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Abstract. A semidefinite program (SDP) is an optimization problem
over n × n symmetric matrices where a linear function of the entries is
to be minimized subject to linear equality constraints, and the condition
that the unknown matrix is positive semidefinite. Standard techniques
for solving SDP’s require O(n3) operations per iteration. We introduce
subspace algorithms that greatly reduce the cost os solving large-scale
SDP’s. We apply these algorithms to SDP approximations of graph par-
titioning problems. We numerically compare our new algorithm with a
standard semidefinite programming algorithm and show that our sub-
space algorithm performs better.
Keywords: semidefinite programming, subspace methods

1 Introduction

A semidefinite program (SDP) [1, 18, 22] is the problem of minimizing a linear
function over symmetric matrices with linear constraints and the constraint that
the matrix is positive semi-definite. That is,

min
X

C • X subject to (1)

Ai • X = ai, i = 1, 2, . . . , m, (2)
X � 0 (3)

where A • B = trace(AT B) =
∑

i,j aijbij and A � B means that A − B is
a positive semi-definite matrix. Note that A and B are symmetric, then A •
B = trace(AB). This is essentially an ordinary linear program where the non-
negativity constraint is replaced by a semidefinite constraint on matrix variables.
Semidefinite programming reduces to linear program when all the matrices are
diagonal. Semidefinite programs and linear programs are special instances of
a more general problem class called conic linear programs, where one seeks to
minimize a linear objective function subject to linear constraints and a constraint
that the unknown lies in a given closed convex cone. Both the cone of semidefinite
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matrices for semidefinite programming, and the non-negative orthant for linear
program, are homogeneous, self-dual cones.

One of the main aspects in which semidefinite programming differs from lin-
ear program is that the non-negative orthant is a polyhedral cone, whereas the
semidefinite cone is not. Thus, developing simplex type algorithms for semidefi-
nite programming is a difficult task. However, it is fairly straightforward to de-
sign polynomial time primal-dual interior-point algorithms for these problems.
Currently various software packages are available for solving semidefinite pro-
grams using interior-point algorithms, such as CSDP [4], SDPA [7], SDPpack
[2], SDPT3 [21], SP [23], and a Matlab toolbox by Rendl [17].

Subspace methods have been developed to solve system of linear equations
[11] and to compute eigenvalues [3]. In this paper we have developed a method
for solving large semidefinite programming problems using subspaces. Subspace
methods have been use to compute a few of the extreme eigenvalues and the
corresponding eigenvectors of a large, sparse, symmetric matrices, such as the
Lanczos method, which is based on Krylov subspaces [14], and the Davidson
method which uses Rayleigh matrices [6]. Generalized Davidson [19] and Jacobi–
Davidson type algorithms [20] have been introduced, and theoretical studies have
been done in [5, 12]. Davidson type subspace methods have been applied to solve
graph partitioning problem [9, 10] and extended eigenproblem [13]. Here we use
subspace methods to solve semidefinite programs.

Semidefinite programming has been an active research area in mathemat-
ics and engineering. In particular, many hard optimization problems with inte-
ger constraints can be relaxed to a problem with convex quadratic constraints
which can be formulated as a semidefinite program (see, for example, [15]).
These semidefinite programs provide approximations to the original, hard prob-
lem which can usually be solved in polynomial time. Usually, approximations
from semidefinite programming relaxations are better than those from linear pro-
gramming. In particular, we will apply semidefinite programming to the graph
partitioning problem.

Graph partitioning is universally employed in the parallelization of calcula-
tions on unstructured grids including finite element and finite difference tech-
niques. In many calculations, the underlying computational structure can be
conveniently modeled as a graph in which vertices correspond to computational
tasks and edges reflect data dependencies. Once a graph model of a compu-
tation is constructed, graph partitioning can be used to determine how to di-
vide the work and data for an efficient parallel computation. The goal of the
graph partitioning problem is to divide the graph into equally weighted sets in
such a way that the weight of the edges crossing between sets is minimized. In
other words, the graph partitioning is used to evenly distribute the computations
among the processors while minimizing interprocessor communication, so that
the corresponding assignment of tasks to processors leads to efficient execution.
In general, computing the optimal partitioning is an NP-hard problem. There-
fore, heuristics need to be used to get approximate solutions for these problems.
The graph partitioning problem for high performance scientific computing has
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been studied extensively over the past decade. While graph partitioning prob-
lems are NP-hard, in practice they are also large-scale, which can make even the
application of heuristics difficult.

