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Abstract. Agent-based paradigm is increasingly applied to building computing
systems where conventionally latent requirements, e.g. time-sensitivity of data
and event validity, and/or truth-values of predicates, timeliness of
communication, and others become essential for correct functioning of systems.
In many such cases empirical demonstration of expected behaviour is not
sufficient, formal verification of certain properties becomes desirable. This
assumes that interaction-based models of computing are to be enhanced by
introducing sufficiently sophisticated time. Such enhancement is not too simple
since time has been abstracted away from models of computing during the
evolution of computer science. This paper introduces some preliminary ideas
for developing time-sensitive interaction-based models of computations.

1 Introduction

The interaction-based models of computations have emerged from three independent
research domains. Computer science and software engineering have reached the
interaction-based models when developing methods for formal program verification
(Milner (1980), Milner (1999)), and developing theoretical foundations for object-
oriented programs and for programming in the large (Wegner (1997)). Interaction-
based models of computations have attracted attention in distributed artificial
intelligence due to the evolution of agent and multi-agent paradigm (see for instance
Ferber (1999) and Wooldridge (2000b)). Many applications of real-time software are
known for high dependency requirements. This has lead to studies that, departing
from specific timing requirements of real-time software have lead to interaction-based
models of computation (see, for instance Quirk (1977), Motus (1995)), applicable
from the specification stage of system development. The latter models are not quite
comparable with the conventional computer science models, because they focus on
timing analysis in a component-based system.

Interaction-based models of computing exceed algorithmic models in formal power
(see for details the notion of persistent Turing machines in Wegner (1997), Wegner
and Goldin (1999)). For instance, persistent Turing machine can model any discrete-
state computing agent that sequentially interacts with its environment. As a rule those
models describe indefinitely on-going computations on a set of persistent Turing
machines, whereas the interaction may depend on the pre-history of computations.
Typical practical examples are multi-agent systems, real-time systems (e.g. systems
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where computer is directly interacting with real-world processes – influencing thus
behaviour of real-world processes and/or is being controlled by these processes,
human-machine collaborative decision-making systems, and others.

Need for time-sensitive models of computations stems from specific problems in
application domains. Computer control systems, increasing number of communication
systems, multi-media, many distributed artificial intelligence and agents’ applications
naturally lead to time-constraint, concurrent software that assumes time-sensitive
models of computations for its verification. Conventional computer science and
software engineering have (unfortunately) successfully eliminated time (except as a
trivial parameter for ordering events) from theories and tools related to program
development. Most of the conventional theoretical thinking in computer science is
based on an (not very realistic) assumption of completely known causal relations.
Natural consequence of this assumption is that interest to time arises only at the
physical design and/or implementation stages of software (e.g. scheduling) – and even
then it is based on trivial performance type measures of execution time and execution
frequency. Timeliness of interactions and validity of used and/or produced data is of
no interest and cannot be evaluated by the existing models of computations.

Incomplete knowledge of causal relations is usual in time-constraint concurrent
software and also in many agent-based applications. Software operation in such
systems is, to a large extent, based on estimates, beliefs and/or deliberate
approximations of causal relations – just to enable the use of conventional computing
methods. Quite often causal relations are approximated by time constraints – just for
the sake of economic considerations, or to enable the use of existing (too complex)
knowledge, or to avoid paradoxes. For example a paradoxical situation may occur in
continuous time when a causal relation becomes questionable if the time interval
between the cause and effect reduces infinitely.

