that detail the p erformance of this parallel load balancing

approach for a three-dimensional particle-mesh test problem on an un-

structured, adaptive mesh.

1 Introduction

P arallel particle tracking methods ha veb een employed to solv e a variet y of
problems, suc h as Direct Simulation Monte Carlo (DSMC) methods to model
the dynamics of dilute gas. Wong and Long [1] implemented parallel DSMC al-
gorithm using a forward Euler explicit time marching scheme in the movement
phase of the algorithm. They p oin tedout that two d iÿ erent levels of data paral-
lelism (i.e., molecules and cells) cause some parallel pro cessingdiþculties. Nance
et al. [2] parallelizedDSMC using the run timelibrary CHAOS [3] on a 3-D uni-
form discretized mesh. Robinson and Harvey [4] parallelized DSMC by use of a
spatial mesh decomposition over the pro cessors.The domain decomposition is
based on a lo calized \load table" computed on eac hpro cessorfor its neighbo rs,
which will receiv ecells donated by the pro cessorif they ha veload less than it-
self. The demonstration problem w asa 2-D driv encavitywith approximately
10,000 uniform cells. Another ýeld of application of particle tracking methods
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is the streamline calculation, for which the most common technique is the in-
tegration of particle paths numerically or analytically. Often, for the numerical
approach, a high-order ODE solver such as Runge-Kutta methods or Adam's
method is required in terms of accuracy [5]. However, in 2-D and 3-D, the evalu-
ation of velocity between grid points across processors required by the high-order
ODE solver becomes costly and alternative methods should be considered. Ana-
lytic solutions for streamlines within tetrahedra were presented based on linear
interpolation and therefore produces exact results for linear velocit y ÿelds [6].
However, the analytic method works for steady þow only and the parallel version
has not developed yet.

The in-element particle tracking technique was dev elopedby Cheng et al.
[7] to accurately and eýciently trace ÿctitious particles in the velocit y ÿelds of
real-world systems. Since in-element particle tracking methods are implemented
with respect to the element basis, a natural approach is to develop a parallel
framework based on specifying local, element-based operations. The key to the
parallel algorithm is the correlated partitioning of the particle system and the
unstructured element mesh. We partition particles to processors based on their
element location|this approach ensures that the data required for the computa-
tion of the particle movement phase by the in-element method involves only data
local to a processor. The correspondence between particles and elements is main-
tained through explicit references in the element and particle data structures.
This correspondence is essential to ensure the correct reassignment of particles
between processors. The reassignment occurs when particles move between ele-
ments owned by a processor and the ghost elements (elements with shared faces,
edges, or vertices that are owned by another processor) [8].

With the goal of balancing the work load at each time step whether the ex-
plicit time-stepping method, the implicit time-stepping method, or streamline
calculation, is employed, computational workload estimates need to consider
the particle distribution to mesh elements. In general, the workload on each
processor is a function of the number of particles and number of vertices as-
signed to a processor. This distribution can change signiÿcantly each time step
because of the particle movement and adaptive mesh reÿnement. This dynamic
character raises the issue of load balancing and the problem of determining repre-
sentative load estimates to achieve a balancing of the assigned work. To address
this problem, we deÿne such a load function|a weighted function based on the
assignment of particles and vertices to processors.

Experimental results presented in this paper demonstrate the advantage of
dynamic load balancing based on this load estimation approach. For a represen-
tative parallel particle tracking problem, we present experimental results showing
the performance improvement using the load function discussed above. A three-
dimensional rotation cone problem is solved using the particle tracking software
developed and implemented for the SUMAA3d [9] programming environment.

The remainder of this paper is organized as follows. In Sect. 2, we review in-
element particle tracking technology and the extensions required for the parallel
implementation are described. In Sect. 3, we discuss the encountered workload
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imbalance issues and present a repartitioning strategy. In Sect. 4, experimental
results are presented to demonstrate the performance of our implementation. In
Sect. 5, we summarize these results and discuss planned future work.