This paper is organized as follows. Section 2 describes semidefinite program-
ming. The new method of solving the semidefinite programming using subspace
algorithms is introduced in Section 3, and Section 4 discusses the algorithm for
the new method. In Section 5, numerical results are presented.

2 Semidefinite Programming

A semidefinite program (SDP) is an optimization problem of the following form:
Let C be a given symmetric n×n matrix, a ∈ �m andA be a linear operator that
maps symmetric matrices of size n into vectors in �m given by A(X)i = Ai •X .
Note that the adjoint of this operator is AT (y) =

∑m
i=1 yiAi.

Primal Problem: min
X

tr(CX) subject to (a) A(X)− a = 0,

(b) X � 0.
(4)

The general duality theory for semidefinite programs has been studied [24,
16]. We derive the Lagrangian dual to semidefinite program directly. Introducing
the Lagrange multiplier y ∈ �m for the equality constraints, we see that

L(X, y) = C • X − yT (A(X)− a)− M • X

= (C −AT (y)− M) • X + yT a,

and the analogues of the Kuhn–Tucker conditions for optimality are

∇XL(X, y, M) = C −AT (y)− M = 0,
M, X � 0, M • X = 0, A(X) = a.

Note that ∇Xf(X) is the matrix whose (i, j) entry is ∂f/∂xij(X). Thus, we get
the dual semidefinite program

Dual Problem: max
y

aT y subject to (a) C −AT (y) � 0. (5)

It is assumed that there exits (X, y) such that X is positive semidefinite, A(X) =
a, and C−AT (y) is positive semidefinite. These points are called feasible points.
In this case it is easy to show weak duality: that is, the minimum value of primal
problem (4) is greater or equal to the maximum value of the dual problem (5). If
X is also positive definite, then it is a feasible interior point. In this case, Slater’s
theorem applies (see, e.g., [16]) and strong duality holds; that is, the minimum
value of the primal problem (4) is equal to the maximum value of the Lagrange
dual problem (5).

The theoretical basis of interior-point algorithms is presented in [8].
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3 Subspace Semidefinite Programming

We present a subspace algorithm for solving the semidefinite program (4). The
optimization problem being (4) and (5), we introduce Lagrange multipliers y
and M for (4) and look for stationary points of the function

L(X, y, M) = C • X − yT (A(X)− a)− M • X. (6)

Taking the partial derivative of L with respect to the components of X , we
obtain the residual R:

∇XL(X, y, M) = C −AT (y)− M = R.

At the optimal (X, y), we note that R = 0. Also note that the modified residual
matrix R̃ = C −AT (y) = M , is positive semidefinite at the optimal pair (X, y).
Taking the partial derivative of L with respect to the components of y, we obtain
∇yL(X, y, M) = A(X)− a.

Suppose that V is an n×k matrix of orthonormal columns and W is an m× l
matrix of orthonormal columns. These represent subspaces of �n of dimensions
k and l respectively. We can represent X̂ in subspace V with X̂ = V T XV and
ŷ in subspace W with ŷ = WT y, we can rewrite (4) as

min
X̂

C • (V X̂V T ), subject to (a) A(V X̂V T )− a = 0,

(b) V X̂V T � 0.
(7)

Note that X = V X̂V T � 0 is and only if X̂ � 0. This subspace SDP (7)
effectively reduces the number of variables. In the dual problem (5) we can set
y = Wŷ to restrict y to a subspace. This gives the following dual subspace
problem:

max
ŷ

aT (Wŷ) subject to (a) C −AT (Wŷ) � 0. (8)

This dual subspace problem (8) effectively reduces the number of constraints.
Combining the subspace problems to reduce both the number of variables (in

the primal problem), and the number of constraints, pre-multiply the constraint
(a) in (7) by W . We introduce new operators: Let Â be the linear operator
Â(X̂) = A(V X̂V T ), that maps symmetric matrices of size n × n into vectors

in �m, and ˆ̂A be the linear operator ˆ̂A(X̂) = WT Â(X̂) that maps symmetric
matrices of size n × n into vectors in �l.

A(V X̂V T ) =




tr(A1V X̂V T )
...

tr(AmV X̂V T )


 =




tr(V T A1V X̂)
...

tr(V T AmV X̂)


 =




Â1 • X̂
...