Another unavoidable feature of real-time and agent-based software is its
indefinitely on-going nature of execution and persistency of interactions’ influence on
the future behaviour. Wegner and Goldin (1999) state that models of computations
must be adequately enriched in order to model persistence of computing agent state
and on-going interaction with a possibly incomputable environment. An example
from conventional computer science illustrates what may happen if the models are not
properly expressive and analysable – consider a non-terminating program as a model
of indefinitely on-going program. Because of too abstract notion (i.e. non-
termination) that hides the intrinsic features of the on-going computations, the whole
topic of non-termination was left out of the mainstream theory for a long time (as not
easily tractable and therefore not interesting). Just remember that termination is often
a precondition to verifiability of a program. This is a subjective obstacle to
verification of such programs. The objective obstacle is that the usually applied first-
order predicate calculus cannot describe the functioning of an interaction-based non-
terminating program – one needs higher order predicate calculus for that (see for
instance, a claim in Wegner and Goldin (1999), an example in Lorents et alii (1986)).
A statement from Goldin and Keil (2001) partly explains the essence why higher-
order logic is needed – no sequence of preordained steps (or series of interactions) can
model the multiple-stream encounters between multi-interacting evolved agents and
their environments.
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Serious confusion also rises when one tries to explain the essence of a non-
terminating program to the end-user (who is not a specialist in computer science).
Besides, the notion of “non-terminating program” is an approximate description that
hides inner details of the program. More precise, and also more acceptable for non-
computer specialists is the description of a “non-terminating program” as a set of
interacting, repeatedly activated, terminating programs (Quirk (1997)). This concept
easily enables to introduce sufficiently sophisticated time and naturally leads to
formal verification of timing properties in the early life-cycle stages – e.g.
specification and logical design (Lorents et alii (1986) and Motus (1995)).

Conceptually closer to the traditional notion of “non-terminating program” is the
departing point for timed process algebra studied by Caspi and Halbwachs (1986)) as
an approach to timing analysis of software. This approach encountered serious
theoretical problems due to use of continuous time that has hindered its practical
application.

Interaction-based computing is an input/output stream processing view on
computations as opposed to algorithmic computations where an input string is
processed, output string is generated and then the algorithm terminates. The
input/output stream processing emphasises the persistent nature of interactive
computing. Characteristic to interactive computing is the phenomenon of emergent
behaviour (Simon, 1970) that can be observed in multi-agent systems, real-time
systems, human organizations, and in many other applications. In such systems
agent’s learning implies adaptation and, adaptation in turn implies interaction.
Learning is an example of history-dependent behaviour that cannot be adequately
modelled within an algorithmic (i.e. without history) model of computations neither in
an order-of-events setting (Goldin and Keil, 2001).

Besides the emergent behaviour, interactive computations have the following
features that are not present in algorithmic computations: (1) stream input-output, (2)
interleaving of inputs and outputs during computations, (3) history-dependent
behaviour of the computing agents. Causal relations built into the computing system
define admissible permutations in interleaving input and output streams. When the
causal relations are not completely known one cannot define precisely which of the
occurring permutations are admissible. Another difficulty is related to exceptional
permutations potentially occurring when one implements forced (Wegner and Goldin
1999 use “true”) concurrency that occurs in the case of multi-stream interaction
machines or forced (and too high) frequency of input stream for sequential interaction
machines. Such phenomena may occur, for instance, as disturbances even in
algorithmic computations on multi-processors with pipeline or matrix architecture.

Such anomalies, including those potentially caused by incomplete knowledge of
causal relations, can be avoided by introducing suitable time constraints. However,
this assumes that instead of an abstract notion of non-terminating program is
considered a more precise inner structure – e.g. persistent Turing machine (suggested
by Wegner and Goldin (1999)), or a set of interacting, countable number of times
activated, terminating programs (suggested by Quirk (1977), Motus (1995)).
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This paper focuses on preparatory aspects of developing time-sensitive interaction-
based model of computations – selection of suitable candidates for comparative study
of interaction-based models of computations, and on discussing the sufficient
complexity of time to be used in the model of computations. Most of the future work
is planned to be theoretical. However, occasional experimental checks of the theory
are important. In addition to the existing tool that implements an interaction-based
model of computations (for timing analysis of systems behaviour), the authors have
started design and implementation of another “by-product” – a test-bed for assessment
and analysis of development and evolution of multi-agent systems. The testing tools
and experiments will be considered in a separate paper.