2 Particle Tracking Algorithms

Consider the following advection-dominated system as representative of many
problems that are solved by particle tracking schemes. The advection equation
for a scalar ÿeld C(x; t), for example the chemical concentration in transport
equations, is represented as

@C(x; t)

@t
+ u ÿ C(x; t) = 0 ; (1)

where the velocity is given by

dx

dt
= u(x; t) : (2)

The value of C(x; t) is constant along the characteristic line deÿned by the
solution to (2) (i.e., C(x; tn) = C(xo; to)) and

xþ xo =

Z
tn

to

u(x; t)dt ; (3)

where xo is the initial point of the particle. The accuracy of the solution to (1)
depends on the accurate computation of (3). To address this problem, we have
speciÿcally developed the in-element algorithm.

2.1 The Sequential In-Element Algorithm

In Algorithm 2.1 introduced in [8], we give pseudocode describing a generic in-
element particle tracking method. This algorithm takes advantage of a number of
numerical features. First, the tracking follows the characteristic line element-by-
element so that the computational overhead of locating the element in the mesh
containing the departure point is reduced. Note that in this way the time-step
size is controlled by the element size which preserves the accuracy and stability in
the time integration scheme employed. Second, to increase the tracking accuracy
within an element, the element can be adaptively reÿned into a desired number
of sub-elements with the interpolated velocity computed at all vertices on sub-
elements.

Algorithm 2.1 The In-Element Particle Tracking Algorithm [8]

Let P0 be the set of particles
Set the residual time tr to the time-step size
ný kP0k
Foreach (p 2 P0 ) do
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While (tr > 0) do
Reÿne the element M to the prescribed number of subelements
Track p subelement by subelement until time is exhausted or

until the element boundary is hit
Compute tr, velocit y, and identify the possible neighbor element

for next tracking
if tr = 0 do

Interpolate concentration
Endif

Endwhile
Endfor

2.2 A Parallel Particle Tracking Algorithm

The parallel particle tracking algorithm is based on the correlated partitioning
of the particle system and the unstructured element mesh. Particles are parti-
tioned to processors based on their element location|this approach ensures that
the data required for the computation of the Lagrangian step by the in-element
method involves only data local to a processor. The correspondence between
particles and elements is maintained through explicit references in the element
and particle data structures. This correspondence is essential to ensure the cor-
rect reassignment of particles between processors. The reassignment occurs when
particles move between elements owned by a processor and the ghost elements
(elements with shared faces, edges, or vertices that are owned by another pro-
cessor) [8]. The caching of ghost elements ensures that when the target element
found by the tracking algorithm is owned by another processor, the particle is
correctly moved to that processor.

Based on the element partioning resulting from the partitioning heuristic,
vertex data and element data are never changed during the particle tracking pro-
cess. Instead, the particles are repartitioned by inheriting their resident element's
partition. This approach neither aþects the coherency of element neighbor data
nor destroys the coherency of vertex data. The disadvantage is the imbalance of
particles as the tracking process redistributes particles among processors. Later,
we present a repartitioning strategy for the partitioner to balance the workload
among the processors. Algorithm 2.2 is the implementation of parallel in-element
particle tracking technique neglecting repartitioning at each tracking step.

Algorithm 2.2 The Parallel In-Element Particle Tracking Algorithm[8]

Let Pi be the set of particles on processor i
Set the residual time tr to the time-step size
nÿ

P
i
kPik

While (n > 0) do
ni ÿ 0
Foreach (p 2 Pi ) do

While (p 2 Pi and status(p) 6= ÿnish) do
Reÿne M to the prescribed number of subelements
Track p subelement by subelement until time is exhausted or

hit the boundary of the element M
Compute tr, velocity, and identify the possible neighbor element M 0
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for next tracking
If tr > 0 do

