
Basic Operations on a Partitioned Optical
Passive Stars Network with Large Group Size �

Amitava Datta and Subbiah Soundaralakshmi

Department of Computer Science & Software Engineering
The University of Western Australia

Perth, WA 6009
Australia

email : {datta,laxmi}@cs.uwa.edu.au

Abstract. In a Partitioned Optical Passive Stars (POPS) network, n =
dg processors are divided into g groups of d processors each and such a
POPS network is denoted by POPS(d, g). There is an optical passive
star (OPS) coupler between every pair of groups. Each OPS coupler can
receive an optical signal from any one of its source nodes and broadcast
the signal to all the destination nodes. The time needed to perform this
receive and broadcast is referred to as a time slot and the complexity of
an algorithm using the POPS network is measured in terms of number of
slots it uses. Since a POPS(d, g) requires g2 couplers, it is unlikely that in
a practical system the number of couplers will be more than the number
of processors. In other words, in most practical systems, the group size d
will be greater than the number of groups g, i.e., d >

√
n > g. Hence, it

is important to design fast algorithms for basic operations on such POPS
networks with large group sizes. We present several fast algorithms for
basic arithmetic operations on POPS(d, g)s such that d >

√
n > g. Our

algorithms require significantly less number of slots for these operations
compared to the best known algorithms for these problems designed by
Sahni [8].

keywords: optical computing, partitioned optical passive stars network, arith-
metic operations

1 Introduction

The Partitioned Optical Passive Stars (POPS) network was proposed in [3–5,
7] as a fast optical interconnection network for a multiprocessor system. The
POPS network uses multiple optical passive star (OPS) couplers to construct a
flexible interconnection topology. Each OPS coupler can receive an optical signal
from any one of its source nodes and broadcast the received signal to all of its
destination nodes. The time needed to perform this receive and broadcast is

� This research is partially supported by a University of Western Australia research
grant.

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2329, pp. 306−315, 2002.
 Springer-Verlag Berlin Heidelberg 2002

referred to as a slot. A POPS network is divided into g groups of d processors
each. Hence, the total number of processors in the network is n = dg. We denote
such a POPS network as a POPS(d, g) network.

Berthomé and Ferreira [1] have shown that POPS networks can be modeled
by directed stack-complete graphs with loops. This is used to obtain optimal
embedding of rings and de Bruijn graphs into POPS networks. Berthomé et al.
[2] have also shown how to embed tori on POPS networks. Gravenstreter and
Melhem [4] have shown the embedding of rings and tori into POPS networks.

Sahni [8] has shown simulations of hypercubes and mesh-connected comput-
ers using POPS networks. Sahni [8] has also presented algorithms for several
fundamental operations like data sum, prefix sum, rank, adjacent sum, consec-
utive sum, concentrate, distribute and generalize. Though it is possible to solve
these problems by using existing algorithms on hypercubes, the algorithms pre-
sented by Sahni [8] improve upon the complexities of the simulated hypercube
algorithms. In another paper, Sahni [9] has presented fast algorithms for matrix
multiplication, data permutations and BPC permutations on the POPS network.
One of the main results in the paper by Sahni [8] is the simulation of an SIMD
hypercube by a POPS(d, g) network. Sahni [8] has shown that an n processor
POPS(d, g) can simulate every move of an n processor SIMD hypercube us-
ing one slot when d = 1 and 2�d/g� slots when d > 1. It only makes sense to
design specific algorithms for a POPS(d, g) network for the case when d > 1.
For the case d = 1, the POPS network is a completely connected network and
it is easier to simulate the corresponding hypercube algorithm. Moreover, any
algorithm designed for a POPS(d, g) network should perform better than the
corresponding simulated algorithm on the hypercube.

Most of the algorithms designed by Sahni have different complexities for
different group sizes. He usually expresses the complexity of these algorithms
for three cases, (i) d = g =

√
n, (ii) d <

√
n < g and (iii) d >

√
n > g.