2 Interactive Models of Computations

There is no widely accepted model of interactive computations for the time being.
Instead, several concepts and models have been suggested. For instance, the calculus
of communicating systems and pi-calculus (Milner 1980, Milner 1999), Q-model
(Motus and Rodd 1994); temporal logic of reactive and concurrent systems (Manna
and Pnueli, 1991), logic of rational agents (Wooldridge, 2000a), input/output
automata (Lunch and Tuttle, 1989), abstract state machines (Gurevich, 1993),
attributed automata (Meriste and Penjam 1995), interaction machines (Wegner 1997).

In the pragmatic world of real-time systems the mainstream research is still trying
to patch holes in the algorithmic approach. Models of interactive computing are
attracting attention slowly, in spite of the successful start in the 1980-es and some
interesting practical results obtained recently. For instance, consider a paper on
application of a time-sensitive model of interactive computations (Naks and Motus
(2001)), and suggestion for a sufficiently sophisticated time-model to be applied for
RT UML project (Motus and Naks (2001)).

Respective studies with models of interactive computations in the agents’
community and object-oriented community have progressed faster, see for instance,
Milner (1999), Wegner (1997), Wegner and Goldin (1999), Wooldridge (2000a),
Jennings (2001). Respecting the computer science traditions, however, time has been
abstracted away from the models of interactive computations resulting from the latter
communities.

Modelling the stream-based behaviour of a computing system has been the key
problem in those communities. Behaviour usually denotes a set of I/O streams that
obey certain pre-defined ordering discipline. In many cases the ordering discipline are
defined by setting only a few constraints on certain interactions. This enables to cope
with potentially non-countable number of different behaviours generated by a
persistent interactive machine (with countable number of interactions). It is suggested
that by changing mathematical framework from induction to co-induction, from least
fixed point to greatest fixed point, the problem of model expressiveness can be
resolved (see for details Wegner and Goldin (1999), Goldin and Keil (2001).

The analysing capability of models is also important, although somewhat neglected
at this development phase. In many cases the analysing capability can be reduced to
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the question of defining admissible behaviours, distinguishing equivalent sets of
behaviours from each other, and demonstration that only admissible behaviours are
generated (or that no prohibited behaviour is generated). Behaviour is defined by
order imposed on elements in the I/O stream, usually by precedence relation.
Concurrent occurrence of stream elements is often demonstrated by interleaving
streams.

Difficulties may appear when considering the case of incompletely known causal
relations between the agents (components, etc), or the case when causal relations are
completely known, but the use of this knowledge is computationally too expensive
(e.g. takes more computing power than one has). This usually implies that I/O stream
elements cannot be ordered a priori. On the outskirts of computer science computing
systems seldom function fully alone, independently and autonomously (i.e. normally
they interact directly with the surrounding world). In such cases the admissible
behaviours are often dynamically defined by responses from a natural (or artificial)
world processes that are (at least partially) out of the control of the computing system.
Remember, for instance, the case of emergent behaviours (Goldin and Keil (2001)).

In many applications not only the logical order of stream elements is important for
defining behaviours. In time-critical applications, for instance, the length of time
interval between the respective elements of the I/O stream may be decisive for
behaviour classification. This implies the introduction of a metric time in addition to
logical time (ordering). One metric time per system may not be sufficient. In multi
agent systems and in real-time systems each agent (component, subsystem) may have
its own time system, imposed by its own immediate environment. Those separate time
systems are often quite different from each other and can only approximately be
projected to a single system timeline. Nevertheless, for analysing properties of inter-
agent (inter-component) interactions, one needs all those different time systems –
approximate system’s time may not be sufficient for analysing salient time properties
of interactions (Motus (1995).