Âm • X̂


 = Â(X̂)

where Âi = V T AiV for i = 1, 2, . . . , m. Also,

WT (Â(X̂)) =




∑
j(Wj1Âj) • X̂

...∑
j(WjlÂj) • X̂


 =




ˆ̂
A1 • X̂

...
ˆ̂
Al • X̂


 = ˆ̂A(X̂).
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Since WT (A(V X̂V T ) − a) = WT (Â(X̂) − a) = WT (Â(X̂)) − WT a = ˆ̂A(X̂) −
WT a, (7) becomes the problem with both reduced number of primal variables
and reduced number of constraints:

min
X̂

V T CV • X̂ subject to (a) ˆ̂A(X̂)− WT a = 0

(b) X̂ � 0.
(9)

We introduce Lagrange multipliers ŷ and N and look for stationary points of
the function

L̂(X̂, ŷ, N) = V T CV • X̂ − ŷT ( ˆ̂A(X̂)− WT a)− N • X̂

Taking the partial derivative of L̂ with respect to the components of X̂ , we
obtain

∇X̂L̂(X̂, ŷ, N) = V T (C −AT (y)− M̂)V

= V T (∇XL(X, y, M̂))V = V T RV

where M̂ = V NV T is an approximation of M . Taking the partial derivative of
L̂ with respect to the components of ŷ, we obtain

∇ŷL̂(X̂, ŷ, N) = ˆ̂A(X̂)− WT a = WT (W ˆ̂A(X̂)− a)

= WT (Â(X̂)− a) = WT (A(V X̂V T )− a)
= WT (A(X)− a) = WT∇yL(X, y, M).

Projecting the constraint (a) in (8) on the subspace V , and since V T (AT (Wŷ)−
C)V = V T ((WTA)T (ŷ)−C)V = V T ((WTA)T (ŷ))V −V T CV = (WT Â)T (ŷ)−
V T CV = ˆ̂AT (ŷ)− V T CV , we have the Lagrangian dual of (9)

max
ŷ

(WT a)T ŷ subject to ( ˆ̂A)T (ŷ)− V T CV � 0. (10)

Below we present the main steps of our subspace algorithm for semidefinite
programming.

Algorithm 1 – Subspace Algorithm for Semidefinite Programming

1. Define the data for the problem: C an n × n matrix, a and m-
dimensional vector, and an operator A where A(X)i = Ai • X .

2. Define n × 1 vector V1 and m × 1 vector W1.
3. Compute an interior feasible starting point, X̂ and ŷ, in subspace.

X̂ is found by solving feasibility problem. ŷ = WT
j y, where Wj is the

current orthogonal basis.
4. Compute the semidefinite programming solution (X̂, ŷ) on the sub-

space. The projected matrix, operator and vector on the subspace

are Ĉ = V T
j CVj ,

ˆ̂A = WT
j (Â) = WT

j




V T
j A1Vj

...
V T

j AmVj


 and â = WT

j a,

where Vj and Wj are the current orthogonal basis. smallest value.
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5. Compute R̃ = C−AT (y) (or some representation of it), and compute
the eigenvector r of R̃ with the minimal eigenvalue.

6. Orthonormalize r against the current orthogonal basis Vj . Append
the orthonormalized vector to Vj to give Vj+1.

7. Estimate residual p = A(X)− a = A(VjX̂V T
j )− a.

8. Orthonormalize p against the current orthogonal basis Wj . Append
the orthonormalized vector to Wj to give Wj+1.

4 Implementation

The main motivation to study this kind of problem comes from applications in
discrete optimization. In particular we will investigate powerful and tractable
relaxation of the min-cut problem.

The min-cut problem is the problem of partitioning the node set of an edge-
weighted undirected graph into two parts so as to minimize the total weight of
edges cut by the partition. We assume that the graph in question is complete
(if not, non existing edges can be given weight 0 to complete the graph). Math-
ematically, the problem can be formulated as follows. Let the graph be given by
its weighted adjacency matrix A. Define the matrix L = diag(Ae) − A, where
e is the vector of all ones. The matrix L is called the Laplacian matrix associ-
ated with the graph. If a cut S is represented by a vector x where xi ∈ {−1, 1}
depending on whether or not i ∈ S, we get the following formulation for the
min-cut problem, where C = −L.

min
x

1
4
xT Cx subject to (a) x ∈ {−1, 1}n,

(b) eT x = 0.
(11)

Using X = 1
4xxT , this is equivalent to

min
X

C • X subject to (a) diag(X) = 1
4e,

(b) rank(X) = 1,
(c) X • (eeT ) = 0,
(d) X � 0.

(12)

Dropping the rank condition we obtain a problem of the form SDP with a = 1
4e

and A(X) = diag(X).
Algorithm 1 has been implemented using CSDP developed by Borchers [4]

to solve min-cut problem.