If owner(M 0) 6= i do
Pack p and remove p from Pi

ni ÿ ni + 1
Endif

Elseif tr = 0 do
Interpolate concentration
status(p)ÿ ÿnish

Endif
Endwhile

Endfor
n =
P

i
ni

Send and receive message, unpack messages to form new Pi

Endwhile
Update concentration on each vertex

3 A Repartitioning Strategy

For scientiÿc simulations on high-performance parallel computers, it is essential
that the partitioner is able to divide an irregular mesh into equal-sized pieces
with as few interconnecting edges as possible. In general, the work performed
by the simulation on each processor depends on the mesh vertices, the mesh
elements, or a combination of of these objects. To balance the workload among
processors, a mapping which decomposes the computational mesh onto the pro-
cessors is commonly found by solving a graph partitioning problem. The graph to
be partitioned is simple to construct if the computation is mainly performed on
mesh vertices; and a number of adequate partitioning heuristics exist (although
the graph partitioning problem itself is known to be NP-complete). However, for
parallel particle tracking methods, the workload on each processor is dependent
not only on mesh vertices or mesh elements, but also on particles, which move
about the mesh dynamically. A diþerent repartitioning strategy is thus required
to adapt to these combined particle-mesh computational systems.

To avoid the problem of incurring unnecessary overhead in the repeated mesh
partitioning in the in-element particle tracking, we ÿrst propose a balance esti-
mator. Note that our approach is based on the assumption that the mesh is com-
pletely repartitioned, not \incrementally" repartitioned. Incremental approaches
for geometric partitioning schemes have been suggested [10] and implemented for
the unbalanced recursive bisection (URB) method [11]. However, the overhead
in the data structure reconstructions and message-passing optimizations often
makes this approach nearly as expensive (in practice) as a complete repartition-
ing. Incremental partitioning algorithms based on the \diþusion" of elements or
vertices between processors have also been tried but suþer a similar practical
downside [12].

Prior to deÿning the balance estimator, we deÿne several performance met-
rics. At the k-th tracking step, let Ni

k be the total number of particles on
processor i, let Ak be the average number of particles on all processors, let Mk

be the maximum number of particles, and let mk be the minimum number of
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particles on any processor. These metrics can be represented as

Ni
k =
P

j2pi
nj

Ak = 1
p

Pp

i=1Ni
k

Mk = maxfNigi2[1;p]
mk = minfNigi2[1;p] ;

(4)

where pi is the processor i, nj is number of particles in element j, and p is
number of processors. After obtaining the above measures, the repartitioning is
determined to be necessary if the following tw o criteria are met

pX

i=1

Nk
i ÿ Nthreshold ; (5)

and
max f

ÿ
Mk þAk

þ
;
ÿ
Ak þmk

þ
g ÿ ÿT ; (6)

where Nthreshold is the threshold number of particles for repartitioning, T is the
total number of vertices of global mesh, and ÿ is the fraction of T . We employ a
load function which is a linear function of the total weight of particles and the
total weight of vertices on each processor. Thus, the load of processor i, Li, is

Li =
X

j2i

!j ; (7)

where
!j = þ+ ý

X

e3j

ne (8)

is the weight of local vertex j in the processor i, þ and ý are the weighting
coeÿcients with respect to vertex and particle, and ne is number of particles in
the element e next to vertex j.

Based on the load function fLig
i=p
i=1 and the distribution of f!jg

j=T
j=1 , the

partitioner repartitions the mesh based on the graph partitioning theorem and
the associated heuristics. Clearly, this partitioning is based only on vertices if
ý = 0 and þ = 1.

4 Experimental Results

In this section we present results on the scalability and accuracy of the parallel in-
element approach in solving for the advection of a sharped-peaked concentration
cone in a three-dimensional domain. Backward particle tracking is performed
under the following þow ýeld:

u = (Vx; Vy; Vz) = (þ#y; #x; 2); # =
ü

500
(9)

where Vx, Vy, and Vz are the velocity components in x-, y, and z-directions, re-
spectiv ely. A region of [-3000,3000]ý[-3000,3000]ý[0,3000] is discretized to tetra-
hedral elements. The ýctitious particles to be backward tracked are originally the
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domain vertices. After a tracking time period of 500, the ÿctitious particles can
be analytically determined by using the relationship (3) with time integration
from 0 to 500. The initial conditions for this problem are speciÿed to demonstrate
the capability of parallel in-element particle tracking method to solve transport
equations for a system with inÿnite Peclet number and for Courant numbers Cr

in excess of 1 over the entire grid.
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Fig. 1. The initial distribution (left) and the simulation result at time 500 (right) of
the 3-D rotation cone problem