The way ahead. The authors of this paper believe that interaction based computing
systems are increasingly applied to time-sensitive applications. Such applications
provide essentially incomplete information about their (potentially dynamically
changing) intrinsic details and interactions –  e.g. goal functions, characteristics of
components, inner structure, influence from the environment, etc. Formal analysing
tools are not yet available, although their development is supported by OMG
initiatives in developing real-time extensions to UML, and ongoing research in
applying agent-based paradigm (e.g. distributed computer control systems, mobile
robotics, banking). Nevertheless, the everyday practice is still relying on “trial and
error” method.

To partially suppress a new round of “trial and error” activities it makes sense to
try and merge the favourably advanced theoretical ideas from all the three involved
source domains – computer science, real-time systems, and multi-agent systems – and
develop a time-sensitive model of interactive computations.

Based on the above discussion the major question (in the context of this paper) in
models of interactive computations seems to be “how to improve their analysing
capabilities in the case of incomplete information, emerging behaviours and
quantitative time-sensitive behaviours”. Previous theoretical and experimental
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experience in the domains of real-time systems and time-critical reasoning lead the
authors to the following

Working hypothesis: Introduction of reasonably sophisticated time system into the
description of model of interactive computations enables to reduce indeterminacy of
behaviours generated by the model by approximating incompletely known causal
relations, catering for quantitative time constraints, and ordering interactions in time
even on multi-stream interaction machines.

Hence, co-inductive definitions permit to consider the space of all computational
processes as a well-defined set, even if the input streams are generated dynamically
(Goldin and Keil (2001)). The sufficiently sophisticated time system adds the ability
to introduce adequate ordering disciplines – required for analysis of system
properties. It is stressed that time system can also cater for forced concurrency created
(pure computational) problems in multiprocessors with pipeline and/or matrix
architectures – by introducing additional ordering constraints.

2.1 Criteria for Qualifying as a Candidate for Time-Sensitive Model
of Interactive Computations

The first problem is to fix (preliminary) criteria that limit the number of candidate
models to be considered in more details for developing time-sensitive model of
interactive computations. The qualified models are then studied further to understand
their specific and common properties, one or two candidates will eventually be
chosen.

The first criterion emphasises that essential requirements of multi-agents and real-
time systems are to be met by candidate models. It seems reasonable to depart from
the characteristic properties for multi-stream interaction machines stated by Wegner
and Goldin (1999):

• Capability to handle true concurrency (called forced concurrency in Motus and
Rodd (1994))

• Higher than first order-logic is required to describe their functioning.

By pure coincidence the same features characterise the Q-model and related weak
second order predicate calculus discussed in Motus and Rodd (1994) and Lorents et
alii (1986).

The second criterion facilitates comparison of candidate models by partition them
into subgroups. During the preliminary analysis the candidates are subjectively
classified based on the (at least seemingly) prevailing methodology, e.g.:

• Process algebras represented, for instance, by CCS and PI-calculus (Milner (1980)
and Milner (1999)); history transformer suggested by Caspi and Halbwachs (1986)
is also a good candidate

• State machines, represented, for instance, by interaction machines by Wegner
(1997), attributed automata (Meriste and Penjam (1995), statecharts (Harel (1987))
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• Logical framework based models, represented by temporal logic (Manna and
Pnueli (1991), logic of rational agents’ Wooldridge (2000a), weak second order
predicate calculus with time (Lorents et alii (1986)).

• Other (pragmatic) models represented, for instance, by Wooldridge (2000b), Harel
(2001), Motus and Rodd (1994), and others.

Thorough research of the qualified models will hopefully reveal one or two suitable
candidates for further elaboration to a  time-sensitive model of interactive
computations by introducing the required system of time-features. The resulting time-
sensitive model is to be used as one of the models for describing agents and systems
of agents in a  concurrently developed test-bed –  the experimental side of this
theoretical study. The respective methods developed for formal analysis of systems
properties form the basis of the assessment tool to be developed and used in the test-
bed.