Gravenstreter and Melhem [4] mention that for most practical systems, the
number of couplers will be less than the number of processors. Indeed, for a
POPS(d, g), with dg = n, if the number of groups g >

√
n, we need g2 > n

couplers to connect such a network. It is unlikely that a practical system will be
built with such a high number of couplers. One would expect that the number of
couplers in most practical systems will be significantly smaller than the number
of processors. In other words, the group size d >

√
n in a practical system and

hence, g <
√
n. We feel that cases (i) and (ii) are unrealistic in most practical

systems since in these cases the number of OPS couplers g2 is equal to or greater
than n, the number of processors. Hence, our main motivation is to design fast
algorithms for POPS(d, g) networks such that d >

√
n > g.

In this paper, we present fast algorithms for two fundamental arithmetic op-
erations, data sum and prefix sum, for POPS networks with large group size
and hence, small number of groups. Our algorithms improve upon the complex-
ities obtained by Sahni for these problems when d >

√
n > g. We present the

comparison of the algorithms by Sahni [8] and our algorithms in Table 1.

307Basic Operations on a Partitioned Optical Passive Stars Network

Problem Sahni’s [8] algorithm Our algorithm

Data sum �d
g � log n d

g + 2 log g − 1

Prefix sum 2d
g
(1 + log g) + log d+ 1 2d

g
+ 4 log g + 6

Table 1. The comparison between our algorithms and Sahni’s [8] algorithms. All
complexities are in terms of number of slots. In this paper, all logarithms are to the
base 2.

The rest of this paper is organized as follows. In Section 2, we discuss some
details of the POPS network. We present our data sum algorithm in Section 3.
Finally, we present the prefix sum algorithm in Section 4.

2 The POPS network

Group 0 Group 0

Group 1 Group 1

C(1,0)

C(0,0)

C(0,1)

C(1,1)

0
1

2

3

4

0

1

2

3

4

0

1
2

3

4

0

2
1

3

4

Fig. 1. A 10-processor computer connected via a POPS(5, 2) network.

A POPS(d, g) network partitions the n processors into g groups of size d each
and optical passive stars (OPS) couplers are used to connect such a network
when every pair of groups is connected by a coupler. Hence, overall g2 couplers
are needed. Each processor must have g optical transmitters, one transmitter
each for transmitting to the g OPSs for which it is a source node. Also, each
processors should have g optical receivers, for receiving data from each of the
g couplers. Each OPS in a POPS(d, g) network has degree d. In one slot, each
OPS can receive a message from any one of its source nodes and broadcast the

308 A. Datta and S. Soundaralakshmi

message to all of its destination nodes. However, in one slot, a processor can
receive a message from only one of the OPSs for which it is a destination node.
Melhem et al. [7] observe that faster all-to-all broadcasts can be implemented
by allowing a processor to receive different messages from different OPSs in the
same slot. However, in this paper, we will assume that only one message can be
received by a processor in one slot. A ten-processor computer connected via a
POPS(5, 2) network is shown in Figure 1.

The g groups in a POPS network are numbered from 1 to g. A pair of groups
is connected by an optical passive star (OPS) coupler. For coupler c(i, j), the
source nodes are the processors in group j and the destination nodes are the
processors in group i, 1 ≤ i, j ≤ g. Note that we have shown each group twice
in Figure 1 to indicate that processors in each group are both receivers and
senders.

The most important advantage of a POPS network is that its diameter is
1. A message can be sent from processor i to processor j (i �= j) in one slot.
We use the notation group(i) to indicate the group that processor i is in. To
send a message from processor i to processor j, processor i uses the coupler
c(group(j), group(i)). Processor i first sends the message to c(group(j), group(i))
and then c(group(j), group(i)) sends the message to processor j. Similarly, one-
to-all broadcasts also can be implemented in one slot.

