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Abstract. In this paper we propose the use of Support Vector Machine
(SVM) to evaluate system reliability. The main idea is to develop an
estimation algorithm by training a SVM on a restricted data set,
replacing the system performance model evaluation by a simpler
calculation. The proposed approach is illustrated by an example.
System reliability is properly emulated by training a SVM with a small
amount of information.

1 Introduction

Reliability evaluation of real engineering systems is often performed using simulation
tools. Indeed, reliability indices of a system can be seen as the expected value of a test
function applied to a system state Xi (vector representing the state of each element) in
order to assess whether that specific configuration corresponds to an operating or
failed state [1].

For example, in a s-t network, to assess if a selected state Xi corresponds to an
operating or failed state, we need to determine its connectivity, which requires
knowledge of the cut sets or path sets of the system [2] or to use a depth-first
procedure [3].

In other cases, such as telecommunication networks and other real systems, the
success of the network requires that a given state is capable of transporting a required
flow. To evaluate a state, for example, the max-flow min-cut algorithm [4-5] can be
used.

In general, to determine the state of the system (operating or failed) as a function of
the state of its components, it is necessary to evaluate a function (one or more) that is
called System Function [6] or Structure Function (SF) [7].

In a Monte Carlo simulation, system reliability is evaluated by generating several
systems states and evaluating the SF. Since a large number of SF evaluations are
required, a fast, approximated algorithm substitutes its evaluation.

There are several approaches that have been used to address the definition of these
approximated algorithms [8-12]. In this work, an empirical model built by training a
Support Vector Machine (SVM) is presented. SVM provides a novel approach to the
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two-category classification problem (operating or failed)[13]. Nowadays, SVM has
reached a high level of maturity, with algorithms that are simple, easy to implement,
faster and with good performance [14].

The organization of the paper is as follow: Section 2 contains an overview of
Monte Carlo approach. The SVM technique is presented in Section 3. Finally, section
4 presents the proposed approach and the results of an example.

2 Monte Carlo Approach

Monte Carlo is one of the methods used to evaluate system reliability. The basic idea
is to estimate reliability by a relatively simple sampling plan that requires little
information about the system under study [15].

For example, a system state depends on the combination of all component states
and each component state can be determined by sampling the probability that the
component appears in that state [5].

If it is assumed that each component has two states (failure and success) and that
component failures are independent events, then the state of the ith component (xi)
can be evaluated using its failure probability Pfi and a random number Ui, distributed
uniformly between [0,1], as [5]:
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The jth-state of the system containing NC components is expressed by the vector
Xj = ( x1, x2 , …, xNC)

In general, to evaluate if Xj is an operating or failure state, a SF has to be defined
and evaluated at Xj. The SF should have the form:
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In the Monte Carlo approach the conceptual scheme for reliability evaluation
consist on [1]:

1. Select a system state Xj

2. Calculate the System Function for the selected state Xj

3. Update the estimate of the expected value of SF(Xj) (E(SF(Xj))
4. Calculate the uncertainty of the estimate
5. If the uncertainty is acceptable (within a target tolerance), stop; otherwise

return to step 1)
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Other sample techniques exist which are more effective [15]. But, in general, all
Monte Carlo Methods require SF evaluations. As previously mentioned, the SF
depends on the type of reliability evaluation required. In this paper, the emulation of
the SF using a SVM is considered.

3 Support Vector Machine

Support Vector Machines provide a new approach to the two-category classification
problem  [13].

SVMs have been successfully applied to a number of applications ranging from
particle identification, face identification and text categorization to engine detection,
bioinformatics and data base marketing. The approach is systematic and properly
motivated by statistical learning theory [16].

SVM is an estimation algorithm (“learning machine”) based on [13]:
• Parameter estimation procedure (“Training”) from a data set
• Computation of the function value (“Testing”)
• Generalization accuracy (“Performance”)

Training involves optimization of a convex cost function: there are no local
minima to complicate the learning process. Testing is based on the model evaluation
using the most informative patterns in the data (the support vectors). Performance is
based on error rate determination as test set size tends to infinity [17].

Suppose Xi is a system state and yi is the result of applying the SF to Xi: yi =
SF(Xi).

Consider a set of N training data points {(X1,y1), …. (XN,yN)}. The main idea is to
obtain a hyperplane that separates failed from non-failed in this space, that is, to
construct the hyperplane H: y = w · X-b = 0 and two hyperplanes parallel to it:

H1: y = w · X-b = +1 and
   H2: y = w · X-b = -1

with the condition, that there are no data points between H1 and H2, and the
distance between H1 and H2 (the margin) is maximized. Figure 1 shows the situation
[18].

The quantities w and b are the parameters that control the function and are referred
as the weight vector and bias [16].

The problem can be formulated as:
Min ½ wTw
w,b
s.t     yi (w · X-b) ≥ 1
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Fig. 1. Decision hyperplanes generated by a linear SVM [18]

This is a convex, quadratic programming problem in (w, b), in a convex set.  Once
a SVM has been trained, it is simple to determine on which side of the decision
boundary a given test pattern X* lies and assign the corresponding class label, using
sgn (w · X* + b).