5 Numerical Results

We compared our new subspace algorithm with the original semidefinite pro-
gramming. The new algorithms have been implemented and run on a HP VISU-
ALIZE Model C240 workstation, with a 236MHz PA-8200 processor and 512MB

1063A Subspace Semidefinite Programming for Spectral Graph Partitioning



RAM. The existing semidefinite software, CSDP [4], was used for solving the
problem in a subspace, and for our comparison study. Also note that the matri-
ces in this implementation are all explicitly represented as dense matrices.

The following is the graph partitioning problem that we would like to solve:

min
X

C • X subject to (a) A(X) = 1
4

(b) X • (eeT ) = 0,
(c) X � 0

(13)

There are n constraints from (a) in (13). We rewrite the problem so that we
can reduce the number of constraints in original problem, m. The operator A
is defined in terms of m diagonal matrices Ai where (Ai)jj is one if j ≡ i
(mod m), and zero otherwise, i = 1, · · · , m, and m ≤ n:

min
X

C • X subject to (a) A(X) = (n/4m)e

(b) X • (eeT ) = 0,
(c) X � 0

(14)

where e is the vector of ones of the appropriate size. For example, if m = 1
is chosen for the number of constraints in original problem, the minimization
problem can be written as:

min
X

C • X subject to (a) A(X) = 1
4n

(b) X • (eeT ) = 0,
(c) X � 0

(15)

where A(X) = I • X . Note that this is equivalent to spectral partitioning.
Therefore, (a) in (15) is same as trace(X) = 1

4n. If the unknown is a 9 × 9
matrix and m = 3, the first constraint in (14) would be A(X) = 3

4e ∈ �3 and
A is given in terms of 3 symmetric matrices: A1 = diag(1, 0, 0, 1, 0, 0, 1, 0, 0),
A2 = diag(0, 1, 0, 0, 1, 0, 0, 1, 0), and A3 = diag(0, 0, 1, 0, 0, 1, 0, 0, 1).

Both algorithms were run with square matrices of various sizes. Figure 1
compares the observed running timings. The vertical-axis shows the timings in
seconds. The horizontal-axis is the size of the matrices, 9, 25, 100, 400, and 900.
The subspace was expanded until the stopping criteria have been met, which were
a constraint for the primal problem, norm(A(X)−a) = norm(p) < 10−3, and the
difference between primal and dual problems (the duality gap), is less than 10−7.
Table 1 summarizes the size of subspace when it reached the stopping criteria
and the number of constraints. From this graph we can see that the subspace
algorithm takes less than the original algorithm for all the test cases.

Figure 2 shows norm(p) when the subspace were expanded in the subspace
method. We used a fixed 400 by 400 matrix, and the number of constraints used
was 10. The horizontal-axis is number of iterations, which describes the size of
the subspace. The figure shows that after three iterations norm(p) is reasonably
small. This means that in order to find the solution of the original problem
using the subspace method, only 10 constraints were needed and the problem
was solved the problem until the size of the subspace reaches 3.
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Fig. 1. Timings comparing subspace semidefinite programing against semidefinite pro-
gramming.

size of matrix 25 100 400 900

size of subspace 2 2 3 3
number of constraints 5 10 10 10

Table 1. Timings comparing subspace semidefinite programing.
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Fig. 2. norm(p) of subspace semidefinite programming.
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Figure 3 shows the timings when the number of constrains were changed.
We used the fixed size of the matrix, 400 by 400, and the program was run
until the stopping criteria described above have been satisfied. In this example
all the criteria were met when the size of the subspace had reached to 3 by
3. The number of constraints used was 10, 20, 40, 80, 200, and 400 which de-
scribes horizontal-axis. The figure shows the timings increases as the number of
constraints increases.
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Fig. 3. Timings of subspace semidefinite programming using different number of con-
straints.
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for semidefinite programming, version 2.1. Technical report, School of Operations
Research and Industrial Engineering, Cornell University, Ithaca, NY, September
1999.

22. L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38:49–95,
1996.

23. L. Vandenberghe and S. Boyd. SP Software for semidefinite programming User’s
guide, version 1.0. Technical report, Information System Laboratory, Stanford
University, Stanford, CA, November 1998.

24. H. Wolkowicz. Some applications of optimization in matrix theory. Linear Algebra
and its Applications, 40:101–118, 1981.

1067A Subspace Semidefinite Programming for Spectral Graph Partitioning


	Introduction
	Semidefinite Programming
	Subspace Semidefinite Programming
	Implementation
	References