We refer to the following result obtained by Sahni [8].

Theorem 1. [8] An n processor POPS(d, g) can simulate every move of an
n processor SIMD hypercube using one slot when d = 1 and using 2�d/g� slots
when d > 1.

One consequence of Theorem 1 is that we can simulate an existing hypercube
algorithm on a POPS network.

In our algorithms, we use the following results obtained by Sahni [8].

Lemma 1. [8] If n data items are distributed one per processor in a POPS(g, g)
with n = g2 processors, their sum can be computed in �gg � logn = 2 log g slots.

Lemma 2. [8] If n data items are distributed one per processor in a POPS(d, g)
with n = gd processors, with 1 < d ≤ g, their prefix sum can be computed in
3 + logn + log d slots.

3 Data sum

Initially n data items are distributed among n processors, one item per processor
in a POPS(d, g). The purpose of the data sum operation is to compute the sum
of these n data items and bring the sum in the first processor of the first group.
We consider the case when d >

√
n > g.

Our algorithm is based on the following strategy. Our main aim is to reduce
the number of data items rapidly so that there are only g data items in each
group. Since there are g groups, we can use Sahni’s algorithm [8] i as stated in
Lemma 1 at this point to compute the data sum of these g2 remaining elements.

309Basic Operations on a Partitioned Optical Passive Stars Network

To start with, we divide the processors in each group into two categories.

• The first g processors in each group i are called receivers. The set of g
receivers in the i-th group, 1 ≤ i ≤ g, is denoted by Ri and the j-th receiver in
the i-th group is denoted by ri,j , 1 ≤ j ≤ g.
• The (d − g) processors other than the receivers in each group are called the
senders. The set of senders in the m-th group, 1 ≤ m ≤ g, is denoted by Sm.

��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

������
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

������������

S
1

1

����
d
g

- 1

S
1

����
������
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

r1,1

r1,g s1,1

s1,g

g receivers
R

1

S 1

��

group 1

(d-g) senders

Fig. 2. The Receiver and Sender sets for group 1.

Consider the i-th group, 1 ≤ i ≤ g. First, we divide the set Si(1 ≤ i ≤ g) of
d− g senders in the group i(1 ≤ i ≤ g) into d

g − 1 subsets, each consisting of g

processors and we denote them by S1
i , . . . , S

d
g−1

i . Note that there are g senders

in each subset Sj
i , 1 ≤ j ≤ d

g − 1. We denote the senders in the subset Sj
i of Si

by si,(j−1)g+1, si,(j−1)g+2, . . . , si,jg(1 ≤ j ≤ (dg − 1)). The structure of the first
group is shown in Figure 2.

In each stage, we perform the following computation in each group i(1 ≤
i ≤ g) in parallel. At stage k(1 ≤ k ≤ d

g − 1), the participating subsets are

Sk
1 , S

k
2 , . . . , S

k
g from group 1, group 2, . . ., group g respectively. For the subset

Sk
j in group j, the senders sj,(k−1)g+1, . . . , sj,kg send their data to the receivers

r1,j in group 1, r2,j in group 2 . . ., rg,j in group g respectively. The couplers used
for this data movement are c(∗, j) where ‘*’ indicates all the values from 1 to g.
This computation takes one slot. This data movement is performed in parallel
by all the g subsets Sk

i (1 ≤ i ≤ g). Hence, the computation at stage k takes
one slot. Further, g2 data items are moved in stage k and g2 different couplers

310 A. Datta and S. Soundaralakshmi

are used since each subset Sk
i of Si (1 ≤ i ≤ g) in group i uses the g couplers

connected to group i. Note that each receiver receives only one data item. The
computation is the same for each stage except that the participating subsets are
different. Since there are d

g − 1 stages, the total number of slots is d
g − 1. The

data movement at Stage 1 is illustrated in Figure 3.