When the maximal margin hyperplane is found, only those points which lie closest
to the hyperplane have αi > 0 and these points are the support vectors, that is, the
critical elements of the training set. All other points have αi = 0. This means that if all
other training points were removed and training was repeated, the same separating
hyperplane would be found [13]. In figure 2, the points a, b, c, d and e are examples
of support vectors [18].

Small problems can be solved by any general-purpose optimization package that
solves linearly constrained convex quadratic programs. For larger problems, a range
of existing techniques can be used [16].

If the surface separating the two classes is not linear, the data points can be
transformed to another high dimensional feature space where the problem is linearly
separable. Figure 3 is an example of such transformation [16].

The algorithm that finds a separating hyperplane in the feature space can be
obtained in terms of vector in input space and a transformation function Φ(·). It is not
necessary to be explicit about the transformation Φ(·) as long as it is known that a
kernel function K(Xi,Xj) is equivalent to a dot product in some other high dimensional
feature space [13,16-19].

There are many kernel functions that can be used this way, for example [13,16]:
K(Xi,Xj) = e -||Xi-Xj||²/2σ² the Gaussian radial basis function kernel
K(Xi,Xj) = (Xi · Xj + m )p  the polynomial kernel

The Mercer’s theorem is applied to determine if a function can be used as kernel
function [19].

With a suitable kernel, SVM can separate in the feature space the data that in the
original input space was non-separable. This property means that we can obtain
nonlinear algorithms by using proven methods to handle linearly separable data sets
[19].

H: w · X – b = 0

H1: w · X – b = +1

H2: w · X – b = -1
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Fig. 2. Example of support vectors [18]
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Fig. 3.  A non-linear separating region transformed in to a linear one [16]

The choice of the kernel is a limitation of the support vector approach. Some work
has been done on limiting kernels using prior knowledge [19]. However, it has been
noticed that when different kernel functions are used in SVM, they empirically lead to
very similar classification accuracy [19]. In these cases, the SVM with lower
complexity should be selected.

The performance of a binary classifier is measured using sensitivity, specificity and
accuracy [20]:
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where:
TP=Number of True Positive classified cases (SVM correctly classifies)
TN=Number of True Negative classified cases (SVM correctly classifies)
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FP= Number of False Positive classified cases (SVM labels a case as positive
while it is a negative)

FN= Number of False Negative classified cases (SVM labels a case as negative
while it is a positive)

For reliability evaluation, sensitivity gives the percentage of correctly classified
operational states and the specificity the percentage of correctly classified failed
states.

4 Proposed Approach

In order to apply SVM in Monte Carlo reliability evaluations, a data set using the
system state vector Xi and yi = SF(Xi) is built to train the SVM. Since a SVM is going
to replace the SF, the data set is built by sampling the configuration space. A system
state is randomly generated and then its SF is evaluated. During the system state
generation only different states are selected, that is, there are no replicated states in
the training data set.

The SVM is trained using a data set with N data while NT data are used to evaluate
the SVM performance.

Once a suitable SVM is selected, the system reliability is evaluated by generating a
random system state X*

i and by evaluating sgn (w · X*

i + b). The process is repeated
NM times. At the end, the system reliability can be estimated as:

NM

StatesOperatingofNumber 
y  Reliabilit =

4.1 Example

Figure 4 shows the system to be evaluated [21]. Each link has reliability ri and
capacity of 100 units. The goal is to evaluate the reliability between the source node s
and the terminal node t. A system failure is defined when the flow at terminal node is
less than 200 unit. Using a pure Monte Carlo approach and a max-flow min-cut
algorithm as the SF, the estimated reliability is 0.93794.

In this case there are 221 possible combinations. The state space is randomly
sampled and a training data set with 500 different states is generated. Different
kernels were tried and it was found that the best SVM has a second order polynomial
kernel, with only 90 support vectors.

Once the SVM is trained, it is used to evaluate the system reliability. Table 1
shows the size of the test data set, the system reliability based on the number of
operating states obtained evaluating the SF, the system reliability using SVM and the
relative error:
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Fig. 4. Network for example 4.1 [21]

100 x 
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System reliability obtained using SF or SVM are very close. It is interesting to note
that the system reliability is properly emulated using only a little fraction of the state
space (90 support vectors/221 states = 0.0043 %).

The complexity of a SVM is O(NC·NSV) [13], where NC is the number of
components in the system and NSV is the number of support vector, while the
complexity of the max flow algorithm is O(N³) [4], where N is the number of nodes.
An additional speed up factor can be obtained, using the virtual support vector
method or the reduced set method. Description of those techniques can be found in
[13].

Table 1.  SF and SVM Reliability results

Testing data
set size

SF Reliability SVM Reliability Relative Error (%)

1000 0.9390 0.9480 -0,96%
5000 0.9390 0.9410 -0,21%

10000 0.9367 0.9382 -0,16%
20000 0.9382 0.9398 -0,17%
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r7 = 0.81
r4 = r12 = r13 = r19 = 0.981
other ri = 0.9
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5 Conclusions

This paper has presented an approach to evaluate system reliability based on SVM.
The excellent results obtained in the example show that the method could be used to
evaluate the reliability of a system by emulating the SF with a SVM. In the example
presented the SVM, built from a little fraction of the total state space, produces very
close reliability estimation with relative error less than 1 %

Additionally the model based on SVM takes the most informative patterns in the
data (the support vectors) which can be used to evaluate approximate reliability
importance of the components.
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