This problem is the 3-D version of \rotating cone" problem, a standard
benchmark case for numerical advection algorithms [13]. The governing equa-
tion for a pure advection of concentration hills in a three-dimensional regime is
given by (1). The initial and boundary conditions are given by

C(x; y; z; 0) = C0(x; y; z)
(10)

C(x; y; z; t)! 0 as x2 + y2 + z2 !1 ;

in which C0(x; y; z) is given by

C0(x; y; z) =

ÿ
H(1ÿ jxÿx0j

r0
) if j xÿ x0 jþ r0 ; and z = 1; 000

0 otherwise
; (11)

where r0 is the radius of the initial cone-hill distribution. The exact solution for
this system is

C(x; y; z; t) = C0(xÿ Vxt; y ÿ Vyt; z ÿ Vzt) : (12)

The domain is discretized to 612,821 tetrahedrons and 113,847 vertices. The
initial distribution based on (11) and the simulation result from the parallel
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in-element tracking algorithm (i.e., Algorithm 2.2) are presented in Fig. 1. The
maximum absolute pointwise error of this simulation is in the order of 10ÿ6.
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Fig. 2. On the left, the performance of the particle tracking benchmark as a function

of the number of processors on an IBM SP2. On the right, we show the imbalance of

particle numbers as a function of processor number resulting from a tracking step.

Concerning the performance, Fig. 2 depicts the CPU time spending in particle
tracking, both in normal and log-log scale. As expected, the slope of the log-
log plot in Fig. 2, i.e., speedup in tracking, close but less than 1 except a kink
between 4 processors and 8 processors.To further investigate the workload across
the processors, on the right we plot number of particles versus processor number
and ÿnd that the distribution of particles across the processors has changed
signiÿcantly after a tracking step. Thus, the presented repartitioning strategy
described in Sect. 3 is applied to achiev ethe goal of load balance for parallel
particle tracking methods.

The parameters required in the repartitioning strategy have been set to
ÿ = 1, þ = 1; 10; 50; 100; or 500, Nthreshold = 500 ÿ p, where p = 32 in this
experiment, and ý = 0:02. Fig. 3 shows the performance improvement with
þ > 0, i.e., the repartitioning strategy is employed. Although the partitioning
overhead incurs approximately 10% of the total tracking time, the speedup due
to the balanced particle tracking outperforms the required overhead. To demon-
strate the partitioner does the mesh partitioning as expected, Fig. 4 shows the
balanced distribution of !i and total number of particles among the processors
as þ = 10.

5 Summary and Future Plans

We have developed a dynamic repartitioning method that is appropriate for
particle-mesh methods based on in-element particle tracking. We have imple-
mented this method within the SUMAA3d unstructured mesh programming
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Fig. 3. The performance improvement and the partitioning overhead with the reparti-
tioning strategy implemented. Note the relatively poor performance without any repar-
titioning, (i.e., ÿ = 0).

environment, a system that includes the functionality of mesh generation, mesh

optimization, adaptive mesh reÿnement, and sparse matrix solution. Testing of

this approach for an advection-dominated test problem on 32 nodes of an IBM

SP computer indicates that it signiÿcantly improves the parallel performance for

this benchmark problem. From these experimental results, we observe that the

proposed load function and balance estimator do improve the balance of parti-

cles to processors, in addition to the performance, for a wide range of parameter

values. Additional issues, such as including an appropriate error estimator in the

mesh reÿnement, particle tracking applications in additional areas, and experi-

ments with more complicated þow ÿelds are topics for further study.
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