��
����
�����
�
�
�

��
��
��
��

����������
��
��
��

������
��
��
��

��������
��
d
g

− 1

S
1

����
��������
��
��
��
��

��������

����
��������
����������
��
��
��

��
��
��
��

����������
��
��
��

������
��
��
��

��������

����
��������
��
��
��
��

��������

����
��������
����������
��
��
��

��
��
��
��

����������
��
��
��

������
��
��
��

��������

����
��������
��
��
��
��

��������

S
1

1 S
1
2

�
�
�
�d
g

− 1

S2
��
d
g

− 1

Sg

S
1
g

����
������
��
��
��

������
��
��
��

��
��
��
��

����������
��
��
��
��
��
��
��

��
��
��
��

������������

����
��
��
��
��

��
��
��
��

�����
�
�
�

����

S
1
3

�
�
�
�d
g

− 1

S 3

����������
��
��
��
��
��
��
��

�� �� ������

group 1 group 2 group ggroup 3

Fig. 3. At stage 1, the participating subsets are S1
1 , S

1
2 , . . . , S

1
g . The data movement is

shown for subsets S1
1 and S1

g .

Once the receivers receive the data items, they add the received data with
their existing data. In the k-th stage (1 ≤ k ≤ d

g−1), the g senders si,(k−1)g+1, . . . ,

si,kg in Sk
i send their data items(1 ≤ i ≤ g) to i-th receivers r1,i, . . ., rg,i of the

groups 1, 2, . . . , g respectively. Each receiver add the data item that it receives
at this stage to its accumulated sum. Note that after stage k, each group has
d− kg senders holding data items.

After d
g −1 stages, all the senders have sent their data to the receivers. Hence,

each group has now g receivers holding their accumulated sums. Our next task is
to add the accumulated sums in these g2 receivers and bring this sum to the first
processor in the first group. We do this using Sahni’s [8] algorithm in Lemma
1. This computation takes 2 log g slots. Hence, the sum of all the data items in
the n = dg processors is computed after d

g + 2 log g− 1 slots. We have shown the
following lemma.

Lemma 3. The sum of n data items initially given in a POPS(d, g) with one
data item per processor, dg = n and d >

√
n > g, can be computed in d

g +
2 log g − 1 slots.

311Basic Operations on a Partitioned Optical Passive Stars Network

4 Prefix sum

In this section, we present an algorithm on a POPS(d, g) for computing prefix
sum in 2d

g +4 log g+6 slots when d >
√
n > g. The strategy behind our algorithm

is the following.
We first divide each group of d processors into g subgroups with d

g processors
in each subgroup. We denote the set of g subgroups in group i by Si, 1 ≤ i ≤ g.
The j-th subgroup in Si is denoted by Si,j , 1 ≤ j ≤ g. We compute the prefix
sum in each such subgroup Si,j(1 ≤ i, j ≤ g) with respect to the elements in Si,j

and we call these prefix sums as subgroup prefix sums. After this computation,
we are left with g groups and g subgroup prefix sums in each group.

Consider the k-th element in Si,j . Next we add two contributions to the
subgroup prefix sum of Sk

i,j to get its overall prefix sum. The first contribution
is the sum of all the elements in the groups 1 to i− 1. The second contribution
is the sum of all the elements in the subgroups Si,1 to Si,j−1. Our algorithm is
divided into three phases.

Phase 1.

The purpose of this phase is to distribute copies of the g subgroups of each
group among the other groups. Consider the i-th group and its set Si = {Si,j |1 ≤
j ≤ g}. Note that each subgroup Si,j contains d

g elements. We use the same no-
tation Si,j to denote the processors as well as the input elements in the subgroup
Si,j . The copies of the elements in Si,j are sent to the processors in the subgroup
Sj,i of Sj in group j, one element per processor, by using the coupler c(j, i). This
data movement is done for all Si,j , 1 ≤ i ≤ g, 1 ≤ j ≤ g, in parallel. Note that
there is no coupler conflict as for any two couplers, both of their indices do not
match. In other words, we are transmitting data from g2 subgroups and we have
g2 couplers and hence, there is no coupler conflict.