3 On concepts of Time as Required in Time-Sensitive
Multi-agent Systems

Different authors have used the notions of “time”, “time properties”, “timing
analysis”, and “time models” in a variety of contexts and meanings. Some comments
follow in order to reduce potential confusion and to explain the essence of the time as
used in models of computations. A  large set of disparate views on the role of time in
computing is partly the reason for the excessive variety of terms, beliefs and
understandings. For instance, implementation stage (e.g. scheduling theory) needs
different time notion than specification and design stages. In the latter stages the time
constraints are derived from the environmental and user requirements and imposed on
components and their interaction. In the implementation stage (scheduling) all those
time constraints are projected on one single time-line and checked for satisfaction – if
the system is schedulable. If not a new error and trial iteration is started. This is where
sophisticated time and formal timing analysis is of real use (see, pre-run-time
scheduling (Xu and Parnas, (2000)); timing analysis at specification stage, (Motus and
Rodd (1994))).

It has been demonstrated in Motus and Rodd (1994) that a  conventionally used
single time variable per system can be sufficient only for assessing performance type
of timing properties (usually the focus of scheduling methods). Instead, a  rather
sophisticated time model should be used in order to handle also the truly salient types
of timing properties –  time-correctness of events and data, and time correctness of
interactions between parts of an agent, agents, coalitions of agents, etc.

A system is compiled from components (reused software pieces, COTS, agents,
subsystems, etc) whose dynamic properties are important for reaching the goal of the
component, and the system as a whole. A component is loosely connected to the other
components (by exchanging messages), and may manage its own connections with
the environment. Due to the remarkable potential autonomy of components each
component may have its one, independent of the other components, time system.
Usual members of a component’s time system are, for instance:
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• thermodynamic time for accounting the overall progress of the component and its
environment,

• reversible time for potential handling of faults and exceptional cases inside of the
component, and

• a set of relative times for describing and analysing interactions with the other
components.

At the first glance, such time model looks extremely sophisticated. In reality it boils
down to intuitively well understandable for a non-computer specialist, and easily
specifiable model that enables automatic verification of many timing properties (see,
Motus and Rodd (1994), Motus (1995)) and simulation sessions on an automatically
generated prototype already at the specification stage. Automatic verification means
that the user is saved from theoretical nuances required for statement theorems about
common timing problems – e.g. non-violation of imposed timing constraints during
an interaction. Application-specific timing properties still need specific handling (e.g.
statement and proof of theorems) as usual.

4 Conclusions

The number of time-sensitive applications of interactive computing is increasing fast.
At the same time practical development is, especially at the early development stages,
still largely based on trial and error method. This paper discusses premises for
developing a time-sensitive model of interactive computations that would enhance
theoretical understanding of what goes on at the early stages of systems development
and assist in early detection and elimination of inconsistencies – including timing
inconsistencies.

The paper discusses the necessity of time in computing systems and states a
working hypothesis that reasonably sophisticated time system could substantially
assist in reducing indeterminacy introduced by incompletely known causal relations.
Time could also facilitate the handling of constraints imposed on computational
processes and their interactions by direct communication of the computing system
with its dynamically changing environment.

The paper also sketches a way towards systematic development of the time-
sensitive model of interactive computations, starting form the variety of existing
models and also considering the experience obtained in formal timing analysis of real-
time software.

It is acknowledged that true stable progress in developing a theoretical model can
be guaranteed only by merging the theoretical study with experiments. Therefore, the
authors suggest that, as a part of future activities, building a test-bed is to be started.
Such a test-bed would serve as a discovery system for agent-related knowledge, in
addition to being just an assessment environment for theoretical results. For instance,
the test-bed would enable (based on the model that is to be developed) explicit
experimental study of time sensitivity of parts of agents (related to communication,
learning, and adaptation), and agents’ interactions.
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