This data transmission is performed in d
g slots since there are these many

elements in each subgroup Si,j and a coupler can receive one data item in each
slot.

Phase 2.

We compute the subgroup prefix sums in this phase. Consider the subgroup
Si,j of Si, the j-th subgroup in the i-th group. We denote the d

g elements in this

subgroup as Sk
i,j , 1 ≤ k ≤ d

g . Recall that copies of all the elements in Si,j has
been sent to the subgroup Sj,i in Phase 1.

Now, the processors in Sj,i broadcast the elements of Si,j to the processors
in Si,j in d

g slots. This broadcast is done by the processors in Sj,i one by one.

• In the first slot, S1
j,i broadcasts the element S1

i,j to the processors Sk
i,j , 2 ≤

k ≤ d
g . These processors add S1

i,j with the input they hold. In general, in the

m-th slot, 1 ≤ m ≤ d
g , the processor Sm

j,i broadcasts the element Sm
i,j to the

processors Sk
i,j ,m + 1 ≤ k ≤ d

g .
• This computation is done by all the subgroups in all the groups in parallel,

312 A. Datta and S. Soundaralakshmi

i.e., in the subgroups Si,j , 1 ≤ i ≤ g, 1 ≤ j ≤ g. Note that the coupler used to do
the broadcasts from processors in Sj,i to processors in Si,j is c(i, j). Hence, all
the subgroups can communicate with the help of the g2 couplers and there is no
coupler conflict as each coupler c(i, j) will have its two indices i and j different
from all other couplers. Further, each process broadcasts at most one element
and receives at most one element in each slot. The total number of slots required
in this phase is d

g .

Note that at the end of the d
g slots, all the processors in Si,j have computed

the prefix sum of its element with respect to the elements in Si,j We call these
prefix sums as subgroup prefix sums and the subgroup prefix sum of the element
Sk
i,j , 1 ≤ i, j ≤ g is denoted by SubPrefix(Sk

i,j).

end of Phase 2

For the computation in the next phase, we are interested in the prefix sums

SubPrefix(S
d
g

i,j), 1 ≤ i, j ≤ g. Note that S
d
g

i,j =
∑ d

g

m=1 S
m
i,j , i.e., the last element

S
d
g

i,j of the subgroup Si,j holds the sum of all the elements in it. Hence, the sum
∑g

j=1 SubPrefix(S
d
g

i,j) gives the sum of all the elements in the i-th group and
we call this the group-sum for group i and denote it by GSi.

Consider the element Sk
i,j(1 ≤ k ≤ d

g), i.e., the k-th element of the j-th

subgroup Si,j in group i. We denote the actual prefix sum of Sk
i,j w.r.t all the

elements in POPS(d, g) by prefix(Sk
i,j). The computation of prefix(Sk

i,j) is per-

formed as follows. After the computation in Phase 2, we know SubPrefix(Sk
i,j) .

We add the following two quantities to SubPrefix(Sk
i,j) to compute prefix(Sk

i,j).

(i). The first quantity is
∑i−1

m=1 GSm, i.e., the contribution of all the groups be-
fore the i-th group.

(ii). The second quantity is
∑j−1

p=1 SubPrefix(S
d
g

i,p), i.e., the contribution of all
the subgroups before the j-th subgroup in group i. We discuss the computation
of these two contributions (i) and (ii) in Phase 3.

Phase 3.

After the computation in Phase 2, each of the g groups has g subgroup
prefix sums. Hence, for each group i, we can compute the prefix sums of the

subgroup prefix sums SubPrefix(S
d
g

i,1), SubPrefix(S
d
g

i,2), . . . , SubPrefix(S
d
g

i,j).
by considering our POPS(d, g) as a POPS(g, g) and using Sahni’s algorithm
[8] as described in Lemma 2. In this case, d = g and n = g2 and hence, the
number of slots required is 3 + logn + log d = 3 + log(g2) + log g = 3 + 3 log g.

Note that the quantity GSi, 1 ≤ i ≤ g, will be available in the i-th group
after this computation. We now compute the prefix sums of the GSi’s by using
our POPS(d, g) as a POPS(1, g) and by using Sahni’s algorithm for simulating
a hypercube algorithm on a POPS(1, g). This computation takes log g slots.

Now, the last processor in each group i, 1 ≤ i ≤ g has got the prefix sums∑i
j=1 GSj . This processor computes

∑i−1
j=1 GSj =

∑i
j=1 GSj −GSi and broad-

casts this quantity to all the processors in group i, 1 ≤ i ≤ g by using the

313Basic Operations on a Partitioned Optical Passive Stars Network

coupler c(i, i). All processors add this quantity to their current prefix sum. This
computation takes one slot.

S1,1
1

S1,1
2

S1,1
d/g

GS2 GS3

��
�
�
�
�

���
�
�
�

�
�
�
�

��

������
��
��
��

��
��
��
��
����

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

������
��
��
��

������
��
��
��

��
��
��
��
��
��
��
��

����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���
�
�
�

��������������

������������ GSi-1

��
�
�
�
�

���
�
�
�

��
��
��
��

�
�
�
�

���
�
�
�

�
�
�
�
�
�
�
�

�����
�
�
�
��

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

������
��
��
��

����

���
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�����
�
�
�

��
��
��
��

��
��
��
��

��������

��
��
��
��

��
��
��
��

��
��
��
��
����

��
��
��
��

��
��
��
��

������
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
����

��

GS1

��
���
�
�
�

��������

��
��
��
��

������
��
��
��
��
��
��
��

������
��
��
��

��
��
��
��
����

�
�
�
�

�
�
�
�

���
�
�
�

�����
�
�
�

���
�
�
�

�
�
�
�
�
�
�
�

group 3

SubPrefix(Sd/g
i,1)

Sd/g
i,2

SubPrefix()
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�����
�
�
�

Si,j
k

group 1 group 2 group i

Fig. 4. Illustration for the computation in Phase 3. prefix(Sk
i,j) is computed by adding

∑i−1

m=1
GSm and

∑j−1

p=1
SubPrefix(S

d
g

i,p) to SubPrefix(Sk
i,j).

We have to compute the final contribution in the prefix sum of each el-
ement due to the contribution of the subgroup prefix sums within its own
group. Recall that we already know the subgroup prefix sums due to the com-
putation in the first part of this phase. Each group i has g subgroup pre-

fix sums SubPrefix(S
d
g

i,1),
∑2

p=1 SubPrefix(S
d
g

i,p), . . . ,
∑j

p=1 SubPrefix(S
d
g

i,p),

. . . ,
∑g

p=1 SubPrefix(S
d
g

i,p).

We need to broadcast the subgroup prefix sum
∑j−1

p=1 SubPrefix(S
d
g

i,p) to all
the processors in Si,j and these processors should update their existing sum by
adding this quantity. If we use the coupler c(i, i) to do this broadcast, then we
will need g slots. Instead, we do this broadcast for all the groups in two slots in
the following way.

• We specify g − 1 processors from each of the g groups as receivers. We
denote the g − 1 receivers for group j, 1 ≤ j ≤ g by rj,k, 1 ≤ k ≤ (g − 1).

The processors S
d
g

i,j(1 ≤ j ≤ (g − 1)) in group i holding the (g − 1) sub-

prefix sums
∑j

p=1 SubPrefix(S
d
g

i,p) send these sub prefix sums to the i-th re-

ceivers in each group. For example, SubPrefix(S
d
g

i,1) is sent to the receiver

r1,i,
∑2

p=1 SubPrefix(S
d
g

i,p) is sent to the receiver r2,i and in general, the sum
∑m

p=1 SubPrefix(S
d
g

i,p), 1 ≤ m ≤ (g − 1) is sent to the receiver rm,i, for all

314 A. Datta and S. Soundaralakshmi

1 ≤ i ≤ g. This data movement takes one slot. Processors in group i use the
couplers c(∗, i), where ‘*’ means all indices 1, . . . , g. Hence, no two couplers used
in this data transfer, will have both indices same and in the same order. This
shows that there is no coupler conflict.
• Next, the j-th receiver rk,j , 1 ≤ k ≤ (g − 1) in group k broadcasts the sum
∑k

p=1 SubPrefix(S
d
g

i,p) to all the processors in the subgroup Sj,k+1 using the
coupler c(j, k). This broadcast is done by all the receivers rk,j , 1 ≤ k ≤ g, 1 ≤
j ≤ (g−1). There is no coupler conflict as the the coupler indices depend on the
corresponding receiver index and no two receivers have matching indices.
• Finally, each processor in each of the subgroups updates its prefix sum by
adding the received quantity with its existing prefix sum.

The total slots required for the computation in this phase is 4 log g + 6. This
concludes the computation of prefix sum. Hence, we have the following lemma.

Lemma 4. The prefix sum of n data items initially given in the n = dg pro-
cessors of a POPS(d, g) with d >

√
n > g, can be computed in 2d

g + 4 log g + 6
slots.

References

1. P. Berthomé and A. Ferreira, “Improved embeddings in POPS networks through
stack-graph models”, Proc. Third International Workshop on Massively Parallel
Processing Using Optical Interconnections, pp. 130-135, 1996.

2. P. Berthomé, J. Cohen and A. Ferreira, “Embedding tori in partitioned optical
passive stars networks”, Proc. Fourth International Colloquium on Structural In-
formation and Communication Complexity (Sirocco ’97), pp. 40-52, 1997.

3. D. Chiarulli, S. Levitan, R. Melhem, J. Teza and G. Gravenstreter, “Partitioned op-
tical passive star (POPS) multiprocessor interconnection networks with distributed
control”, Journal of Lightwave Technology, 14 (7), pp. 1901-1612, 1996.

4. G. Gravenstreter and R. Melhem, “Realizing common communication patterns in
partitioned optical passive stars (POPS) networks”, IEEE Trans. Computers, 47
(9), pp. 998-1013, 1998.

5. G. Gravenstreter, R. Melhem, D. Chiarulli, S. Levitan and J. Teza, “The parti-
tioned optical passive stars (POPS) topology”, Proc. Ninth International Parallel
Processing Symposium, IEEE Computer Society, pp. 4-10, 1995.

6. V. Prasanna Kumar and V. Krishnan, “Efficient template matching on SIMD ar-
rays”, Proc. 1987 International Conference on Parallel Processing, pp. 765-771,
1987.

7. R. Melhem, G. Gravenstreter, D. Chiarulli and S. Levitan, “The communication
capabilities of partitioned optical passive star networks”, Parallel Computing Us-
ing Optical Interconnections, K. Li, Y.Pan and S. Zheng (Eds), Kluwer Academic
Publishers, pp. 77-98, 1998.

8. S. Sahni, “The partitioned optical passive stars network : Simulations and fun-
damental operations”, IEEE Trans. Parallel and Distributed Systems, 11 (7), pp.
739-748, 2000.

9. S. Sahni, “Matrix multiplication and data routing using a partitioned optical pas-
sive stars network”, IEEE Trans. Parallel and Distributed Systems, 11 (7), pp.
720-728, 2000.

315Basic Operations on a Partitioned Optical Passive Stars Network

	Introduction
	The POPS network
	Data sum
	Prefix sum
	References

